
Timing Driven Force Directed Placement with
Physical Net Constraints

ABSTRACT
This paper presents a new timing driven force directed placement
algorithm that meets physical net length constraints as well as
constraints on specific pin sets. It is the first force directed
placement algorithm that meets precise half perimeter bounding
box constraints on critical nets. It builds on the work of
Eisenmann et al. [12], adding a new net model that changes the
contribution of constrained nets in the quadratic programming
problem, during solving for each force generation step. We
propose several methods for selecting and constraining critical
nets to achieve improved timing. Our work suggests that the force
directed method with net constraints is a powerful tool for
placement and timing convergence, achieving an average worst
negative slack optimization exploitation of 64% and average total
negative slack optimization exploitation of 48% results on 16
industry circuits from a 1.5GHz microprocessor.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]: Placement
& routing.

General Terms: Algorithms, Design.

Keywords: Timing Driven Placement, Force Directed
Placement, Net Constraints.

1. Introduction
Placement has long been an important step for timing
optimization during the IC design flow. Placement is significant
because it determines the length of interconnects. Semiconductor
process advances increase the impact of interconnect delay in
determining circuit performance since the wire delays do not
reduce as rapidly as gate delay [4] [17]. In high speed
interconnect dominated designs, placement has a significant
impact on design functions such as buffering, gate sizing, logic
synthesis and logic design. Process scaling also allows larger
designs and the importance of the placement step grows with
design size [25].

The placement field has been the subject of much research
[1][2][7-12][14-16][19-25]. There are 3 main goals in the
automated placement problem: minimizing chip area, achieving
routable designs, and maximizing circuit performance.
Maximizing circuit performance, the topic of this paper, has been
the focus of continued attention. In the placement of very high
performance circuits there are only a few combinational cells
between the timed elements in a path. Given a circuit, the best
possible delay for a path is the sum of the gate delays assuming no
interconnect. This delay is referred to as the unloaded delay of the
path. Assuming all of the unloaded delays meet the desired circuit
performance requirement, the timing critical paths will be caused
by interconnects whose delay pushes the unloaded delays beyond
the timing specification.

Timing driven placement techniques can be classified as either
path-based [1][9][7] or net-based [2][12][14][15][24]. Path based
modeling is the most natural as it reflects the true nature of the
timing problem, but for large circuits it is not possible to
enumerate all of the paths. For this reason much of the recent
timing driven work has been net-based [12][15][24]. In the net-
based approach, critical nets are identified and either given higher
weights or net length constraints. Since net weights do not have
any direct analogy in the timing space, the net weighting
approaches [12] suffer from the problem of identifying the proper
net weights. Net length constraints are a more natural choice since
there is a direct and computable correspondence between a net
length and the delay of a net. In [24], a net constraint approach is
used with recursive bi-section placement. But this placement
technique is limited in its ability to do iterative refinement.

2. Motivation
Traditionally, timing optimization of a design is achieved by
repeated application of various steps – timing driven placement,
buffer insertion, cell sizing and circuit re-synthesis. In the present
interconnect-dominated deep sub-micron era, a simple sequential
execution of these optimization steps is not sufficient to converge
critical designs. Hence, a powerful timing convergence flow
should tightly integrate the optimization steps of buffer insertion,
cell sizing and circuit re-synthesis with the timing-driven
placement engine. It is important that the placement engine should
be able to smoothly integrate the changes made by these

 techniques like [12] lend themselves
ptimizations like sizing and re-synthesis

Karthik Rajagopal
Intel Corporation

Tung Cao
Intel Corporation

Tal Shaked
Intel Corporation
& University of

Washington

Yegna Parasuram
Intel Corporation

Bill Halpin
Intel Corporation

& Syracuse
University

Amit Chowdhary
Intel Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
operations.

Force directed placement
easily to introduction of o

are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

due to their very incremental nature. This technique works well in
tandem with sizing, re-synthesis and buffering. Though there have
been a number of works in literature on timing driven placement,

ISPD’03, April 6–9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004…$5.00.

60

not too many of them are incremental and handle netlist changes
as smoothly as this method. Another important attribute of this
method is that it is ideal for eco placement.

In Eisenmann’s work, timing driven placement was implemented
as weights on timing critical nets in the network. Recent work
[24] suggests that using net length constraints derived from timing
is a better way of converging timing. This is because the delay
through a cell and the net driven by it depends on the wire
capacitance of the net, which depends on the wire length of the
net. Thus a net constraint bounds the delay across the driving cell
as well as the net. Since the importance of all receivers on a net is
not uniform, it is desirable to be able to constrain specific net
segments between the driver and specific receiver(s) on the net.
This work proposes a new formulation of the force directed
placement technique with general net length and net segment
constraints and proposes several methods of setting the constraints
to achieve improved timing results.

