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Abstract 
This paper studies the optimality, scalability and stability of state-
of-the-art partitioning and placement algorithms. We present 
algorithms to construct two classes of benchmarks, one for 
partitioning and the other for placement, which have known upper 
bounds of their optimal solutions, and can match any given net 
distribution vector. Using these partitioning and placement 
benchmarks, we studied the optimality of state-of-the-art 
algorithms by comparing their solutions with the upper bounds of 
the optimal solutions, and their scalability and stability by varying 
the sizes and characteristics of the benchmarks. The conclusions 
from this study are: 1) State-of-the-art, multilevel two way 
partitioning algorithms scale very well and are able to find 
solutions very close to the upper bounds of the optimal solutions 
of our benchmarks. This suggests that existing circuit partitioning 
techniques are fairly mature. There is not much room for 
improvement for cutsize minimization for problems of the current 
sizes. Multiway partitioning algorithms, on the other hand, do not 
perform that well. Their results can be up to 18% worse than our 
estimated upper bounds. 2) The state-of-the-art placement 
algorithms produce significantly inferior results compared with 
the estimated optimal solutions. There is still significant room for 
improvement in circuit placement. 3) Existing placement 
algorithms are not stable. Their effectiveness varies considerably 
depending on the characteristics of the benchmarks. New hybrid 
techniques are probably needed for future generation placement 
engines that are more scalable and stable.  
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1.  INTRODUCTION 
The circuit partitioning problem has been studied since the 1970’s. 
The Kernighan-Lin (KL) algorithm [1] was introduced in 1970, 
and later extended to the Fiduccia-Mattheyses (FM) algorithm [2] 
in 1982. Following that, there was a period of 15 years in which 
little progress was made on partitioning. Significant progress was 
made during the mid-to-late-90’s [3, 4, 5, 6, 7, 8, 9, 10, 11]. In less 
than five years, the best reported cutsize on commonly used 
benchmarks was reduced by almost 50%. For example, Fig. 1 
shows the progress of bipartitioning algorithms through the years 
for the MCNC and ISPD98 benchmarks, where we use FM as a 
comparison basis. PANZA [11] was introduced in 1995 and is a 
hybrid of eigenvector optimization method and the recursive max-
flow min-cut method. CLIP (1996) [5] and LSR (1997) [7] are 
using iterative improvement techniques, while hMetis [3] is based 
on the multilevel framework. After the introduction of hMetis no 
significant improvement was reported, raising the question of 
whether we have reached a plateau. 

0

20

40

60

80

100

120

FM PANZA CLIP LSR hMetis

(1982) (1995) (1996) (1997) (1997)

MCNC ISPD

Figure 1. Quality Improvement of Bipartitioning Algorithms 
over the Years for the MCNC and ISPD98 Benchmarks. 

