
An Integrated Floorplanning with an Efficient Buffer
Planning Algorithm

Yuchun Ma1, Xianlong Hong1, Sheqin Dong1, Song Chen1, Yici Cai1, C.K.Cheng2, Jun Gu3

1
 Department of Computer Science & Technology, Tsinghua University, Beijing, China,100088

clara99@mails.tsinghua.edu.cn; hxl-dcs@tsinghua.edu.cn

2 Department of Computer Science and Engineering, University of California,San Diego CA 92093-0114,USA

3
 Department of Computer Science, Science & Technology University of HongKong

ABSTRACT
Previous works on buffer planning are mainly based on fixed die
placement. It is necessary to reduce the complexity of computing
the feasible buffer insertion sites to integrate the buffer planning
with the floorplanning process. In this paper, we give an efficient
buffer planning algorithm with linear complexity by computing
all the feasible buffer insertion sites in a 2-step method. By
partitioning all the dead spaces into blocks while doing the
packing, the buffer allocation can be handled as an integral part in
the floorplanning process. Our method is based on a simulated
annealing approach which is divided into two phases: timing
optimization phase and buffer insertion phase. Since there is more
freedom for floorplan optimization, the floorplanning algorithm
integrated with buffer planning can result in better time
performance and chip area.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
Routing

General Terms
Algorithms, Performance, Design.

Keywords
Floorplanning, Routability, Buffer Insertion.

1. INTRODUCTION
Due to the recent advances in VLSI technology, the number of
transistors in a design is increasing rapidly and so are their
switching speeds. This has increased the importance of the
interconnect delay in the overall performance of a circuit. Many
techniques are employed to reduce interconnect delay. Among
them, buffer insertion has shown to be an effective approach to
achieve timing closure. As transistor count and chip dimension
get larger and larger, more and more buffers are expected to be

needed for high performance. It was projected that over 700K
buffers will be inserted on a single chip in the 70nm
technology[8]. Since buffers are implemented by transistors, they
cannot be placed over the existing circuit blocks. Placing a large
number of buffers between circuit blocks could significantly
impact the chip floorplan. Therefore, it is necessary to start buffer
planning as early as possible. It is very useful that a good
planning of the block positions can be obtained during the
floorplanning stage so that buffers can be inserted wherever
needed in the later routing stages There are several previous
works addressing the interconnect issues in floorplanning design.
Cong[1] define the term “feasible region” (FR) of a net, that is,
the largest polygon in which a buffer can be inserted such that the
timing constraint can be satisfied. Sarkar[3] added the notion of
independence into feasible regions so that the feasible regions of
different buffers on a net can be computed independently. These
two papers give the basic idea of Feasible Region, based on which
they proposed the buffer planning algorithms. But both of their
methods take complex scanning to obtain the feasible buffer
insertion sites. Tang and Wong[9] propose an optimal algorithm
based on net flow to assign buffers to buffer blocks assuming that
only one buffer is needed per net. Alpert et al.[11] make use of
tile graph and dynamic programming to perform buffer block
planning, while they propose that buffers should be allowed to be
inserted inside macro blocks. But all of these algorithms are based
on fixed die placement and it is difficult to embed those methods
into the iterations of the floorplanning process because of the
complexity of those algorithms. Unfortunately, the fixed
placement is likely to generate some timing-constraint violations
which are beyond repair unless the topological relation between
blocks can be changed. Hence, to create a performance-feasible
floorplan, a floorplanner that simultaneously consider area and
buffer insertions is needed.
The feasible region for buffer insertion in the packing reduced by
the circuits is a very complex polygon, normally concave
polygon. The computation of buffer insertion sites is very difficult
and time-consuming. Though the method in [9] is independent of
grid size, it is still too complex of that method that it scans the
packing by a sweep line and its algorithm runs in O(n2logn) time
where n is the number of the nets. Taking advantages of the dead

 ∗This work is supported by the National Natural Science Foundation of

China 60121120706 and National Natural Science Foundation of USA
CCR-0096383, the National Foundation Research(973) Program of
China G1998030403, the National Natural Science Foundation of China
60076016 and 863 Hi-Tech Research & Development Program of China
2002AA1Z1460

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD ’03, April 6-9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004…$5.00.

