
Optimality, Scalability and Stability Study of Partitioning
and Placement Algorithms

Jason Cong, Michail Romesis, Min Xie
Computer Science Department

University of California at Los Angeles

Los Angeles, CA 90095

{ cong, michail, xie } @cs.ucla.edu

Abstract
This paper studies the optimality, scalability and stability of state-
of-the-art partitioning and placement algorithms. We present
algorithms to construct two classes of benchmarks, one for
partitioning and the other for placement, which have known upper
bounds of their optimal solutions, and can match any given net
distribution vector. Using these partitioning and placement
benchmarks, we studied the optimality of state-of-the-art
algorithms by comparing their solutions with the upper bounds of
the optimal solutions, and their scalability and stability by varying
the sizes and characteristics of the benchmarks. The conclusions
from this study are: 1) State-of-the-art, multilevel two way
partitioning algorithms scale very well and are able to find
solutions very close to the upper bounds of the optimal solutions
of our benchmarks. This suggests that existing circuit partitioning
techniques are fairly mature. There is not much room for
improvement for cutsize minimization for problems of the current
sizes. Multiway partitioning algorithms, on the other hand, do not
perform that well. Their results can be up to 18% worse than our
estimated upper bounds. 2) The state-of-the-art placement
algorithms produce significantly inferior results compared with
the estimated optimal solutions. There is still significant room for
improvement in circuit placement. 3) Existing placement
algorithms are not stable. Their effectiveness varies considerably
depending on the characteristics of the benchmarks. New hybrid
techniques are probably needed for future generation placement
engines that are more scalable and stable.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUIT--Design Aids

General Terms
Algorithms, Design, Performance

Keywords
Optimality, Scalability, Stability, Partitioning, Placement

1. INTRODUCTION
The circuit partitioning problem has been studied since the 1970’s.
The Kernighan-Lin (KL) algorithm [1] was introduced in 1970,
and later extended to the Fiduccia-Mattheyses (FM) algorithm [2]
in 1982. Following that, there was a period of 15 years in which
little progress was made on partitioning. Significant progress was
made during the mid-to-late-90’s [3, 4, 5, 6, 7, 8, 9, 10, 11]. In less
than five years, the best reported cutsize on commonly used
benchmarks was reduced by almost 50%. For example, Fig. 1
shows the progress of bipartitioning algorithms through the years
for the MCNC and ISPD98 benchmarks, where we use FM as a
comparison basis. PANZA [11] was introduced in 1995 and is a
hybrid of eigenvector optimization method and the recursive max-
flow min-cut method. CLIP (1996) [5] and LSR (1997) [7] are
using iterative improvement techniques, while hMetis [3] is based
on the multilevel framework. After the introduction of hMetis no
significant improvement was reported, raising the question of
whether we have reached a plateau.

0

20

40

60

80

100

120

FM PANZA CLIP LSR hMetis

(1982) (1995) (1996) (1997) (1997)

MCNC ISPD

Figure 1. Quality Improvement of Bipartitioning Algorithms
over the Years for the MCNC and ISPD98 Benchmarks.

Contrary to partitioning, the development in placement has been
slow but steady. Various algorithms have been proposed in the
past 30 years, including min-cut methods, iterative methods, and
analytical methods. In terms of wirelength reduction, the rate of
improvement has been only 5-10% every 2-3 years since the
1980s. In 1988 Gordian [12] reported substantial wirelength
reduction over its predecessors. In 1991 Gordian-L [13] reported a
20% wirelength reduction over Gordian. TimberWolf v.7.0 [14]
reduced Gordian’s wirelength by 10% in 1993. The iterative
force-directed method [15] outperformed Gordian-L in 1998 by an
average of 6%. The mPL placer [16] runs 10x faster than Gordian-
L with a penalty of wirelength increase of 10%. The latest
developments in placement algorithms in the past three years,
including Capo [17], Dragon [18], Mongrel [19], and mPG [20]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISPD ’03, April 6-9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004...$5.00.