Contrary to partitioning, the development in placement has been 
slow but steady. Various algorithms have been proposed in the 
past 30 years, including min-cut methods, iterative methods, and 
analytical methods. In terms of wirelength reduction, the rate of 
improvement has been only 5-10% every 2-3 years since the 
1980s. In 1988 Gordian [12] reported substantial wirelength 
reduction over its predecessors. In 1991 Gordian-L [13] reported a 
20% wirelength reduction over Gordian. TimberWolf v.7.0 [14] 
reduced Gordian’s wirelength by 10% in 1993. The iterative 
force-directed method [15] outperformed Gordian-L in 1998 by an 
average of 6%. The mPL placer [16] runs 10x faster than Gordian-
L with a penalty of wirelength increase of 10%. The latest 
developments in placement algorithms in the past three years, 
including Capo [17], Dragon [18], Mongrel [19], and mPG [20] 
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vary mostly in runtime. The wirelength difference between 
Dragon and Capo is within 5%, but Dragon is 7x slower [21]. 
mPG is about 2x faster than Dragon with an up to 5% longer 
wirelength [22]. Mongrel’s wirelength is also slightly worse than 
Dragon’s [23]. This lack of significant progress also prompts us to 
wonder whether there remains much room for improvement in 
circuit placement (at least in terms of wirelength minimization). 
Note that in all these studies, the evaluation of an algorithm is 
based on comparison with other existing algorithms; there is little 
understanding about how far away the solutions are from the 
optimal. There were several efforts on the optimality study of 
VLSI CAD algorithms in the past. Synthetic benchmarks with 
known optimal solutions were created to study the partitioning 
problem [24, 25]. However, they used highly regular structures 
and may not provide reliable performance estimates for general 
cases. A noticeable effort was [26], which quantified the sub-
optimality of several VLSI CAD heuristics by stitching smaller 
designs into larger ones. Such construction bounded the optimal 
solution of large designs to be at most the best achievable solution 
to the original design multiplied by the scaling factor. Using these 
examples, [26] studied several then state-of-the-art partitioning 
(FM [2], MBC-FM [5], EIG1 spectral [22] and Rcut1.0 ratio cut 
[23]) and placement (TimberWolf, Gordian-L) algorithms. It 
concluded that significant improvement was possible over these 
algorithms. Very recently, an algorithm was developed in [29] to 
construct placement examples with known optimal wirelength, by 
using a method by Boese1 as described in [26]. Surprisingly the 
results showed that the wirelength produced by three recently-
published placers, Capo v.8.0, Dragon v.2.20, and mPL v.1.2, 
ranges from 1.46 to 2.38 times the optimal value on those 
examples.  
However, both the studies in [26] and [29] have limitations. Since 
[26] was published seven years ago, it did not evaluate the latest 
algorithms, such as hMetis, MLPart [30], ESC/LSR [31], etc., for 
partitioning, and Capo, Dragon, mPG, etc., for placement. 
Moreover, compared with the design complexity of today, the test 
cases used in [26] are quite small (the largest netlist is about 40K). 
It is necessary to extend the optimality study to the new 
algorithms in the era of multi-million gate designs. The study in 
[29] had only local nets in the optimal solutions, which may not 
be true for real circuits. Furthermore it did not perform stability 
studies of existing placement algorithms with similar sizes, yet 
different characteristics. 
This paper studies the optimality, scalability and stability of state-
of-the-art partitioning and placement algorithms using arbitrarily 
large, specially constructed benchmarks, which can match any net 
degree distribution with a known bound of the optimal solution. 
We study the optimality of these algorithms by comparing their 
solutions with the bounds, their scalability and stability by varying 
the sizes and characteristic of the benchmarks. Benchmark suites 
for hypergraph bipartitioning (BEKU – Bipartitioning Examples 
With Known Upper Bound) and multiway partitioning (MEKU- 
Multiway Partitioning Examples with Known Upper Bound) that 
match the net degree distribution of the ISPD98 benchmarks [33] 
are constructed. The performance of three state-of-the-art 
partitioning algorithms, hMetis [3], MLPart [30] and Flare [31], is 
evaluated on these benchmarks. We also derive two benchmark 

                                                                 
1  Although K. Boese was the first who proposed this method, he did not 

carry it to implementation to construct these examples [32].  

suites for placement. One is called G-PEKU (Placement Examples 
with Known Upper bound and Global connections only). The 
other suite, PEKU (Placement Examples with Known Upper 
bound), is derived by introducing non-local connections into the 
PEKO suite [29], which consists of local connections only. Four 
state-of-the-art placement algorithms, Capo v.8.5 [17], Dragon 
v.2.20 [18], mPG v.1.0 [20] and mPL v.1.2 [16] are evaluated on 
these benchmarks. 
The rest of this paper is organized as follows. Section 2 describes 
the study of partitioning algorithms. Section 3 describes the study 
of placement algorithms. In Section 4 we give the conclusions.  

2. STUDIES OF PARTITIONING 
ALGORITHMS 
2.1 Construction of Bipartitioning Examples 
with Known Upper Bounds  
In this section we present an algorithm for the construction of 
bipartitioning examples with known upper bound of their optimal 
cutsize. First, we introduce some notations: Given a netlist N, its 
Net Distribution Vector (NDV) is defined as a vector D = (d2, 
d3,…,dk), where dm represents the number of nets of degree m in N.  
Given a netlist N of size n, an NDV D = (d2, d3,…,dk ) and a cut 
size bound B, we want to construct a circuit N’ such that: 

• N’ has n nodes and it has D as its NDV. 

• The minimum balanced bipartitioning cutsize of N’ is at most 
B.  

