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ABSTRACT 
Previous works on buffer planning are mainly based on fixed die 
placement. It is necessary to reduce the complexity of computing 
the feasible buffer insertion sites to integrate the buffer planning 
with the floorplanning process. In this paper, we give an efficient 
buffer planning algorithm with linear complexity by computing 
all the feasible buffer insertion sites in a 2-step method. By 
partitioning all the dead spaces into blocks while doing the 
packing, the buffer allocation can be handled as an integral part in 
the floorplanning process. Our method is based on a simulated 
annealing approach which is divided into two phases: timing 
optimization phase and buffer insertion phase. Since there is more 
freedom for floorplan optimization, the floorplanning algorithm 
integrated with buffer planning can result in better time 
performance and chip area.   

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Placement and 
Routing 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Floorplanning, Routability, Buffer Insertion. 

1. INTRODUCTION 
Due to the recent advances in VLSI technology, the number of 
transistors in a design is increasing rapidly and so are their 
switching speeds. This has increased the importance of the 
interconnect delay in the overall performance of a circuit. Many 
techniques are employed to reduce interconnect delay. Among 
them, buffer insertion has shown to be an effective approach to 
achieve timing closure. As transistor count and chip dimension 
get larger and larger, more and more buffers are expected to be 

needed for high performance. It was projected that over 700K 
buffers will be inserted on a single chip in the 70nm 
technology[8]. Since buffers are implemented by transistors, they 
cannot be placed over the existing circuit blocks. Placing a large 
number of buffers between circuit blocks could significantly 
impact the chip floorplan. Therefore, it is necessary to start buffer 
planning as early as possible. It is very useful that a good 
planning of the block positions can be obtained during the 
floorplanning stage so that buffers can be inserted wherever 
needed in the later routing stages There are several previous 
works addressing the interconnect issues in floorplanning design. 
Cong[1] define the term “feasible region” (FR) of a net, that is, 
the largest polygon in which a buffer can be inserted such that the 
timing constraint can be satisfied. Sarkar[3] added the notion of 
independence into feasible regions so that the feasible regions of 
different buffers on a net can be computed independently. These 
two papers give the basic idea of Feasible Region, based on which 
they proposed the buffer planning algorithms. But both of their 
methods take complex scanning to obtain the feasible buffer 
insertion sites. Tang and Wong[9] propose an optimal algorithm 
based on net flow to assign buffers to buffer blocks assuming that 
only one buffer is needed per net. Alpert et al.[11] make use of 
tile graph and dynamic programming to perform buffer block 
planning, while they propose that buffers should be allowed to be 
inserted inside macro blocks. But all of these algorithms are based 
on fixed die placement and it is difficult to embed those methods 
into the iterations of the floorplanning process because of the 
complexity of those algorithms. Unfortunately, the fixed 
placement is likely to generate some timing-constraint violations 
which are beyond repair unless the topological relation between 
blocks can be changed. Hence, to create a performance-feasible 
floorplan, a floorplanner that simultaneously consider area and 
buffer insertions is needed.  
The feasible region for buffer insertion in the packing reduced by 
the circuits is a very complex polygon, normally concave 
polygon. The computation of buffer insertion sites is very difficult 
and time-consuming. Though the method in [9] is independent of 
grid size, it is still too complex of that method that it scans the 
packing by a sweep line and its algorithm runs in O(n2logn) time 
where n is the number of the nets. Taking advantages of the dead 
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spaces blocks in the packing and the feature of the FR, we can 
figure out the possible insertion sites for the buffers very 
efficiently. Instead of computing the size of the dead space in 
each grid in the packing, we compute the intersection between the 
dead space blocks and the FRs in a 2-step method.  Since our 
method can give the range of the possible buffer insertion sites 
independent of the sizes of the grids, we give a probabilistic 
method to budget the buffer insertion. The computation of the 
possible buffer insertion sites for all net can be executed in the 
running time of O(n) where n is the number of the nets, since we 
need to scan all the net only once. 
Since buffers should utilize the dead space in the packing, it is 
necessary to obtain the information about the dead spaces very 
effectively. In this paper, we propose the algorithm to obtain the 
dead space blocks in the floorplanning while doing the packing.  
Based on the CBL packing algorithm, we can partition the dead 
spaces in the packing into no more than 2n blocks (n is the 
number of the circuit blocks) without overlapping between each 
dead space blocks. To speed up our algorithm, the simulated 
annealing process is divided into two phases: timing optimization 
phase and buffer insertion phase. The experiments prove the 
effectiveness of our approach. 
The rest of the paper is composed as follows: Sect.2 gives the 
problem formulation; Sect.3 gives the computation method of the 
buffer insertion sites. The integrated floorplanning algorithm is 
described in Sect.4. The experimental results are shown in Sec.5. 
Finally, the conclusion is given.   . 