88

vary mostly in runtime. The wirelength difference between
Dragon and Capo is within 5%, but Dragon is 7x slower [21].
mPG is about 2x faster than Dragon with an up to 5% longer
wirelength [22]. Mongrel’s wirelength is also slightly worse than
Dragon’s [23]. This lack of significant progress also prompts us to
wonder whether there remains much room for improvement in
circuit placement (at least in terms of wirelength minimization).
Note that in all these studies, the evaluation of an algorithm is
based on comparison with other existing algorithms; there is little
understanding about how far away the solutions are from the
optimal. There were several efforts on the optimality study of
VLSI CAD algorithms in the past. Synthetic benchmarks with
known optimal solutions were created to study the partitioning
problem [24, 25]. However, they used highly regular structures
and may not provide reliable performance estimates for general
cases. A noticeable effort was [26], which quantified the sub-
optimality of several VLSI CAD heuristics by stitching smaller
designs into larger ones. Such construction bounded the optimal
solution of large designs to be at most the best achievable solution
to the original design multiplied by the scaling factor. Using these
examples, [26] studied several then state-of-the-art partitioning
(FM [2], MBC-FM [5], EIG1 spectral [22] and Rcut1.0 ratio cut
[23]) and placement (TimberWolf, Gordian-L) algorithms. It
concluded that significant improvement was possible over these
algorithms. Very recently, an algorithm was developed in [29] to
construct placement examples with known optimal wirelength, by
using a method by Boese1 as described in [26]. Surprisingly the
results showed that the wirelength produced by three recently-
published placers, Capo v.8.0, Dragon v.2.20, and mPL v.1.2,
ranges from 1.46 to 2.38 times the optimal value on those
examples.
However, both the studies in [26] and [29] have limitations. Since
[26] was published seven years ago, it did not evaluate the latest
algorithms, such as hMetis, MLPart [30], ESC/LSR [31], etc., for
partitioning, and Capo, Dragon, mPG, etc., for placement.
Moreover, compared with the design complexity of today, the test
cases used in [26] are quite small (the largest netlist is about 40K).
It is necessary to extend the optimality study to the new
algorithms in the era of multi-million gate designs. The study in
[29] had only local nets in the optimal solutions, which may not
be true for real circuits. Furthermore it did not perform stability
studies of existing placement algorithms with similar sizes, yet
different characteristics.
This paper studies the optimality, scalability and stability of state-
of-the-art partitioning and placement algorithms using arbitrarily
large, specially constructed benchmarks, which can match any net
degree distribution with a known bound of the optimal solution.
We study the optimality of these algorithms by comparing their
solutions with the bounds, their scalability and stability by varying
the sizes and characteristic of the benchmarks. Benchmark suites
for hypergraph bipartitioning (BEKU – Bipartitioning Examples
With Known Upper Bound) and multiway partitioning (MEKU-
Multiway Partitioning Examples with Known Upper Bound) that
match the net degree distribution of the ISPD98 benchmarks [33]
are constructed. The performance of three state-of-the-art
partitioning algorithms, hMetis [3], MLPart [30] and Flare [31], is
evaluated on these benchmarks. We also derive two benchmark

1 Although K. Boese was the first who proposed this method, he did not

carry it to implementation to construct these examples [32].

suites for placement. One is called G-PEKU (Placement Examples
with Known Upper bound and Global connections only). The
other suite, PEKU (Placement Examples with Known Upper
bound), is derived by introducing non-local connections into the
PEKO suite [29], which consists of local connections only. Four
state-of-the-art placement algorithms, Capo v.8.5 [17], Dragon
v.2.20 [18], mPG v.1.0 [20] and mPL v.1.2 [16] are evaluated on
these benchmarks.
The rest of this paper is organized as follows. Section 2 describes
the study of partitioning algorithms. Section 3 describes the study
of placement algorithms. In Section 4 we give the conclusions.

2. STUDIES OF PARTITIONING
ALGORITHMS
2.1 Construction of Bipartitioning Examples
with Known Upper Bounds
In this section we present an algorithm for the construction of
bipartitioning examples with known upper bound of their optimal
cutsize. First, we introduce some notations: Given a netlist N, its
Net Distribution Vector (NDV) is defined as a vector D = (d2,
d3,…,dk), where dm represents the number of nets of degree m in N.
Given a netlist N of size n, an NDV D = (d2, d3,…,dk) and a cut
size bound B, we want to construct a circuit N’ such that:

• N’ has n nodes and it has D as its NDV.

• The minimum balanced bipartitioning cutsize of N’ is at most
B.