The description of the algorithm is as follows: The nodes are first 
divided into two partitions of equal size. The nets are constructed 

as follows: Let α be equal to ∑
=

k

i
idB

2
/ . For every integer i from 2 

to k, we create  α⋅di  nets of degree i that include nodes from 
both partitions and di -  α⋅di  nets of degree i that include nodes 
from only one partition.   It is not difficult to see that the cutsize of 
this partitioning solution is less than or equal to B. The two 
partitions are then fed as an initial solution to FM [2], which tries 
to improve the cutsize by moving cells across the partition. 
Although the initial partitions are of equal size, FM is allowed to 
create unbalanced partitions up to a limit. In our bipartitioning 
experiments, the unbalance factor is set to be 5% (i.e., the largest 
partition can occupy up to 55% of the total area). The final result 
provided by FM is an upper bound of the optimal cutsize.  
We call the benchmarks that are created by this algorithm BEKU 
(Bipartitioning Examples with Known Upper Bound). Our 
motivation behind the creation of these benchmarks was to create 
circuits with known partitioning solutions by construction which, 
although not optimal, are better than the solutions that state-of-the-
art algorithms can find. Although this algorithm does not 
guarantee the latter part, our experiments showed that for a range 
of the value of B (usually between 20-27% of the total number of 
nets), the solutions by our construction are almost2 always better 
than the solutions produced by hMETIS, MLPart and Flare (see 
Table 1).   

                                                                 
2 In 2 out of 8 examples, hMetis reported a slightly better cutsize than 

the estimated upper bound (the difference on average for these two 
cases was only 0.01%) 
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2.2 Construction of Multiway Partitioning 
Examples with Known Upper Bounds 
The algorithm for the creation of the BEKU benchmarks can be 
easily extended to create benchmarks for multiway partitioning. In 
this section we present the algorithm for the creation of Multiway 
partitioning Examples with Known Upper bound (MEKU).  
Given a netlist N of size n, an NDV D = (d2, d3,…,dk ), a cut size 
bound B and a number of partitions m, we want to construct a 
circuit N’ such that: 

• N’ has n nodes and it has D as its NDV. 

• The minimum balanced  m-way partitioning cutsize of N’ is 
at most B.  

Similar to the previous algorithm, the nodes are first divided into 
m partitions of equal size. The nets are constructed as follows: Let 

α be again equal to ∑
=

k

i
idB

2
/ . For every integer i from 2 to k, we 

create  α⋅di  nets of degree i that include nodes from at least two 
partitions and di -  α⋅di   nets of degree i that include nodes from 
only one partition.  The cutsize of this partitioning is less than or 
equal to B. For the solution refinement we apply the multiway 
variation of FM [34].  

2.3 Evaluation of State-of-the-art Partitioning 
Algorithms on the BEKU and MEKU Suites 
We created a total of 16 benchmarks that are available for 
download from the following web address: 
http://cadlab.cs.ucla.edu/~pubbench/partitioning/download.   Eight 
of them are BEKU examples and the rest are MEKU examples for 
8-way partitioning. The benchmarks match the average NDV of 
the ISPD98 benchmarks and their sizes range from 0.5M to 2M 
nodes. For the BEKU set we tried two different values for the 
bound B: 20% and 25% of the total number of nets. For the 
MEKU set we also tried two values for the bound B: 30% and 
35% of the total number of nets. We evaluated three state-of-the-
art partitioning algorithms: 

• hMetis: hMetis runs on a multilevel framework. It consists of 
three phases: hypergraph coarsening, initial partitioning and 
refinement. It uses the MHEC and FC clustering algorithms 
during coarsening and FM during refinement. The version 
we used to run our experiments is hMetis v1.5 for Linux. For 
the parameters of the program, we used the values suggested 
in the hMetis manual [35]. For the multiway partitioning 
examples, we used the recursive bipartitioning version.  

• MLPart: MLPart is also multilevel-based and uses different 
algorithms for coarsening (PinEC) and refinement (VRW).  
The version we used is MLPart v4.19.1 for Linux. MLPart 
does not support multiway partitioning, therefore the 
reported results are restricted to the BEKU suite.  

• Flare: Flare is a multiway partitioning algorithm based on the 
PM [36] multiway partitioning framework and the LR [7] 
bipartitioning engine on top of a two-level hierarchy created 
by the ESC [31] clustering algorithm. We tested the version 
available internally at the UCLA VLSI CAD Lab. 

All the experiments were performed with a Pentium 4 2.2GHz 
machine running RedHat Linux 8.0 with 1.5GB of memory. All 
programs were run 20 times and we report the best results. For the 
bipartitioning examples the size of a partition can range from 45-

55% of the total area, while for the multiway examples each 
partition can occupy 11.8-13.3% of the total area.  
Figure 2 shows the experimental results on the BEKU suite and 
Figure 3 the results on the MEKU suite. The figures show the 
average ratio of the reported cutsize to the upper bound of the 
optimal cutsize for every partitioning algorithm. We call this ratio, 
the Quality Ratio (QR) of an algorithm throughout the paper. 
Experiments showed that the improved upper bound after the 
application of FM or multiway FM is, on average, 9% better than 
the initial upper bound B. For a complete table of all the results, 
refer to the following web site: 
http://cadlab.cs.ucla.edu/~pubbench/partitioning. 
From the experimental results, we can draw the following 
conclusions: 

• For our BEKU examples, MLPart produces the best results, 
while Flare produces the worst results. MLPart can also 
consistently find our estimated solution even for large size 
circuits. The result seems to suggest that existing circuit 
bipartitioning techniques are fairly mature and there is not 
much room for improvement in cutsize minimization.  