2. PROBLEM FORMULATION 
In this paper, we want to involve the buffer planning issue into the 
floorplanning design: given the timing constraints on each net, we 
should give a floorplanning with buffers inserted to meet the 
timing constraints. Also we should find the number and locations 
of buffers at the same time. We consider the insertion of buffers 
should in the dead spaces between circuit blocks. The buffer 
allocation is handled as an integral part in the floorplanning 
process. We seek a floorplanning methodology to produce the 
optimal floorplan such that the floorplan area and wire length are 
minimized and the buffers can be inserted in the dead spaces as 
much as possible. Since there is more freedom for floorplan 
optimization, the integrated floorplanning algorithm with buffer 
planning can result in better time performance. 

3. COMPUTATION OF POSSIBLE 
BUFFER INSERTION SITES 
3.1 Independent Feasible Region  
Cong et.al [1] introduced the concept of Feasible Region(FR) for 
buffer insertion, and presented analytical formula to compute FR. 
The feasible region for a buffer ‘b’ is the maximum region where 
‘b’ can be located such that by inserting buffer ‘b’ into any 
location in that region, the delay constraint can be satisfied. 
Sarkar et al.[3] gives the notion of independent feasible 
regions(IFR) and the IFRs of buffers belonging to the same net do 
not overlap each other. Here we use the concept of IFR so that the 
feasible regions of different buffers on a net can be computed 
independently. Each driver/buffer is modeled as a switch-level RC 
circuit [5] and the Elmore delay formula [6] is used for delay 
computations. The notation for the physical parameters of the 
interconnect and buffer we use in this paper is as follows: 

r    wire resistance per unit length 
c    wire capacitance pre unit length 
Tb  intrinsic buffer delay 
Cb  buffer input capacitance 
Rb  buffer output resistance 

  The optimal locations of the k buffers for delay minimization of 
the net as shown in [2] are 
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Here we define: 
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Formally, the IFR for the ith buffer of a net is 
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In [1], it gives the minimum number of buffers to meet the 
delay constraint Treq for an interconnect of length l is  
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The 2-D IFR of a buffer is defined as the union of the 1-D IFRs of 
that buffer on all monotonic Manhattan routes between source and 
sink. Therefore, 2-D IFRs, as in [2], are convex rectilinear 
polygons with horizontal, vertical, and ±1 slope boundaries (Fig. 
1(a)). For a net with n buffers, the 2-D feasible region for the ith 
buffer is the region bounded by two parallel lines with Manhattan 
distance from the source in the range of IFRi, and by the 
rectangular bounding box between the source and sink. The slope 
of the two parallel lines is either +1 or –1, depending on the sign 
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of )/()( sinsin srcksrck xxyyK −−= : if K > 0, the slope is 

–1; if K<0, the slope is +1.Two-step method to computer the 
insertion sites. 

3.2 Two-step method to computer the 
insertion sites 
Since the feasible region will be reduced by the circuit blocks, the 
feasible region for buffer insertion in the packing is a very 
complex polygon, normally concave polygon, as shown in 
Fig.1(b).  We partition the dead space into rectangular blocks to 
capture the constraint that the circuit blocks prevent the insertion 
of a buffer. Clearly, a buffer must be inserted within the 
intersection of its feasible region and a partitioned dead space 
rectangle.  