136

spaces blocks in the packing and the feature of the FR, we can
figure out the possible insertion sites for the buffers very
efficiently. Instead of computing the size of the dead space in
each grid in the packing, we compute the intersection between the
dead space blocks and the FRs in a 2-step method. Since our
method can give the range of the possible buffer insertion sites
independent of the sizes of the grids, we give a probabilistic
method to budget the buffer insertion. The computation of the
possible buffer insertion sites for all net can be executed in the
running time of O(n) where n is the number of the nets, since we
need to scan all the net only once.
Since buffers should utilize the dead space in the packing, it is
necessary to obtain the information about the dead spaces very
effectively. In this paper, we propose the algorithm to obtain the
dead space blocks in the floorplanning while doing the packing.
Based on the CBL packing algorithm, we can partition the dead
spaces in the packing into no more than 2n blocks (n is the
number of the circuit blocks) without overlapping between each
dead space blocks. To speed up our algorithm, the simulated
annealing process is divided into two phases: timing optimization
phase and buffer insertion phase. The experiments prove the
effectiveness of our approach.
The rest of the paper is composed as follows: Sect.2 gives the
problem formulation; Sect.3 gives the computation method of the
buffer insertion sites. The integrated floorplanning algorithm is
described in Sect.4. The experimental results are shown in Sec.5.
Finally, the conclusion is given. .

2. PROBLEM FORMULATION
In this paper, we want to involve the buffer planning issue into the
floorplanning design: given the timing constraints on each net, we
should give a floorplanning with buffers inserted to meet the
timing constraints. Also we should find the number and locations
of buffers at the same time. We consider the insertion of buffers
should in the dead spaces between circuit blocks. The buffer
allocation is handled as an integral part in the floorplanning
process. We seek a floorplanning methodology to produce the
optimal floorplan such that the floorplan area and wire length are
minimized and the buffers can be inserted in the dead spaces as
much as possible. Since there is more freedom for floorplan
optimization, the integrated floorplanning algorithm with buffer
planning can result in better time performance.

3. COMPUTATION OF POSSIBLE
BUFFER INSERTION SITES
3.1 Independent Feasible Region
Cong et.al [1] introduced the concept of Feasible Region(FR) for
buffer insertion, and presented analytical formula to compute FR.
The feasible region for a buffer ‘b’ is the maximum region where
‘b’ can be located such that by inserting buffer ‘b’ into any
location in that region, the delay constraint can be satisfied.
Sarkar et al.[3] gives the notion of independent feasible
regions(IFR) and the IFRs of buffers belonging to the same net do
not overlap each other. Here we use the concept of IFR so that the
feasible regions of different buffers on a net can be computed
independently. Each driver/buffer is modeled as a switch-level RC
circuit [5] and the Elmore delay formula [6] is used for delay
computations. The notation for the physical parameters of the
interconnect and buffer we use in this paper is as follows:

r wire resistance per unit length
c wire capacitance pre unit length
Tb intrinsic buffer delay
Cb buffer input capacitance
Rb buffer output resistance

 The optimal locations of the k buffers for delay minimization of
the net as shown in [2] are

{ }kixyix LLi ,...2,1)1(*** ∈+−= (1)

 Where

)
)()(

(
1

1*
c

CC
r

RRk
L

k
x bLdb

L
−

+
−

+
+

=

)
)()(

(
1

1*
c

CC
r

RR
L

k
y bLdb

L
−

+
−

−
+

=

In order to satisfy the target delay constraint, denoted by N
tgtT ,

and),(lkT N
opt is the optimal delay with k buffers inserted , for

),(lkTT N
opt

N
tgt ≥ , the width of the IFR for the ith buffer (i<k)

of the net is

)12(
),(

2
−

−
×=

krc
lkTT

W
N

opt
N

tgt
IFR (2)

Here we define:

2/*
min IFRi Wxx −= ;