The description of the algorithm is as follows: The nodes are first
divided into two partitions of equal size. The nets are constructed

as follows: Let α be equal to ∑
=

k

i
idB

2
/ . For every integer i from 2

to k, we create α⋅di nets of degree i that include nodes from
both partitions and di - α⋅di nets of degree i that include nodes
from only one partition. It is not difficult to see that the cutsize of
this partitioning solution is less than or equal to B. The two
partitions are then fed as an initial solution to FM [2], which tries
to improve the cutsize by moving cells across the partition.
Although the initial partitions are of equal size, FM is allowed to
create unbalanced partitions up to a limit. In our bipartitioning
experiments, the unbalance factor is set to be 5% (i.e., the largest
partition can occupy up to 55% of the total area). The final result
provided by FM is an upper bound of the optimal cutsize.
We call the benchmarks that are created by this algorithm BEKU
(Bipartitioning Examples with Known Upper Bound). Our
motivation behind the creation of these benchmarks was to create
circuits with known partitioning solutions by construction which,
although not optimal, are better than the solutions that state-of-the-
art algorithms can find. Although this algorithm does not
guarantee the latter part, our experiments showed that for a range
of the value of B (usually between 20-27% of the total number of
nets), the solutions by our construction are almost2 always better
than the solutions produced by hMETIS, MLPart and Flare (see
Table 1).

2 In 2 out of 8 examples, hMetis reported a slightly better cutsize than

the estimated upper bound (the difference on average for these two
cases was only 0.01%)

89

2.2 Construction of Multiway Partitioning
Examples with Known Upper Bounds
The algorithm for the creation of the BEKU benchmarks can be
easily extended to create benchmarks for multiway partitioning. In
this section we present the algorithm for the creation of Multiway
partitioning Examples with Known Upper bound (MEKU).
Given a netlist N of size n, an NDV D = (d2, d3,…,dk), a cut size
bound B and a number of partitions m, we want to construct a
circuit N’ such that:

• N’ has n nodes and it has D as its NDV.

• The minimum balanced m-way partitioning cutsize of N’ is
at most B.

Similar to the previous algorithm, the nodes are first divided into
m partitions of equal size. The nets are constructed as follows: Let

α be again equal to ∑
=

k

i
idB

2
/ . For every integer i from 2 to k, we

create α⋅di nets of degree i that include nodes from at least two
partitions and di - α⋅di nets of degree i that include nodes from
only one partition. The cutsize of this partitioning is less than or
equal to B. For the solution refinement we apply the multiway
variation of FM [34].

2.3 Evaluation of State-of-the-art Partitioning
Algorithms on the BEKU and MEKU Suites
We created a total of 16 benchmarks that are available for
download from the following web address:
http://cadlab.cs.ucla.edu/~pubbench/partitioning/download. Eight
of them are BEKU examples and the rest are MEKU examples for
8-way partitioning. The benchmarks match the average NDV of
the ISPD98 benchmarks and their sizes range from 0.5M to 2M
nodes. For the BEKU set we tried two different values for the
bound B: 20% and 25% of the total number of nets. For the
MEKU set we also tried two values for the bound B: 30% and
35% of the total number of nets. We evaluated three state-of-the-
art partitioning algorithms:

• hMetis: hMetis runs on a multilevel framework. It consists of
three phases: hypergraph coarsening, initial partitioning and
refinement. It uses the MHEC and FC clustering algorithms
during coarsening and FM during refinement. The version
we used to run our experiments is hMetis v1.5 for Linux. For
the parameters of the program, we used the values suggested
in the hMetis manual [35]. For the multiway partitioning
examples, we used the recursive bipartitioning version.

• MLPart: MLPart is also multilevel-based and uses different
algorithms for coarsening (PinEC) and refinement (VRW).
The version we used is MLPart v4.19.1 for Linux. MLPart
does not support multiway partitioning, therefore the
reported results are restricted to the BEKU suite.

• Flare: Flare is a multiway partitioning algorithm based on the
PM [36] multiway partitioning framework and the LR [7]
bipartitioning engine on top of a two-level hierarchy created
by the ESC [31] clustering algorithm. We tested the version
available internally at the UCLA VLSI CAD Lab.