Definition 1: Dead Space Block(DS block): The dead spaces 
between the circuit blocks can be partitioned into rectangles 
which are called dead space blocks and the buffer blocks should 
be packed within the range of dead-space blocks. 
The intersection between FR of a buffer and the dead space block 
is a regular hexagon(including some degenerations), whose two 
edges parallel to the x-axis, two edges parallel to the y-axis, and 
other two edges have the slope of +1(45 degree) or –1( 135 
degree). 
To facilitate the data manipulation, we partition the dead space 
blocks into grids and each grid provides sites for buffer insertion. 
Therefore, the buffers should be inserted at the grids within their 
FRs to meet the delay constraints. The computation of buffer 
insertion sites is the most difficult and time-consuming part when 
doing the buffer planning. A naïve solution is to examining all the 
grid points in the packing, thus this method has its running-time 
depending on the grid size and needs a lot of scanning processes.  
Instead of the complex computation of the intersection between 
the hexagon of FR and the dead space blocks, we decompose the 
problem into two simple problems: the first step is to compute the 
intersected blocks between dead space blocks and the bounding 
box of the source and sink; the second step is to compute the 
overlapping between the result blocks in the first step and the 
region between two parallel lines which are the two edges of the 

FR. Since these two lines have the slope of +1 or –1, we order the 
grids in dead space blocks parallel to these two lines. Therefore 
by taking advantage of the information of dead space blocks, we 
can figure out the intersections between the feasible regions and 
the dead spaces for all nets very efficiently.  

Step 1. Compute the intersection(intersected DS) between dead 
space blocks and the source-sink bounding box 
Since both the dead space block and the source-sink bounding box 
are rectangular, the intersection between them is also rectangle. It 
is a basic problem on geometry to figure out the intersection 
between two rectangles. We solve it by the extension on the 
intersection of the segments. 

Lemma 1: suppose that the lower left corner of the bounding box 
between source and the sink is (xll,yll), the upper right corner is ( 
xur,yur )( Similar definition in the following section). The lower 
left corner of the dead space block is (xllds,yllds) and the upper 
right corner is (xurds,yurds). The two rectangles intersect with each 
other if the following inequalities are satisfied(Fig.7): 





>−
>−

0
0

YllYur
XllXur

 

Where : 
X11= max(x11,x11ds) ;       Y11 = max(y11,y11ds) 
Xur = min(xur,xurds);         Yur = min(yur,yurds) 
And the lower left corner of the intersection rectangle should be 
(Xll,Yll) ; the upper right corner is (Xur,Yur). 
As shown in Fig2.(a), the dead space block 1 and the source-sink 
bounding box overlap each other. Following lemma 1, we can 
figure out the intersected rectangle (Intersected DS) as in Fig.2(b).  

Step 2. Compute the intersection between intersected DS 
and the region between two parallel lines(Fig.2(c)). 
Since the dead space blocks are divided into grids, to compute the 

Figure 2. the computation of the FR in the dead space block 

   

  

  

1 

  

S 

T 

(c) the shadowed region is the intersection between FR 
and DS_block 

(a) two rectangles intersected 
(b) the intersected region  

X11= max(x11,x11ds) 
Y11 = max(y11,y11ds) 
Xur = min(xur,xurds) 

Yur = min(yur,yurds) 

(xllds,yllds) 

(xurds,yurds) 

(xll,yll) 

(xur,yur) 

   

  

  

(Xur,Yur) 

(Xll,Yll) 

   

  

  

S 

T 

S 

T 

(a) the 2-D feasible region 

(b) the feasible region reduced by circuit blocks 
Figure 1. The 2-D independent feasible region 

Feasible 
Region 

xmin 
xmax 

Buffer is 
inserted in 
the FR 

138



intersection between two parallel lines and intersected DS, we 
order the grids by {G1,…Gmax} in the intersected DS by the 
sequence of the slope +1 and –1(Fig.3). Here we only consider the 
feasible edge with the slope of -1, since the other case can be 
handled similarly. As in Fig.3(a), we order the intersected DS 
from 1 to 20 by the sequence of the slope –1.  
If the feasible region between the two parallel lines intersect with 
the intersected DS, we define the left line in the feasible region is 
the first line and the right line is the second line. Suppose that the 
first line meet the intersected DS at the bottom boundary or the 
right boundary at the grid GP( if the first line does not have the 
intersection with the intersected DS, then GP =G1) ; the second 
line meet the intersected DS at the top boundary or the left 
boundary at the grid GQ( if the second line does not have the 
intersection with the intersected DS, then GQ =Gmax). Then the 
feasible buffer insertion sites should between GP and GQ. 
In fig.4 we can see that the first line meets the bottom boundary at 
grid 4 and the second line meets the top boundary at grid 17. 
Thus, the feasible buffer insertion sites should be between the grid 
4 and grid 17 in the intersected DS. 