• For the MEKU examples on 8-way partitioning, hMetis 
produces better results than Flare, but can still be 18% away 
from the upper bounds in some cases. This suggests that 
there is room for improvement for multiway partitioning.  

• The value of B influences the quality of hMetis and Flare. In 
the case of the BEKU examples, for a low value of B, the 
algorithms report the same results as our upper bound, while 
for higher values, the results are 25% away from the upper 
bound. MLPart consistently reports the same results as our 
upper bound, independently of the value of B. 
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Figure 2. Partitioning results for the BEKU suite.  MLPart 
consistently reports the same cutsize as our estimated upper 

bound. 
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Figure 3. Partitioning results for the MEKU suite.  hMetis is 
worse only by 2% when the initial bound is 30%, but the gap 

increases to 18% for a bound of 35%.  
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Figure 4. Runtime comparison of hMetis, MLPart and Flare 

(20 runs total) 
The algorithms seem to scale well. Fig. 4 shows the runtime 
comparison of the three algorithms for the bipartitioning examples 
with the value of B equal to 25% of the nets. Flare is the fastest 
program, but its memory requirements make it impossible to run 
the experiments with more than 1M nodes. 

3. STUDIES OF PLACEMENT 
ALGORITHMS 
3.1 Optimality and Scalability Study of 
Existing Placement Algorithms 
First, we briefly review the recent optimality and scalability study 
in [29].  An algorithm is given in [29] that takes a number n and a 
vector D as input, and outputs a placement benchmark which has 
n modules and D as its NDV with a known optimal half perimeter 
wirelength. The benchmarks generated are named PEKO, given in 
both GSRC BookShelf and LEF/DEF formats, and can be 
downloaded from: http://cadlab.cs.ucla.edu/~pubbench/peko.htm. 
Three recently published placers are tested with PEKO, including: 

• Capo: Capo is built on a multilevel framework with recursive 
bisection. It aims to enhance routability with such techniques 
as tolerance computation and block splitting heuristics [17]. 
The version used in [29] is Capo v.8.0. 

• Dragon: Dragon uses hMetis to derive an initial partition of 
the netlist. Then it uses simulated annealing with bin-based 

swapping to further refine the result. The version used in the 
experiment is Dragon v.2.20. 

• mPL: mPL [16] is a multilevel placement algorithm. It uses 
nonlinear programming to handle the non-overlapping 
constraints on the coarsest level, then uses Goto-based  [38] 
relaxation in subsequent refinement stages. The version used 
is mPL v.1.2. It has an additional V cycle with distance-
based clustering in the second V cycle [39]. 

The conclusions from [29] include: 

• There is still significant room for improvement in placement 
algorithms. The results by these tools are 1.46 to 2.38 times 
the optimal on these examples.  

• The solution quality of all three tools further deteriorates as 
the circuit size increases. This suggests that these algorithms 
may not be effective in searching the solution space when the 
problem size becomes considerably large. 

• Capo shows the best scalability in these examples, while 
Dragon consumes more than 24 hours in cases of design 
complexity higher than 450K cells.  

3.2 Construction of Placement Examples with 
Known Upper Bounds 
The study with the PEKO suite suffers from one drawback. In the 
optimal solutions, all the nets are local, i.e., their wirelength is the 
minimum possible value. This may not be true in real circuits, 
which may also have global connections that span the entire chip, 
even when they are optimally placed. Table 1 gives the profile of 
placed results of the ISPD98 suite [33] produced by Dragon. The 
second and third columns are the width and height of the chip. 
The fourth column gives the wirelength of the longest net in each 
circuit. The last column gives the percentage of wirelength 
contributed by the longest 10% of the total nets. It can be seen that 
although the number of global connections is small, their 
wirelength contribution is significant. Therefore, the performance 
of a placer can be quite different due to the presence of these 
global nets. It is worthwhile to study the stability of different 
placers in the presence of global nets.  
We take two approaches to consider the impact of global nets. 
One is to generate circuits consisting only of global nets; the other 
is to introduce some randomly generated, non-local nets into the 
PEKO suite. We use the term “non-local net” to denote the nets in 
placement solutions whose wirelength are larger than the 
minimum possible value. These nets are used to mimic the global 
nets. 