All the experiments were performed with a Pentium 4 2.2GHz
machine running RedHat Linux 8.0 with 1.5GB of memory. All
programs were run 20 times and we report the best results. For the
bipartitioning examples the size of a partition can range from 45-

55% of the total area, while for the multiway examples each
partition can occupy 11.8-13.3% of the total area.
Figure 2 shows the experimental results on the BEKU suite and
Figure 3 the results on the MEKU suite. The figures show the
average ratio of the reported cutsize to the upper bound of the
optimal cutsize for every partitioning algorithm. We call this ratio,
the Quality Ratio (QR) of an algorithm throughout the paper.
Experiments showed that the improved upper bound after the
application of FM or multiway FM is, on average, 9% better than
the initial upper bound B. For a complete table of all the results,
refer to the following web site:
http://cadlab.cs.ucla.edu/~pubbench/partitioning.
From the experimental results, we can draw the following
conclusions:

• For our BEKU examples, MLPart produces the best results,
while Flare produces the worst results. MLPart can also
consistently find our estimated solution even for large size
circuits. The result seems to suggest that existing circuit
bipartitioning techniques are fairly mature and there is not
much room for improvement in cutsize minimization.

• For the MEKU examples on 8-way partitioning, hMetis
produces better results than Flare, but can still be 18% away
from the upper bounds in some cases. This suggests that
there is room for improvement for multiway partitioning.

• The value of B influences the quality of hMetis and Flare. In
the case of the BEKU examples, for a low value of B, the
algorithms report the same results as our upper bound, while
for higher values, the results are 25% away from the upper
bound. MLPart consistently reports the same results as our
upper bound, independently of the value of B.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

20% 25%Initial Bound

Q
ua

lit
y

R
at

io

MLPart hMetis Flare

Figure 2. Partitioning results for the BEKU suite. MLPart
consistently reports the same cutsize as our estimated upper

bound.

90

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

30% 35%Initial Bound

Q
ua

lit
y

R
at

io

hMetis Flare

Figure 3. Partitioning results for the MEKU suite. hMetis is
worse only by 2% when the initial bound is 30%, but the gap

increases to 18% for a bound of 35%.

0

2

4

6

8

10

12

500000 1000000 1500000 2000000

Circuit size

H
ou

rs

hMetis MLPart Flare

Figure 4. Runtime comparison of hMetis, MLPart and Flare

(20 runs total)
The algorithms seem to scale well. Fig. 4 shows the runtime
comparison of the three algorithms for the bipartitioning examples
with the value of B equal to 25% of the nets. Flare is the fastest
program, but its memory requirements make it impossible to run
the experiments with more than 1M nodes.

3. STUDIES OF PLACEMENT
ALGORITHMS
3.1 Optimality and Scalability Study of
Existing Placement Algorithms
First, we briefly review the recent optimality and scalability study
in [29]. An algorithm is given in [29] that takes a number n and a
vector D as input, and outputs a placement benchmark which has
n modules and D as its NDV with a known optimal half perimeter
wirelength. The benchmarks generated are named PEKO, given in
both GSRC BookShelf and LEF/DEF formats, and can be
downloaded from: http://cadlab.cs.ucla.edu/~pubbench/peko.htm.
Three recently published placers are tested with PEKO, including:

• Capo: Capo is built on a multilevel framework with recursive
bisection. It aims to enhance routability with such techniques
as tolerance computation and block splitting heuristics [17].
The version used in [29] is Capo v.8.0.

• Dragon: Dragon uses hMetis to derive an initial partition of
the netlist. Then it uses simulated annealing with bin-based

swapping to further refine the result. The version used in the
experiment is Dragon v.2.20.

• mPL: mPL [16] is a multilevel placement algorithm. It uses
nonlinear programming to handle the non-overlapping
constraints on the coarsest level, then uses Goto-based [38]
relaxation in subsequent refinement stages. The version used
is mPL v.1.2. It has an additional V cycle with distance-
based clustering in the second V cycle [39].

The conclusions from [29] include:

• There is still significant room for improvement in placement
algorithms. The results by these tools are 1.46 to 2.38 times
the optimal on these examples.

• The solution quality of all three tools further deteriorates as
the circuit size increases. This suggests that these algorithms
may not be effective in searching the solution space when the
problem size becomes considerably large.

• Capo shows the best scalability in these examples, while
Dragon consumes more than 24 hours in cases of design
complexity higher than 450K cells.