Lemma 2: The number of possible insertion sites of the ith FR 
(NFRi) intersected with dead space should be  

NFRi ={Σ(| GP - GQ |) | for all the dead space blocks intersected 
with FRi }   
If NFRi = 0, then the buffer will not be placed properly since there 
is no available insertion sites. 
We assume that the probabilities of buffer insertion are equal at 
each possible insertion site. Suppose that grid G is a possible 
insertion site for ith buffer in net N. Thus the probability of ith 
buffer insertion at grid G is PG

Ni = 1/NFRi 
The total buffer insertion probability of grid G is  

PG = {sum(PG
Ni) | for each feasible region which has 

intersection with grid G} 

4. FLOORPLANNER WITH BUFFER 
PLANNING 
Since our method can give the range of the possible buffer 
insertion sites independent of the sizes of the grids, we can budget 
the buffer insertion during the packing. To embed the buffer 
planning in the packing process, the overall algorithm is given as 
Fig.5. 

4.1 CBL Representation  
To do the block packing, we use the corner block list 
representation. CBL is derived from a simplified version of 
general placement called mosaic structure, in which the block is 
represented by the room with only topological relationship 
between each other. CBL represents the topological relations in 
mosaic structure by a triple list of (S, L, T). It divides the chip 
into rectangular rooms and assigns one and only one block to each 
room according to (S, L, T). S records the sequence of the blocks’ 
ID, L records the orientation for each block, while T record how 
many blocks are covered by each block when it is packed. 
The Corner Block(CB) is the block packed at the upper right 
corner of the floorplan. If the corner block covers other blocks 
from top, we define the CB to be vertical oriented, and denote it 
by Li = 0. Otherwise, the CB is horizontal oriented, and denote it 
by Li=1. The binary sub-list in T records the number of the blocks 
covered by this CB. The number of successive “1”s, which is 
ended by a “0”, corresponds to the number of the blocks covered 
by the corner block. As in Fig.6, the corner block is block “d” and 
Ld=0,Td={10}, thus, block “d” covers two blocks “g” and “a” 
from top. For more detail about CBL, please infer Reference[4]. 

4.2 The Dead Space in CBL 
To insert the buffers, we should give the partition of the 
dead spaces in advance. Though we can partition the dead 
space into blocks by many different methods, we should 
devise an effective method following the rules below: 
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(1) no overlapping between each dead space blocks; 
(2) the number of the dead space blocks should be as few as 

possible; 
Corner Block List can represent mosaic structure, which includes 
n rooms with no more than one block in each room, where n is the 
number of blocks. The dead spaces besides the blocks in their 
rooms compose the dead spaces in the final packing.  Given a 
CBL list, we expand the packing from the lower left to upper right 
by inserting the blocks in list S  in turn. Every insertion of the 
block may generate some more dead space. Thus we can figure 
out all the dead space while doing the packing and divide the dead 
spaces into rectangles.  

Lemma 3: during the packing process, when the ith block 
Mi is packed, according to the given CBL, it will cover NMi 
blocks which are {BC1…BCNMi} 
z If block Mi covers other blocks from top (Li = 0) 

then the heights of rooms containing blocks 
{BC1…BCNMi} are settled. 

z If block Mi covers other blocks from right(Li=1) 
then the widths of rooms containing {BC1…BCNMi} 
are settled. 