2/*
max IFRi Wxx +=

Formally, the IFR for the ith buffer of a net is

),0(),(maxmin LxxIFRi ∩=

In [1], it gives the minimum number of buffers to meet the
delay constraint Treq for an interconnect of length l is













 −−−
=

4

64
2
55

min 2
4

K
KKKK

k (3)

where

bbb TCRK +=4

2
5

)(
2

2)(
2

)(

dbLb

reqLbbdbbb

RR
r

cCC
c
r

TCRCRTlcRrCK

−−−−

−++++=

reqLddL TCRlcRrCrclK −+++=)(
2
1 2

6

The 2-D IFR of a buffer is defined as the union of the 1-D IFRs of
that buffer on all monotonic Manhattan routes between source and
sink. Therefore, 2-D IFRs, as in [2], are convex rectilinear
polygons with horizontal, vertical, and ±1 slope boundaries (Fig.
1(a)). For a net with n buffers, the 2-D feasible region for the ith
buffer is the region bounded by two parallel lines with Manhattan
distance from the source in the range of IFRi, and by the
rectangular bounding box between the source and sink. The slope
of the two parallel lines is either +1 or –1, depending on the sign

137

of)/()(sinsin srcksrck xxyyK −−= : if K > 0, the slope is

–1; if K<0, the slope is +1.Two-step method to computer the
insertion sites.

3.2 Two-step method to computer the
insertion sites
Since the feasible region will be reduced by the circuit blocks, the
feasible region for buffer insertion in the packing is a very
complex polygon, normally concave polygon, as shown in
Fig.1(b). We partition the dead space into rectangular blocks to
capture the constraint that the circuit blocks prevent the insertion
of a buffer. Clearly, a buffer must be inserted within the
intersection of its feasible region and a partitioned dead space
rectangle.

Definition 1: Dead Space Block(DS block): The dead spaces
between the circuit blocks can be partitioned into rectangles
which are called dead space blocks and the buffer blocks should
be packed within the range of dead-space blocks.
The intersection between FR of a buffer and the dead space block
is a regular hexagon(including some degenerations), whose two
edges parallel to the x-axis, two edges parallel to the y-axis, and
other two edges have the slope of +1(45 degree) or –1(135
degree).
To facilitate the data manipulation, we partition the dead space
blocks into grids and each grid provides sites for buffer insertion.
Therefore, the buffers should be inserted at the grids within their
FRs to meet the delay constraints. The computation of buffer
insertion sites is the most difficult and time-consuming part when
doing the buffer planning. A naïve solution is to examining all the
grid points in the packing, thus this method has its running-time
depending on the grid size and needs a lot of scanning processes.
Instead of the complex computation of the intersection between
the hexagon of FR and the dead space blocks, we decompose the
problem into two simple problems: the first step is to compute the
intersected blocks between dead space blocks and the bounding
box of the source and sink; the second step is to compute the
overlapping between the result blocks in the first step and the
region between two parallel lines which are the two edges of the

FR. Since these two lines have the slope of +1 or –1, we order the
grids in dead space blocks parallel to these two lines. Therefore
by taking advantage of the information of dead space blocks, we
can figure out the intersections between the feasible regions and
the dead spaces for all nets very efficiently.

Step 1. Compute the intersection(intersected DS) between dead
space blocks and the source-sink bounding box
Since both the dead space block and the source-sink bounding box
are rectangular, the intersection between them is also rectangle. It
is a basic problem on geometry to figure out the intersection
between two rectangles. We solve it by the extension on the
intersection of the segments.

Lemma 1: suppose that the lower left corner of the bounding box
between source and the sink is (xll,yll), the upper right corner is (
xur,yur)(Similar definition in the following section). The lower
left corner of the dead space block is (xllds,yllds) and the upper
right corner is (xurds,yurds). The two rectangles intersect with each
other if the following inequalities are satisfied(Fig.7):





>−
>−

0
0

YllYur
XllXur

Where :
X11= max(x11,x11ds) ; Y11 = max(y11,y11ds)
Xur = min(xur,xurds); Yur = min(yur,yurds)
And the lower left corner of the intersection rectangle should be
(Xll,Yll) ; the upper right corner is (Xur,Yur).
As shown in Fig2.(a), the dead space block 1 and the source-sink
bounding box overlap each other. Following lemma 1, we can
figure out the intersected rectangle (Intersected DS) as in Fig.2(b).