3.2 Construction of Placement Examples with
Known Upper Bounds
The study with the PEKO suite suffers from one drawback. In the
optimal solutions, all the nets are local, i.e., their wirelength is the
minimum possible value. This may not be true in real circuits,
which may also have global connections that span the entire chip,
even when they are optimally placed. Table 1 gives the profile of
placed results of the ISPD98 suite [33] produced by Dragon. The
second and third columns are the width and height of the chip.
The fourth column gives the wirelength of the longest net in each
circuit. The last column gives the percentage of wirelength
contributed by the longest 10% of the total nets. It can be seen that
although the number of global connections is small, their
wirelength contribution is significant. Therefore, the performance
of a placer can be quite different due to the presence of these
global nets. It is worthwhile to study the stability of different
placers in the presence of global nets.
We take two approaches to consider the impact of global nets.
One is to generate circuits consisting only of global nets; the other
is to introduce some randomly generated, non-local nets into the
PEKO suite. We use the term “non-local net” to denote the nets in
placement solutions whose wirelength are larger than the
minimum possible value. These nets are used to mimic the global
nets.

3.2.1 Placement examples with global connections
only
One way to study the impact of global connections is to create
circuits with global nets only. Our construction procedure takes an
integer n, and 0 ≤ α ≤ 1 as inputs. It outputs a netlist N’ and a
placement solution S, such that N’ has n modules and S has an
aspect ratio of α. Each net in N’ connects either an entire row or
column, as shown in Fig. 5. The number of nets is the total
number of rows and columns. Such an example is similar to
datapath placement examples, where data flows horizontally
through the bit-slice along buses, while control signal flows
vertically. One solution to such benchmarks has a configuration
similar to Fig. 5, whose wirelength is the sum of the length of each

91

row and column, which is obviously an upper bound of the
optimal wirelength.
Table 1. Profile of placement result by Dragon [18] on ISPD98

circuit height width WL of
longest net

WL contribution
of longest 10%

ibm01 8158 4530 7148 51%
ibm02 8158 6430 14224 46%
ibm03 8158 6740 10624 58%
ibm04 8158 9140 15171 53%
ibm05 8158 11055 19064 47%
ibm06 8158 8715 13966 61%
ibm07 8158 14605 14051 51%
ibm08 8158 15895 16142 60%
ibm09 8158 16395 13780 55%
ibm10 8158 27890 30755 53%
ibm11 16350 10925 19234 59%
ibm12 16350 15545 26748 52%
ibm13 16350 12230 19539 59%
ibm14 16350 25475 26370 61%
ibm15 16350 23785 27284 63%
ibm16 16350 34015 42860 59%
ibm17 16283 38895 45686 56%
ibm18 16350 37065 52846 64%

global
connection

Figure 5. Circuit with global connections only

3.2.2 Placement examples with non-local
connections
The second approach is to introduce non-local nets into
benchmarks which have only local nets in the optimal solution.
Compared with local nets, the non-local nets usually have a longer
wirelength, and are used to mimic the global connections in our
study. We would like to solve the following problem: Given an
integer n, a vector D, and 0 ≤ α ≤ 1, construct a new netlist N’ and
a placement solution S, such that:

• N’ has n modules and has D as its NDV

• The ratio of non-local nets to the total number of nets in S is
α

We extended the algorithm in [29] by relaxing the optimality
requirement for a subset of the nets. The new algorithm works as
follows: The modules are put in a

/n n n ×

 shaped region.

For nets of degree i, α⋅di of them are generated by randomly
connecting i modules. The rest are generated by connecting i
modules in a rectangular region with dimension

/i i i ×
, as in

[29]. Although the optimal wirelength for the generated circuit is
no longer known, we can calculate the wirelength of the random
nets and add it to the optimal wirelength of the local nets. The sum
serves as an upper bound of the optimal wirelength.