3.2.1 Placement examples with global connections 
only 
One way to study the impact of global connections is to create 
circuits with global nets only. Our construction procedure takes an 
integer n, and 0 ≤ α ≤ 1 as inputs. It outputs a netlist N’ and a 
placement solution S, such that N’ has n modules and S has an 
aspect ratio of α. Each net in N’ connects either an entire row or 
column, as shown in Fig. 5. The number of nets is the total 
number of rows and columns. Such an example is similar to 
datapath placement examples, where data flows horizontally 
through the bit-slice along buses, while control signal flows 
vertically. One solution to such benchmarks has a configuration 
similar to Fig. 5, whose wirelength is the sum of the length of each 
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row and column, which is obviously an upper bound of the 
optimal wirelength.  
Table 1. Profile of placement result by Dragon [18] on ISPD98 

circuit height width WL of 
longest net 

WL contribution 
of longest 10% 

ibm01 8158 4530 7148 51% 
ibm02 8158 6430 14224 46% 
ibm03 8158 6740 10624 58% 
ibm04 8158 9140 15171 53% 
ibm05 8158 11055 19064 47% 
ibm06 8158 8715 13966 61% 
ibm07 8158 14605 14051 51% 
ibm08 8158 15895 16142 60% 
ibm09 8158 16395 13780 55% 
ibm10 8158 27890 30755 53% 
ibm11 16350 10925 19234 59% 
ibm12 16350 15545 26748 52% 
ibm13 16350 12230 19539 59% 
ibm14 16350 25475 26370 61% 
ibm15 16350 23785 27284 63% 
ibm16 16350 34015 42860 59% 
ibm17 16283 38895 45686 56% 
ibm18 16350 37065 52846 64% 

 

global
connection

 
Figure 5. Circuit with global connections only 

3.2.2 Placement examples with non-local 
connections 
The second approach is to introduce non-local nets into 
benchmarks which have only local nets in the optimal solution. 
Compared with local nets, the non-local nets usually have a longer 
wirelength, and are used to mimic the global connections in our 
study. We would like to solve the following problem: Given an 
integer n, a vector D, and 0 ≤ α ≤ 1, construct a new netlist N’ and 
a placement solution S, such that: 

• N’ has n modules and has D as its NDV 

• The ratio of non-local nets to the total number of nets in S is 
α 

We extended the algorithm in [29] by relaxing the optimality 
requirement for a subset of the nets. The new algorithm works as 
follows: The modules are put in a 

/n n n    ×    

 shaped region. 

For nets of degree i, α⋅di of them are generated by randomly 
connecting i modules. The rest are generated by connecting i 
modules in a rectangular region with dimension 

/i i i    ×    
, as in 

[29]. Although the optimal wirelength for the generated circuit is 
no longer known, we can calculate the wirelength of the random 
nets and add it to the optimal wirelength of the local nets. The sum 
serves as an upper bound of the optimal wirelength.  

3.3 Evaluation of State-of-the-art Placement 
Algorithms on the G-PEKU and PEKU Suites 
Using the module numbers extracted from ISPD98 and an aspect 
ratio of 1, we generated a set of circuits with global nets only. The 
circuits are named GPeku01 to GPeku18. They are grouped as the 
G-PEKU suite. We also generated several sets of benchmarks 
with non-local nets. The parameter α is gradually increased from 
0.25% to 10%. The module numbers and NDVs were extracted 
from ISPD98. These benchmarks are named the PEKU suite 
(Placement Example with Known Upper bound). All the circuits 
used in the experiment can be downloaded from: 
http://cadlab.cs.ucla.edu/~pubbench/peku.htm.  
The same version of Dragon and mPL as in 3.1 were used in our 
experiments. As for Capo, we used an updated version, Capo v.8.5 
for Linux, provided by its authors, downloaded from [37]. We 
also added another placer:  

• mPG: mPG is built on a multilevel framework. It uses FC 
clustering and hierarchical density control to minimize the 
overflow of each placement bin during the refinement 
process. If necessary, it builds an incremental A-tree to 
optimize routability. We used mPG v.1.0 given in [20]. 