Step 2. Compute the intersection between intersected DS
and the region between two parallel lines(Fig.2(c)).
Since the dead space blocks are divided into grids, to compute the

Figure 2. the computation of the FR in the dead space block

1

S

T

(c) the shadowed region is the intersection between FR
and DS_block

(a) two rectangles intersected
(b) the intersected region

X11= max(x11,x11ds)
Y11 = max(y11,y11ds)
Xur = min(xur,xurds)

Yur = min(yur,yurds)

(xllds,yllds)

(xurds,yurds)

(xll,yll)

(xur,yur)

(Xur,Yur)

(Xll,Yll)

S

T

S

T

(a) the 2-D feasible region

(b) the feasible region reduced by circuit blocks
Figure 1. The 2-D independent feasible region

Feasible
Region

xmin
xmax

Buffer is
inserted in
the FR

138

intersection between two parallel lines and intersected DS, we
order the grids by {G1,…Gmax} in the intersected DS by the
sequence of the slope +1 and –1(Fig.3). Here we only consider the
feasible edge with the slope of -1, since the other case can be
handled similarly. As in Fig.3(a), we order the intersected DS
from 1 to 20 by the sequence of the slope –1.
If the feasible region between the two parallel lines intersect with
the intersected DS, we define the left line in the feasible region is
the first line and the right line is the second line. Suppose that the
first line meet the intersected DS at the bottom boundary or the
right boundary at the grid GP(if the first line does not have the
intersection with the intersected DS, then GP =G1) ; the second
line meet the intersected DS at the top boundary or the left
boundary at the grid GQ(if the second line does not have the
intersection with the intersected DS, then GQ =Gmax). Then the
feasible buffer insertion sites should between GP and GQ.
In fig.4 we can see that the first line meets the bottom boundary at
grid 4 and the second line meets the top boundary at grid 17.
Thus, the feasible buffer insertion sites should be between the grid
4 and grid 17 in the intersected DS.

Lemma 2: The number of possible insertion sites of the ith FR
(NFRi) intersected with dead space should be

NFRi ={Σ(| GP - GQ |) | for all the dead space blocks intersected
with FRi }
If NFRi = 0, then the buffer will not be placed properly since there
is no available insertion sites.
We assume that the probabilities of buffer insertion are equal at
each possible insertion site. Suppose that grid G is a possible
insertion site for ith buffer in net N. Thus the probability of ith
buffer insertion at grid G is PG

Ni = 1/NFRi
The total buffer insertion probability of grid G is

PG = {sum(PG
Ni) | for each feasible region which has

intersection with grid G}

4. FLOORPLANNER WITH BUFFER
PLANNING
Since our method can give the range of the possible buffer
insertion sites independent of the sizes of the grids, we can budget
the buffer insertion during the packing. To embed the buffer
planning in the packing process, the overall algorithm is given as
Fig.5.

4.1 CBL Representation
To do the block packing, we use the corner block list
representation. CBL is derived from a simplified version of
general placement called mosaic structure, in which the block is
represented by the room with only topological relationship
between each other. CBL represents the topological relations in
mosaic structure by a triple list of (S, L, T). It divides the chip
into rectangular rooms and assigns one and only one block to each
room according to (S, L, T). S records the sequence of the blocks’
ID, L records the orientation for each block, while T record how
many blocks are covered by each block when it is packed.
The Corner Block(CB) is the block packed at the upper right
corner of the floorplan. If the corner block covers other blocks
from top, we define the CB to be vertical oriented, and denote it
by Li = 0. Otherwise, the CB is horizontal oriented, and denote it
by Li=1. The binary sub-list in T records the number of the blocks
covered by this CB. The number of successive “1”s, which is
ended by a “0”, corresponds to the number of the blocks covered
by the corner block. As in Fig.6, the corner block is block “d” and
Ld=0,Td={10}, thus, block “d” covers two blocks “g” and “a”
from top. For more detail about CBL, please infer Reference[4].