3.3 Evaluation of State-of-the-art Placement
Algorithms on the G-PEKU and PEKU Suites
Using the module numbers extracted from ISPD98 and an aspect
ratio of 1, we generated a set of circuits with global nets only. The
circuits are named GPeku01 to GPeku18. They are grouped as the
G-PEKU suite. We also generated several sets of benchmarks
with non-local nets. The parameter α is gradually increased from
0.25% to 10%. The module numbers and NDVs were extracted
from ISPD98. These benchmarks are named the PEKU suite
(Placement Example with Known Upper bound). All the circuits
used in the experiment can be downloaded from:
http://cadlab.cs.ucla.edu/~pubbench/peku.htm.
The same version of Dragon and mPL as in 3.1 were used in our
experiments. As for Capo, we used an updated version, Capo v.8.5
for Linux, provided by its authors, downloaded from [37]. We
also added another placer:

• mPG: mPG is built on a multilevel framework. It uses FC
clustering and hierarchical density control to minimize the
overflow of each placement bin during the refinement
process. If necessary, it builds an incremental A-tree to
optimize routability. We used mPG v.1.0 given in [20].

The results for Capo were collected on a Pentium 4 2.2GHz
running RedHat 8.0 with 1.5GB of memory. The results for the
other three placers were collected on a Sun Blade workstation
750MHz running SunOS 5.8 with 4GB of memory.
First, we tested the four placers on five circuits in G-PEKU. The
experimental results are given in Table 2. The results are the
average of 5 runs for each placer. The upper bound of each circuit
is given in column “UB.” The last four columns give the ratio of a
placement’s wirelength to the upper bound. mPL exceeds the
memory capacity for two of the examples. For those it completed,
mPL gives the closest solution to the upper bound. For these
examples with all global nets, the gap between their solutions and
the upper bound varies between 41% and 102% in the worst case,
similar to the results obtained on PEKO [29], which has local nets
only. This is another validation that there is significant room for
improvement for the placement problem.

Table 2. Evaluation results on G-PEKU

circuit #cells UB

Dragon
v.2.20
[18]
QR

Capo
v.8.5
[17]
QR

mPG
v.1.0
[20]
QR

mPL
v.1.2
[16]
QR

GPeku01 12506 7.93E5 1.98 1.56 1.91 1.11
GPeku05 28146 1.79E6 2.01 1.69 1.97 1.16
GPeku10 68685 4.38E6 2.02 1.72 1.98 1.41
GPeku15 161187 1.03E7 1.99 1.79 1.97 Abort
GPeku18 210341 1.34E7 2.02 1.78 1.98 Abort

92

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

0% 2% 4% 6% 8% 10%
% of non-local nets

Q
ua

lit
y

R
at

io

Capo v.8.5 Dragon v.2.20 mPG v.1.0 mPL v.1.2

 Figure 6. QR vs % of non-local nets for four placement algorithms under evaluation

Second, we tested the placers on PEKU. For each α, we picked
five of the circuits and fed them into the placers. Each circuit was
placed 5 times by the placers. We calculated the QRs as the ratio
of the wirelength to the upper bound. Fig. 6 shows the change of
the average QRs with the increase of α on PEKU for the four
placers. For mPL, its QR increases when α is increased from 0 to
0.75%. For the other three placers, QRs are steadily decreasing.
However, this does not necessarily indicate that their solution
qualities are improving. We believe it is because the upper bounds
of the optimal wirelength are becoming looser as the percentage of
non-local nets increases. Therefore, the absolute value of the QRs
may not be meaningful. However, comparing QRs from different
placers can help us identify the technique that works best under
each scenario. Furthermore, comparing the QRs of the same
placer can test a placer’s sensitivity to non-local connections. It
can be seen that the relative effectiveness of the placers changes as
the number of non-local nets increases. For instance, the solution
quality of Dragon is not close to the optimal when the benchmarks
are dominated by local nets. However, it gradually stands out as
the percentage of non-local nets increases. When α reaches 10%,
Dragon’s results become the closest to the upper bound.
Combining the results from 3.1 and 3.3, we can make the
following observations:

• The placers are not stable in the presence of global nets.
Without global nets, mPL gives the shortest wirelength.
However, its Quality Ratio shows an increase of more than
80% with a small increase of non-local nets. With non-local
nets, Dragon’s wirelength gradually becomes the closest to
the upper bound. A placer’s Quality Ratio can vary
significantly for designs of similar sizes but different
characteristics.

• The study suggests that new hybrid techniques, which are
more scalable and stable, may be needed for future
generations.