As shown in Fig.6, when block ‘d’ covers two blocks from 
the top, the height of the rooms containing blocks g and a 
respectively are settled.  
To move the blocks in their rooms will not affect the topological 
relations between blocks and the final packing area.  Since our 
partition method for dead space is based on the range of the 
blocks’ rooms, the dead space beside the block in the room can be 
settled according to the strategy of how to place the blocks into 
their rooms. Especially, some channels are left to favor the 
performance of the packing in some floorplanner. In our 
algorithm, the circuit blocks are packed at the lower-left corner of 
the rooms. Therefore, we can partition the dead space in one room 
into no more than two dead space blocks, one is a dead space 
block above (DSabove) and the other is a dead space block at the 
right (DSright). As shown in Fig.7(a), dead space blocks 2 and 1 
are the dead space above and right to block “a” respectively(Some 
channels are left as the minimal distance constraints between 
blocks).  
Thus, during the packing process, when the ith block Mi is 
packed, according to the given CBL, it will cover NMi 
blocks{BC1…BCNMi} from top( if Li = 0) or from right (Li=1). 
For block Mi, we use the position of its bottom left corner (Xi,Yi) 
to define its placement, the height and width for block Mi  are Wi 
and Hi respectively. Similarly, the bottom left corner of block 
BCk(k∈[1,NMi]) is (xbc

k, ybc
k) and the height and width of block 

BCk are wbc
k and hbc

k respectively: the width and height of the 
dead space above block BCk is WDSk

a and HDSk
a respectively, 

the width and height of the dead space at the right of block BCk is 
WDSk

r and HDSk
r respectively. 

The heights and the widths of the dead space blocks beside each 

block  are initialized to zero before packing, 

0==== k
r

k
r

k
a

k
a WDSHDSWDSHDS  

z If Li = 0 and ybc
k +hbc

k< Yi, there should be a dead space 
block above block BCk  

)( bc
k

bc
ki

k
a hyYHDS +−=                                 (4) 

k
r

BC
k

k
a WDSwWDS +=                                                        (5) 

z
 If Li = 1 and xbc

k +wbc
k< Xi, there should be a dead space 

block at the right of block BCk  

)( bc
k

bc
ki

k
r wxXWDS +−=                               (6) 

k
a

BC
k

k
r HDShHDS +=                                                       (7) 

Fig. 7 is the demonstration of the packing process with the dead 
spaces partition. In Fig.7(a), block c covers blocks b and a from 
the top, and dead space blocks 2 and 3 are generated according to 
formula (4) and (5). In Fig7(b), block d covers blocks c and b 
from the right, thus, dead space blocks 5 and 4 are generated 
according to formula (6) and (7). 
Based on the partition strategies above, we can obtain the shapes 
and positions of all the dead space blocks in the floorplan while 
doing the packing process as described in Algorithm 1: 
The dead space blocks should be non-overlapping between each 
other, otherwise there should be some error while computing the 
possible buffer insertion sites.  

Lemma 4: The partition method of algorithm 1 will not generate 
overlapping between dead space blocks. 

4.3 Two-phase annealing process 
In our algorithm, the simulated annealing process is divided into 
two phases: timing optimization phase and buffer insertion phase. 
In the timing optimization phase, we try to search for an optimal 

Algorithm 1 Packing blocks with DS blocks partition 
     Initialize the heights and widths of DS blocks  

For block Mi is  from M1 to Mn: 
  Pack block Mi according to the given CBL; 
  Figure out the DS blocks in the rooms covered by Mi; 

End for 
Figure out the DS blocks in the rooms covered by the 

top boundary; 
Figure out the DS blocks in the rooms covered by the 

right boundary; 

End. 
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(a) 
Figure 6. The CB is block ’d’, Ld=0,Td={10} and it covers 2 blocks 
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floorplanning that the timing constraints can be satisfied as much 
as possible.  
 In the beginning of floorplanning process, the buffer planning is 
less meaningful because the locations of the blocks are still far 
from their final position. But we should evaluate the 
floorplanning to favor the buffer planning. Here we use a 
probabilistic method in Sec3.2 to estimate the buffer insertion. 
Suppose that grid G is a possible insertion site for ith buffer in net 
N. Thus the probability of ith buffer insertion at grid G is  