4.2 The Dead Space in CBL
To insert the buffers, we should give the partition of the
dead spaces in advance. Though we can partition the dead
space into blocks by many different methods, we should
devise an effective method following the rules below:

14 17 19 20

10 13 16 18

6 9 12 15

3 5 8 11

1 2 4 7

20 19 17 14

18 16 13 10

15 12 9 6

11 8 5 3

7 4 2 1

Figure 3. The Grid Ordering

(a) slope is -1 (b) slope is +1

14 17 19 20

10 18

6 15

3 11

1 2 4 7

Figure 4. Possible buffer insertion sites

Specs of blocks, nets, timing

Initial Solution of annealing process

Packing the blocks by given solutions
and partition the dead spaces into blocks

Buffer planning

Solution evaluation

Stop annealing ?

Solution perturbation
and decrease the
temperature

No

Yes

Figure 5. Overall algorithm

139

(1) no overlapping between each dead space blocks;
(2) the number of the dead space blocks should be as few as

possible;
Corner Block List can represent mosaic structure, which includes
n rooms with no more than one block in each room, where n is the
number of blocks. The dead spaces besides the blocks in their
rooms compose the dead spaces in the final packing. Given a
CBL list, we expand the packing from the lower left to upper right
by inserting the blocks in list S in turn. Every insertion of the
block may generate some more dead space. Thus we can figure
out all the dead space while doing the packing and divide the dead
spaces into rectangles.

Lemma 3: during the packing process, when the ith block
Mi is packed, according to the given CBL, it will cover NMi
blocks which are {BC1…BCNMi}
z If block Mi covers other blocks from top (Li = 0)

then the heights of rooms containing blocks
{BC1…BCNMi} are settled.

z If block Mi covers other blocks from right(Li=1)
then the widths of rooms containing {BC1…BCNMi}
are settled.

As shown in Fig.6, when block ‘d’ covers two blocks from
the top, the height of the rooms containing blocks g and a
respectively are settled.
To move the blocks in their rooms will not affect the topological
relations between blocks and the final packing area. Since our
partition method for dead space is based on the range of the
blocks’ rooms, the dead space beside the block in the room can be
settled according to the strategy of how to place the blocks into
their rooms. Especially, some channels are left to favor the
performance of the packing in some floorplanner. In our
algorithm, the circuit blocks are packed at the lower-left corner of
the rooms. Therefore, we can partition the dead space in one room
into no more than two dead space blocks, one is a dead space
block above (DSabove) and the other is a dead space block at the
right (DSright). As shown in Fig.7(a), dead space blocks 2 and 1
are the dead space above and right to block “a” respectively(Some
channels are left as the minimal distance constraints between
blocks).
Thus, during the packing process, when the ith block Mi is
packed, according to the given CBL, it will cover NMi
blocks{BC1…BCNMi} from top(if Li = 0) or from right (Li=1).
For block Mi, we use the position of its bottom left corner (Xi,Yi)
to define its placement, the height and width for block Mi are Wi
and Hi respectively. Similarly, the bottom left corner of block
BCk(k∈[1,NMi]) is (xbc

k, ybc
k) and the height and width of block

BCk are wbc
k and hbc

k respectively: the width and height of the
dead space above block BCk is WDSk

a and HDSk
a respectively,

the width and height of the dead space at the right of block BCk is
WDSk

r and HDSk
r respectively.