4. CONCLUSIONS
In this paper we studied the optimality, scalability and stability of
state-of-the-art partitioning and placement algorithms using
arbitrarily large, carefully constructed benchmarks that match the
characteristics of real circuits. We studied the optimality of these
algorithms by comparing their solutions with the upper bounds of
the optimal solutions, their scalability by varying the sizes and
characteristics of the benchmarks. The conclusions from this study
include:

• The best available bipartitioning algorithms perform and
scale very well on the BEKU suite. The result seems to
suggest that existing circuit partitioning techniques are fairly
mature and there is little room for improvement for cutsize
minimization for problems of the current sizes.

• The best available multiway partitioning algorithms do not
perform that well. There were examples where the upper
bound we computed was 18% better than the results from
hMetis.

• The state-of-the-art placement algorithms produce
significantly inferior results compared with the estimated
optimal solutions. There is still significant room for
improvement in circuit placement.

• Existing placement algorithms are not stable. Their
effectiveness varies depending on the characteristics of the
benchmarks. New hybrid techniques may be needed for
future generation placement engines that are more scalable
and stable.

5. ACKNOWLEDGEMENT
This work is partially supported by Semiconductor Research
Corporation under Contract 98-TJ-686, partially supported by
National Science Foundation under Grant CCR0096383, and
partially supported by DARPA/GSRC under contract number
SA2211-23106. The authors would like to thank C.-C. Chang for
the valuable discussions they had with him. They would like to
thank X. Yuan for providing the data of mPG. They would like to
thank J. Shinnerl and K. Sze for providing the experimental data
of mPL. They would also like to thank Prof. I. Markov for
providing Capo’s latest version for their experiment.

6. REFERENCES
[1] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure

for Partitioning Graphs,” Bell Systems Technical Journal,
49(2), pp. 291-308, 1970.

[2] C.M. Fiduccia and R.M. Mattheyses, “A Linear Time
Heuristic for Improving Network Partitions,” Proc. Design
Automation Conf., pp. 175-181, 1982.

[3] G. Karypis, B. Aggarwal, V. Kumar and S. Shekhar, “Multi-
level hypergraph partitioning: Application in VLSI domain,”
IEEE Trans. VLSI Syst, vol. 7, pp. 69-79, 1999.

93

[4] S. Dutt and W. Deng. “A Probability-Based Approach to
VLSI Circuit Partitioning,” Proc. Design Automation
Conference, pp. 100-105, 1996.

[5] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-
Removal Using Iterative Improvement Techniques,” Proc.
Physical Design Workshop, 1996.

[6] B. Riess, K. Doll, and F. M. Johannes. “Partitioning Very
Large Circuits Using Analytical Placement Techniques”.
Proc. Design Automation Conference, pp. 646–651, 1994.

[7] J. Cong, P. Li, S. K. Lim, T. Shibuya, and D. Xu, "Large
Scale Circuit Partitioning With Loose/Stable Net Removal
and Signal Flow Based Clustering,” Proc. International
Conference on Computer Aided Design, pp. 441-446, 1997

[8] J. Cong and M. Smith, “A Parallel Bottom-up Clustering
Algorithm with Applications to Circuit Partitioning in VLSI
Design,” Proc. Design Automation Conference, pp. 750-760,
1993.

[9] D. Huang and A. Kahng, “When Clusters Meet Partitions:
New Density-Based Methods for Circuit Decomposition,”
Proc. European Design and Test Conference, pp. 60-64,
1995.

[10] H. Shin and C. Kim, “A Simple Yet Effective Technique for
Partitioning,” IEEE Trans. On VLSI Systems, pp. 380-386,
1993.

[11] J. Li, J. Lillis, and C.K. Cheng, “Linear Decomposition
Algorithms for VLSI Design Applications,” Proc. Design
Automation Conference, pp. 223-228, 1995.

[12] J. M. Kleinhans, G. Sigl, and F. M. Johannes, "GORDIAN:
A New Global Optimization / Rectangle Dissection Method
for Cell Placement," Proc. International Conference on
Computer-Aided Design, pp. 506-509, 1988.

[13] G. Sigl, K. Doll, and F. Johannes, “Analytical Placement: A
linear or Quadratic Objective Function?” Proc. Design
Automation Conference, pp. 427-432, 1991.