PG
Ni = 1/NFRi 

The total buffer insertion probability of grid G is  
PG = {sum(PG

Ni) | for each feasible region which has 
intersection with grid G } 
Suppose the area of the grid is Agrid and the area of a buffer is 
Abuffer, R = Agrid/Abuffer. 
If PG> R then we think the buffers inserted will be too crowded 
thus we should take some measure to control it. 
And if NFRi = 0, then the buffer will not be inserted properly 
since there is no available grids for this buffer. Thus we use 
B_evaluate to budge the violations of buffer insertion: 

B_evaluate = Count{( NFRi = 0)| for all nets} + Count{( 
PG>R)|for all grids}  
The cost function used in the phase is shown below: 

Cost = Area + p*Wire + q* Tviolations +s*B_evaluate 
    Where Area is the area of the floorplan and wire is the total 
wirelength( p is the weight), Tviolation is the number of the net 
whose optimal timing with buffer inserted is larger than the given 
timing constraint.   
Since we can obtain the feasible insertion sites for buffer very 
effectively, we can extend the method to insert buffers easily. In 
the buffer insertion phase, the buffer assignment is done by the 
heuristic methods similar to the method in [1] to optimize the 
buffer insertion. But here we do not enlarge the dead spaces when 
the buffers can not be placed in the dead spaces properly because 
of the limitation of the dead spaces. These violations will be 
reduced during the annealing process. The cost function used in 
the phase is shown below: 
Cost = Area + p*Wire + q* Tviolations + r*Bnot_inserted 
Where Area is the area of the floorplan and wire is the total 
wirelength( p is the weight), Tviolation is the number of the net 
whose optimal timing with buffer inserted is larger than the given 
timing constraint. Bnot_insert is the number of the buffers not 
inserted successfully because of the limitation of the dead spaces. 

5. EXPERIMENTS 
We have implemented the placement algorithm in C programming 
language, and all experiments are performed on a SUN SPARC 
III workstation. Some MCNC benchmarks are used in the 
experiments. The parameters(refer to Table 1) used in our 
experiments are based on a 0.18um technology in [10]. 
We have tested our algorithms on 5 MCNC benchmarks, as 
summarized in Table 2. In this paper, we focus on 2-pin net, so 
we decompose each multi-pin net into a set of source-sink 2-pin 
net. Because of the lack of information on signal direction in the 
benchmark files, we choose a pin to be the source and all the 

others to be sinks, and then decompose a multiple terminal net 
into a set of two-pin nets. We ignore all power and ground 
interconnects. Since the MCNC benchmarks do not come with 
any timing information, we generate a floorplan by running the 
CBL floorplanner randomly. Based on this floorplan, we assign 
target delays to the two-pin nets as follows: for each net, we first 
compute its best delay by optimal buffer insertion Topt, and 
assign its target delay as 1.1Topt. Notice that the sizes of the 
blocks are enlarged for demonstration of the effect of buffer  
planning. 
In table 3, we report the experimental results of two floorplanners:  
a traditional floorplanner F1 based on simulated annealing 
without considering timing issue with the buffer insertion, and a 
timing-driven floorplanner F2 on 2-phase simulated annealing 
with buffer planning. In most layout tools, some channels are 
used between blocks to favor the buffer insertion and routing. 
Here we give the results with no channels and the results with 
channels between blocks (the channel width is settled as 2 times 
of the buffer width). For the result of F1, we also perform the 
heuristic method of buffer insertion as in F2 at the end to compare 
the results of F2: 1)#Meet: the number of nets for which the delay 
constraint is met with successful buffer insertion; 2) #Inserted B / 
#B: the ratio of the total number of buffers inserted successfully 
and the total number of the buffer needed to meet timing 
constraints, 3) #Violation: the number of the nets whose Topt>Ttgt ; 
Comparing F1 and F2 in table 3, the differences between F1 and 
F2 on area and wirelength are very small but the timing driven 
floorplanning algorithm with buffer planning (F2)can achieve 
much better timing performance than the plain floorplanning 
algorithm(F1). As we generate the timing on our own the test 
cases are different, a direct comparison between our method and 
[1][3] may not be fair. From the results we can see that for test 
case of Xerox with 455 2-pin nets, 370 nets meet their time 
constraints with 214 buffers inserted successfully, and the number 
of the nets whose Topt>Ttgt is only 51. Therefore, there is only 34 
nets violate the constraints because of the failure of buffer 
insertion. While the best result in [3] is that 368 nets meet their 