The heights and the widths of the dead space blocks beside each

block are initialized to zero before packing,

0==== k
r

k
r

k
a

k
a WDSHDSWDSHDS

z If Li = 0 and ybc
k +hbc

k< Yi, there should be a dead space
block above block BCk

)(bc
k

bc
ki

k
a hyYHDS +−= (4)

k
r

BC
k

k
a WDSwWDS += (5)

z
 If Li = 1 and xbc

k +wbc
k< Xi, there should be a dead space

block at the right of block BCk

)(bc
k

bc
ki

k
r wxXWDS +−= (6)

k
a

BC
k

k
r HDShHDS += (7)

Fig. 7 is the demonstration of the packing process with the dead
spaces partition. In Fig.7(a), block c covers blocks b and a from
the top, and dead space blocks 2 and 3 are generated according to
formula (4) and (5). In Fig7(b), block d covers blocks c and b
from the right, thus, dead space blocks 5 and 4 are generated
according to formula (6) and (7).
Based on the partition strategies above, we can obtain the shapes
and positions of all the dead space blocks in the floorplan while
doing the packing process as described in Algorithm 1:
The dead space blocks should be non-overlapping between each
other, otherwise there should be some error while computing the
possible buffer insertion sites.

Lemma 4: The partition method of algorithm 1 will not generate
overlapping between dead space blocks.

4.3 Two-phase annealing process
In our algorithm, the simulated annealing process is divided into
two phases: timing optimization phase and buffer insertion phase.
In the timing optimization phase, we try to search for an optimal

Algorithm 1 Packing blocks with DS blocks partition
 Initialize the heights and widths of DS blocks

For block Mi is from M1 to Mn:
 Pack block Mi according to the given CBL;
 Figure out the DS blocks in the rooms covered by Mi;

End for
Figure out the DS blocks in the rooms covered by the

top boundary;
Figure out the DS blocks in the rooms covered by the

right boundary;

End.

b

a

f

g c
e

(a)
Figure 6. The CB is block ’d’, Ld=0,Td={10} and it covers 2 blocks

b

a

f

g c
e

(b)

d

3

b
a

1

c

Figure 7. The example packing process
(a)

3

b
a

1

c

(b)

d
2

4

5

2

140

floorplanning that the timing constraints can be satisfied as much
as possible.
 In the beginning of floorplanning process, the buffer planning is
less meaningful because the locations of the blocks are still far
from their final position. But we should evaluate the
floorplanning to favor the buffer planning. Here we use a
probabilistic method in Sec3.2 to estimate the buffer insertion.
Suppose that grid G is a possible insertion site for ith buffer in net
N. Thus the probability of ith buffer insertion at grid G is

PG
Ni = 1/NFRi

The total buffer insertion probability of grid G is
PG = {sum(PG

Ni) | for each feasible region which has
intersection with grid G }
Suppose the area of the grid is Agrid and the area of a buffer is
Abuffer, R = Agrid/Abuffer.
If PG> R then we think the buffers inserted will be too crowded
thus we should take some measure to control it.
And if NFRi = 0, then the buffer will not be inserted properly
since there is no available grids for this buffer. Thus we use
B_evaluate to budge the violations of buffer insertion:

B_evaluate = Count{(NFRi = 0)| for all nets} + Count{(
PG>R)|for all grids}
The cost function used in the phase is shown below:

Cost = Area + p*Wire + q* Tviolations +s*B_evaluate
 Where Area is the area of the floorplan and wire is the total
wirelength(p is the weight), Tviolation is the number of the net
whose optimal timing with buffer inserted is larger than the given
timing constraint.
Since we can obtain the feasible insertion sites for buffer very
effectively, we can extend the method to insert buffers easily. In
the buffer insertion phase, the buffer assignment is done by the
heuristic methods similar to the method in [1] to optimize the
buffer insertion. But here we do not enlarge the dead spaces when
the buffers can not be placed in the dead spaces properly because
of the limitation of the dead spaces. These violations will be
reduced during the annealing process. The cost function used in
the phase is shown below:
Cost = Area + p*Wire + q* Tviolations + r*Bnot_inserted
Where Area is the area of the floorplan and wire is the total
wirelength(p is the weight), Tviolation is the number of the net
whose optimal timing with buffer inserted is larger than the given
timing constraint. Bnot_insert is the number of the buffers not
inserted successfully because of the limitation of the dead spaces.