[14] W. Sun and C. Sechen, “Efficient and Effective Placement
for Very Large Circuits,” Proc. International Conference on
Computer-Aided Design, pp. 170-177, 1993.

[15] H. Eisenmann and F. M. Johannes, “Generic Global
Placement and Floorplanning,” Proc. Design Automation
Conference, pp. 269–274. 1998.

[16] T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel
Optimization for Large-Scale Circuit Placement,” Proc.
IEEE International Conference on Computer Aided Design,
pp. 171-176, 2000.

[17] A. Caldwell, A. Kahng and I. Markov, “Can Recursiv
Bisection Produce Routable Placements?” Proc. Design
Automation Conference, pp. 477-482, 2000.

[18] M. Wang, X. Yang and M. Sarrafzadeh, "Dragon2000:
Standard-cell Placement Tool for Large Industry Circuits,"
Proc. International Conference on Computer-Aided Design,
pp. 260-264, 2000.

[19] S. Hur and J. Lillis, "Mongrel: Hybrid Techniques for
Standard Cell Placement," Proc. International Conference on
Computer Aided Design, pp. 165-170, 2000.

[20] X. Yang, B. Choi, and M. Sarrafzadeh, "Routability Driven
White Space Allocation for Fixed-Die Standard-Cell
Placement," Proc. International Symposium on Physical
Design, pp. 42-49, 2002

[21] C-C. Chang, J. Cong, Z. Pan, X. Yuan, “Physical Hierarchy
Generation with Routing Congestion Control,” Proc.
International Symposium on Physical Design, pp. 36-41,
2002.

[22] X. Yuan, Personal communication, Oct. 2002.

[23] J. Lillis, Personal communication, Dec. 2001

[24] T. Bui, S. Chaudhuri, F. Leighton, and M. Sipser, “Graph
Bisection Algorithms with Good Average Case Behavior,”
Combinatorica, 7(2), pp. 841-855, 1987.

[25] J. Garbers, H. Promel, and A. Steger, “Finding Clusters in
VLSI circuits”, Proc. International Conference on Computer
Aided Design, pp. 520-523, 1990

[26] L. Hagen, D. Huang and A. Kahng, “Quantified
Suboptimality of VLSI Layout Heuristics,” Proc. Design
Automation Conference, pp. 216-221, 1995.

[27] L. Hagen and A. Kahng, “New Spectral Methods for Ratio
Cut Partitioning and Clustering,” IEEE Trans. On CAD
11(9), pp. 1074-1085, 1992.

[28] Y.C. Wei and C.K. Cheng, “Towards Efficient Hierarchical
Designs by Ratio Cut Partitioning,” Proc. International
Conference on Computer Aided Design, pp. 298-301, 1989.

[29] C-C. Chang, J. Cong, and M. Xie, "Optimality and
Scalability of Existing Placement Algorithms," Proc. Asia
and South Pacific Design Automation Conference, pp. 621-
627, 2003.

[30] A. Caldwell, A. Kahng, and I. Markov, "Improved
Algorithms for Hypergraph Bipartitioning," Proc. Asia and
South Pacific Design Automation Conference, pp. 661-666,
2000.

[31] J. Cong and S. Lim, “Edge Separability Based Circuit
Clustering With Application to Circuit Partitioning,” Proc.
Asia South Pacific Design Automation Conference, pp. 429-
434, 2000.

[32] K. Boese, Personal communication, Oct. 2002

[33] C. Alpert, "The ISPD98 Circuit Benchmark Suite," Proc.
International Symposium on Physical Design, pp. 85-90,
1998.

[34] L. Sanchis, “Multiple-way Network Partitioning,” IEEE
Trans. on Computers, pp. 62-81, Vol. 38, Issue 1, 1989.

[35] http://www-users.cs.umn.edu/~karypis/metis/hmetis/files/
manual.pdf

[36] J. Cong, and S. Lim, “Multiway Partitioning with Pairwise
Movement,” Proc. IEEE International Conference on
Computer Aided Design, pp. 512-516, 1998.

[37] http://www.eecs.umich.edu/~imarkov/4/JRS/

[38] S.Goto, “An efficient algorithm for the two dimensional
placement problem in electrical circuit layout,” IEEE Trans.
on Circuit and Systems, vol 28, pp. 12-18, 1981.

[39] N.K. Sze, Personal communication, 2002

94

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