Table 2. MCNC Benchmark 
circuit blocks nets 2-pin net 

apte 9 97 172 

xerox 10 203 455 

hp 11 83 226 

Ami33 33 123 363 

Ami49 49 408 545 

Table 1. Parameter List 

 Description Value 

R Wire resistance per unit length(Ωµm) 0.075 

C Wire capacitance per unit length(fF/µm) 0.118 

Tb Intrinsic buffer delay(ps) 36.4 

Cs/Cb Sink/buffer capacitance(fF) 23.4 

Rb/Rd Driver/buffer output resistance(Ω) 180 
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Table 3. Comparison of floorplanning algorithm and the integrated floorplanning algorithm with buffer planning 

  Area(mm2) Wire(mm) #Inserted B/#B #meet #violation Time(s) 

 Test1 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

84.57 85.41 1343 1327 189/395 214/303 193 370 124 51 12 59 Xerox_1 
Xerox_c 91.16 86.32 1424 1439 70/345 84/319 159 296 224 88 28 64 

30.86 31.15 431.5 461.2 117/524 192/465 101 170 124 39 26 206 Ami33_1 
Ami33_c 34.04 36.07 515.6 503.9 216/501 172/307 87 199 91 34 26 267 

156.67 146.6 2922 2920 315/582 244/568 234 341 227 151 55 329 Ami49_1 
Ami49_c 175.27 183.15 3471 2940 198/511 363/546 198 344 181 154 64 326 

48.15 48.14 484.3 459.5 11/111 44/107 80 113 80 49 6.06 27 Apte_1 
Apte_c 49.55 50.08 520.2 478.8 21/154 53/89 88 112 80 53 6.1 25 

38.61 38.86 424.4 392.2 23/350 40/106 84 163 99 43 3.74 29 Hp_1 
Hp_c 40.64 40.61 485.9 486.9 53/416 69/106 82 170 139 53 4.18 34 

Average +0.2% -3.1% -- -- +76% -49% +509% 

time constraints while 87 nets violates their constraint because of 
the failure of the buffer insertion.  And the best result in [1] is that 
260 nets meet their time constraints while 195 nets violates their 
constraint because of the failure of the buffer. The timing 
constraints are all satisfied in [1][3] because that those methods 
are based on fix-die placement, while the floorplanning should be 
optimized to meet the given timing constraints in our algorithm. 
Even though, we can see some improvement in the results 
because our algorithm can give a more feasible floorplan structure 
for buffer insertion.  
Averagely, the timing constraints violation of F2 is 49% less than 
the results of F1. And the number of the nets which meet their 
constraints with buffer successful insertion increase 76% in F2 
than F1. The algorithm of F2 can reduce the total wirelength, 
constraints violations significantly The experimental results show 
that the algorithm F2 can reduce the timing violations efficiently 
without much expense in area and wirelength. 

6. CONCLUSION 
In this paper, the buffer allocation is handled as an integral part in 
the floorplanning process. Not necessarily to scan the whole 
packing to find the dead spaces, we can partition the dead space 
into blocks while doing the packing. And the dead space blocks 
favor the later computation about the Feasible Region in the dead 
space. Instead of computing the size of the dead space in each 
grid, we compute the intersection between the dead space blocks 
and the FRs in a 2-step method. The computation of the possible 
buffer insertion sites for all net can be executed in the running 
time of O(m) where m is the number of the nets, since we can 
obtain the range of the possible buffer insertion independent of 
the grid sizes and we need to scan all the net only once. 
Experimental results show that our floorplanner can reduce the 
timing violation efficiently without much penalty in area and 
wirelength.  
As the fundamental method of buffer planning, our method can be 
extended to optimize the buffer insertion in many different ways.  
And our algorithm can be extended to handle similar problem 
such as noise aware floorplanning and routability-driven 
floorplanning. 
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