5. EXPERIMENTS
We have implemented the placement algorithm in C programming
language, and all experiments are performed on a SUN SPARC
III workstation. Some MCNC benchmarks are used in the
experiments. The parameters(refer to Table 1) used in our
experiments are based on a 0.18um technology in [10].
We have tested our algorithms on 5 MCNC benchmarks, as
summarized in Table 2. In this paper, we focus on 2-pin net, so
we decompose each multi-pin net into a set of source-sink 2-pin
net. Because of the lack of information on signal direction in the
benchmark files, we choose a pin to be the source and all the

others to be sinks, and then decompose a multiple terminal net
into a set of two-pin nets. We ignore all power and ground
interconnects. Since the MCNC benchmarks do not come with
any timing information, we generate a floorplan by running the
CBL floorplanner randomly. Based on this floorplan, we assign
target delays to the two-pin nets as follows: for each net, we first
compute its best delay by optimal buffer insertion Topt, and
assign its target delay as 1.1Topt. Notice that the sizes of the
blocks are enlarged for demonstration of the effect of buffer
planning.
In table 3, we report the experimental results of two floorplanners:
a traditional floorplanner F1 based on simulated annealing
without considering timing issue with the buffer insertion, and a
timing-driven floorplanner F2 on 2-phase simulated annealing
with buffer planning. In most layout tools, some channels are
used between blocks to favor the buffer insertion and routing.
Here we give the results with no channels and the results with
channels between blocks (the channel width is settled as 2 times
of the buffer width). For the result of F1, we also perform the
heuristic method of buffer insertion as in F2 at the end to compare
the results of F2: 1)#Meet: the number of nets for which the delay
constraint is met with successful buffer insertion; 2) #Inserted B /
#B: the ratio of the total number of buffers inserted successfully
and the total number of the buffer needed to meet timing
constraints, 3) #Violation: the number of the nets whose Topt>Ttgt ;
Comparing F1 and F2 in table 3, the differences between F1 and
F2 on area and wirelength are very small but the timing driven
floorplanning algorithm with buffer planning (F2)can achieve
much better timing performance than the plain floorplanning
algorithm(F1). As we generate the timing on our own the test
cases are different, a direct comparison between our method and
[1][3] may not be fair. From the results we can see that for test
case of Xerox with 455 2-pin nets, 370 nets meet their time
constraints with 214 buffers inserted successfully, and the number
of the nets whose Topt>Ttgt is only 51. Therefore, there is only 34
nets violate the constraints because of the failure of buffer
insertion. While the best result in [3] is that 368 nets meet their

Table 2. MCNC Benchmark
circuit blocks nets 2-pin net

apte 9 97 172

xerox 10 203 455

hp 11 83 226

Ami33 33 123 363

Ami49 49 408 545

Table 1. Parameter List

 Description Value

R Wire resistance per unit length(Ωµm) 0.075

C Wire capacitance per unit length(fF/µm) 0.118

Tb Intrinsic buffer delay(ps) 36.4

Cs/Cb Sink/buffer capacitance(fF) 23.4

Rb/Rd Driver/buffer output resistance(Ω) 180

141

Table 3. Comparison of floorplanning algorithm and the integrated floorplanning algorithm with buffer planning

 Area(mm2) Wire(mm) #Inserted B/#B #meet #violation Time(s)

 Test1 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

84.57 85.41 1343 1327 189/395 214/303 193 370 124 51 12 59 Xerox_1
Xerox_c 91.16 86.32 1424 1439 70/345 84/319 159 296 224 88 28 64

30.86 31.15 431.5 461.2 117/524 192/465 101 170 124 39 26 206 Ami33_1
Ami33_c 34.04 36.07 515.6 503.9 216/501 172/307 87 199 91 34 26 267

156.67 146.6 2922 2920 315/582 244/568 234 341 227 151 55 329 Ami49_1
Ami49_c 175.27 183.15 3471 2940 198/511 363/546 198 344 181 154 64 326

48.15 48.14 484.3 459.5 11/111 44/107 80 113 80 49 6.06 27 Apte_1
Apte_c 49.55 50.08 520.2 478.8 21/154 53/89 88 112 80 53 6.1 25