The results for Capo were collected on a Pentium 4 2.2GHz 
running RedHat 8.0 with 1.5GB of memory. The results for the 
other three placers were collected on a Sun Blade workstation 
750MHz running SunOS 5.8 with 4GB of memory. 
First, we tested the four placers on five circuits in G-PEKU. The 
experimental results are given in Table 2. The results are the 
average of 5 runs for each placer. The upper bound of each circuit 
is given in column “UB.” The last four columns give the ratio of a 
placement’s wirelength to the upper bound. mPL exceeds the 
memory capacity for two of the examples. For those it completed, 
mPL gives the closest solution to the upper bound. For these 
examples with all global nets, the gap between their solutions and 
the upper bound varies between 41% and 102% in the worst case, 
similar to the results obtained on PEKO [29], which has local nets 
only. This is another validation that there is significant room for 
improvement for the placement problem.  

Table 2. Evaluation results on G-PEKU 

circuit #cells UB 

Dragon 
v.2.20 
[18] 
QR 

Capo 
v.8.5 
[17] 
QR 

mPG 
v.1.0 
[20] 
QR 

mPL 
v.1.2 
[16] 
QR 

GPeku01 12506 7.93E5 1.98 1.56 1.91 1.11 
GPeku05 28146 1.79E6 2.01 1.69 1.97 1.16 
GPeku10 68685 4.38E6 2.02 1.72 1.98 1.41 
GPeku15 161187 1.03E7 1.99 1.79 1.97 Abort 
GPeku18 210341 1.34E7 2.02 1.78 1.98 Abort 
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 Figure 6. QR vs % of non-local nets for four placement algorithms under evaluation 

Second, we tested the placers on PEKU. For each α, we picked 
five of the circuits and fed them into the placers. Each circuit was 
placed 5 times by the placers. We calculated the QRs as the ratio 
of the wirelength to the upper bound. Fig. 6 shows the change of 
the average QRs with the increase of α on PEKU for the four 
placers. For mPL, its QR increases when α is increased from 0 to 
0.75%. For the other three placers, QRs are steadily decreasing. 
However, this does not necessarily indicate that their solution 
qualities are improving. We believe it is because the upper bounds 
of the optimal wirelength are becoming looser as the percentage of 
non-local nets increases. Therefore, the absolute value of the QRs 
may not be meaningful. However, comparing QRs from different 
placers can help us identify the technique that works best under 
each scenario. Furthermore, comparing the QRs of the same 
placer can test a placer’s sensitivity to non-local connections. It 
can be seen that the relative effectiveness of the placers changes as 
the number of non-local nets increases. For instance, the solution 
quality of Dragon is not close to the optimal when the benchmarks 
are dominated by local nets. However, it gradually stands out as 
the percentage of non-local nets increases. When α reaches 10%, 
Dragon’s results become the closest to the upper bound.  
Combining the results from 3.1 and 3.3, we can make the 
following observations: 

• The placers are not stable in the presence of global nets. 
Without global nets, mPL gives the shortest wirelength. 
However, its Quality Ratio shows an increase of more than 
80% with a small increase of non-local nets. With non-local 
nets, Dragon’s wirelength gradually becomes the closest to 
the upper bound. A placer’s Quality Ratio can vary 
significantly for designs of similar sizes but different 
characteristics.  

• The study suggests that new hybrid techniques, which are 
more scalable and stable, may be needed for future 
generations.  

4.     CONCLUSIONS  
In this paper we studied the optimality, scalability and stability of 
state-of-the-art partitioning and placement algorithms using 
arbitrarily large, carefully constructed benchmarks that match the 
characteristics of real circuits. We studied the optimality of these 
algorithms by comparing their solutions with the upper bounds of 
the optimal solutions, their scalability by varying the sizes and 
characteristics of the benchmarks. The conclusions from this study 
include:  

• The best available bipartitioning algorithms perform and 
scale very well on the BEKU suite. The result seems to 
suggest that existing circuit partitioning techniques are fairly 
mature and there is little room for improvement for cutsize 
minimization for problems of the current sizes. 

• The best available multiway partitioning algorithms do not 
perform that well. There were examples where the upper 
bound we computed was 18% better than the results from 
hMetis.  

• The state-of-the-art placement algorithms produce 
significantly inferior results compared with the estimated 
optimal solutions. There is still significant room for 
improvement in circuit placement. 

• Existing placement algorithms are not stable. Their 
effectiveness varies depending on the characteristics of the 
benchmarks. New hybrid techniques may be needed for 
future generation placement engines that are more scalable 
and stable.   
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