38.61 38.86 424.4 392.2 23/350 40/106 84 163 99 43 3.74 29 Hp_1
Hp_c 40.64 40.61 485.9 486.9 53/416 69/106 82 170 139 53 4.18 34

Average +0.2% -3.1% -- -- +76% -49% +509%

time constraints while 87 nets violates their constraint because of
the failure of the buffer insertion. And the best result in [1] is that
260 nets meet their time constraints while 195 nets violates their
constraint because of the failure of the buffer. The timing
constraints are all satisfied in [1][3] because that those methods
are based on fix-die placement, while the floorplanning should be
optimized to meet the given timing constraints in our algorithm.
Even though, we can see some improvement in the results
because our algorithm can give a more feasible floorplan structure
for buffer insertion.
Averagely, the timing constraints violation of F2 is 49% less than
the results of F1. And the number of the nets which meet their
constraints with buffer successful insertion increase 76% in F2
than F1. The algorithm of F2 can reduce the total wirelength,
constraints violations significantly The experimental results show
that the algorithm F2 can reduce the timing violations efficiently
without much expense in area and wirelength.

6. CONCLUSION
In this paper, the buffer allocation is handled as an integral part in
the floorplanning process. Not necessarily to scan the whole
packing to find the dead spaces, we can partition the dead space
into blocks while doing the packing. And the dead space blocks
favor the later computation about the Feasible Region in the dead
space. Instead of computing the size of the dead space in each
grid, we compute the intersection between the dead space blocks
and the FRs in a 2-step method. The computation of the possible
buffer insertion sites for all net can be executed in the running
time of O(m) where m is the number of the nets, since we can
obtain the range of the possible buffer insertion independent of
the grid sizes and we need to scan all the net only once.
Experimental results show that our floorplanner can reduce the
timing violation efficiently without much penalty in area and
wirelength.
As the fundamental method of buffer planning, our method can be
extended to optimize the buffer insertion in many different ways.
And our algorithm can be extended to handle similar problem
such as noise aware floorplanning and routability-driven
floorplanning.

7. REFERENCES

[1] J. Cong, T.Kong, and D. Z. Pan, “Buffer block planning for
interconnectdriven floorplanning,” in Proc. Int. Conf.
Computer-Aided Design, Nov.1999, pp. 358–363.

[2] C. J. Alpert and A. Devgan, “Wire segmenting for improved
buffer insertion,”in Proc. Design Automation Conf., June 1997,
pp. 588–593.

[3] P. Sarkar, V. Sundararaman, and C. K. Koh. Routability-
driven repeater block planning for interconnect-
centric .floorplanning. In ISPD 2000.

[4]Hong Xianlong, Huang Gang et al. “Corner Block List: An
Effective and Efficient Topological Representation of Non-
slicing Floorplan” ICCAD’2000.pp.8-12.

[5] J. Cong, L. He, K.-Y. Khoo, C.-K. Koh, and Z. Pan,
“Interconnect design for deep submicron ICs,” in Proc. Int.
Conf. Computer-Aided Design, Nov. 1997, pp. 478–485.

 [6] W. C. Elmore, “The transient response of damped linear
networks with particular regard to wide-band amplifiers,” J.
Appl. Phys., vol. 19, pp.55–63, Jan. 1948.

[7] J. Cong and D. Z. Pan, “Interconnect delay estimation models
for synthesis and design planning,” in Proc.ASP Design
Automation Conf., Jan. 1999, pp. 97–100.

[8] J. Cong. “ Challenges and opportunities for design innovations
in nanometer technologies”. In Frontiers in Semiconductor
Research: A Collection of SRC Working Papers, 1997.

[9] X. P. Tang and D. Wong. “Planning buffer locations by
network flows”. In Intl. Symp. Physical Design, pages 186–191,
2000.

[10] Semiconductor Industry Association, National Technology
Roadmap for Semiconductors. San Jose, CA: SIA, 1997.

[11] C. J. Alpert, J. Hu, S. S. Sapatnekar, and P. G.Villarrubia. “A
practical methodology for early buffer and wire resource
allocation”. In DAC, 2001.

142

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