3. Overview of Force Directed Placement
We first give an overview of the force-directed placement
algorithm by Eisenmann et al. [12]. The circuit is modeled as a
graph with cells as vertices and nets as sets of edges. A net
connecting k cells is modeled as a star with an additional movable
vertex and an edge connecting each of the k cells to this vertex
(star model) [10]. In the quadratic placement problem, the cost of
a net is the sum of the cost of all its edges, where the cost of an
edge is modeled as the squared distance between the two vertices
(cells) of the edge. The overall objective function is to minimize
the sum of the cost of all nets. In matrix notation, the objective
function is given below in terms of a 2n-dimensional placement
vector p, where n is the number of vertices:

()T
nn

TT

yyxxpwhere

constpdpCpObjective

,,,,,,

...
2
1

11 KK
r

rrrr

=

++=

Here, the x and y locations of vertex i are denoted by xi and yi,
respectively. The cost of an edge between two movable vertices i
and j is given by (xi-xj)2 = xi

2 –2.xi.xj + xj
2. The first and the last

terms represent the ith and jth diagonal entry in C matrix, while the
middle term represents the negative entries at (i, j) and (j, i)
positions in C. We can assign a weight of w to an edge by
multiplying the corresponding entries in C by w. In case of a fixed
cell f, the squared distance is given by (xi-xf)2 = xi

2 –2.xi.xf + xf
2,

where the first term represents the ith diagonal entry in C, the
second term represents the negative entry in row i of d vector and
the third term contributes to the constant. The quadratic objective
function is optimized by solving the following system of linear
equations:

0. =+ dpC
rr

The force-directed placement algorithm in [12] modifies the
above formulation by including an additional force vector er that
is derived from the cell density distribution in the placement area.
The force vector er is used to remove cell overlaps by moving
cells from areas of high cell density to areas of low cell density.

0. =++ edpC rrr

The force-directed placement approach iteratively solves the
above system of linear equation. At every iteration, the force
vector is first derived from the density distribution of cells based
on the current placement and then used to determine the new
location of cells by solving the above system of equations.

4. Problem Statement
The problem of timing-driven placement can be specified as
follows. Given a circuit and a fixed placement area, find an
overlap-free placement of all cells in the placement area such that
the total wirelength and the timing of the circuit are minimized.
The total wirelength is a good measure of the ease of routing the
design. Here we focus on extending the force-directed placement
approach to optimize the timing of the circuit.

The timing of a circuit is measured in terms of two metrics: worst
negative slack (WNS) and total negative slack (TNS). The slack at
a timing point (an input/output pin of a cell or an input/output pad
of the circuit) is the difference between the required and arrival
times of the signal at that timing point. A negative slack implies
that the signal is arriving later than required time. WNS is defined
as the worst slack among all timing endpoints (input pin of
latches/flip-flops or output pads of the circuit), while TNS is the
total sum of negative slacks at the timing endpoints. Given a
placement of all cells of the circuit, a timing analysis engine gives
the WNS and TNS for the current placement.

5. Proposed Approach
We propose a timing-driven placement approach where a set of
net constraints on critical nets is derived from the timing
information of the circuit. A net constraint is an upper bound on
the half perimeter of the smallest bounding box enclosing all
connection points to a net. A connection point is the location on a
cell where a net connects to the cell. Setting net constraints on a
small number of nets ensures that the effect of net constraints on
the total wirelength of the circuit is marginal; we want to
minimize wirelength while meeting the net constraints. The
timing-driven formulation of our approach can be described in
two steps.

� The timing constraints of the circuit are translated into net
constraints on a small number of nets.

� The net constraints are modeled in the force-directed
problem formulation such that these net constraints can be
met with only a marginal impact on the other nets and cells
in the circuit.

We outline our approach in Figure 1.

5.1 Timing Constraints to Net Constraints
Choosing the right nets to set net constraints is crucial to
minimize WNS and TNS. Net constraints can be either specified
by the user or derived from the timing report using heuristics. The
timing report generated by a timing analysis engine lists the
critical paths in the circuit, given the current placement of the
cells. The timing report also specifies the delay and transition time
values for cells and nets on the critical paths. After a fixed number
of iterations of force-directed placement, we run the timing
analysis engine to get new timing report for the current placement
of the cells. We use heuristics to identify the critical cells from the

61

procedure timing-driven force-directed placement
begin
 create a graph vertex for every movable cell
 for all nets {
 k = number of cells connected to the net
 define an additional vertex for the center of the net
 create k edges, one from each cell to the center vertex
 assign a weight of 1 to all edges
 }

 while (placement is not spread out) {
 for (fixed number of iterations) {
 for (all net constraints) {
 if (net not meeting constraint) {
 distribute additional weight to bounding cells on this net
 }
 }
 calculate spreading forces to form e vector
 construct the C matrix and the d vector
 solve for the new placement of cells
 }
 run the timing analysis engine on the current placement
 use heuristics to constrain critical nets
 }
end

Figure 1. Pseudo-code for proposed timing-driven placement
approach

timing report, and then set new net constraints or tighten the
existing constraints on the critical nets.

Our heuristics for selecting critical nets are based on the following
factors for every net.
� Drive strength of the cell driving the net.
� Current wire capacitance of the net.
� Pin capacitance of pins and fixed pads connected to the net

(this is the lower bound on the load capacitance on the
driving cell, when the net length is 0).

� Transition time change across the driving cell and the net.

5.2 Modeling net constraints
We now discuss in detail the modeling of net constraints in the
force-directed placement approach. An approach to model a net
constraint is to increase the weight on the cost of all edges of the
net by the same amount, if the half perimeter of the net is more
than the constraint on the net. We have made several key
enhancements to such an approach of modeling net constraints,
which have resulted in significant improvements in the final
timing of the design. Next we present the various aspects of our
modeling of net constraints.

5.2.1 Additional weight for nets not meeting
constraints

assigned to a net is then distributed among all edges of the net.
This is described in section 5.2.3.
Once a net is identified as a critical net and a net constraint is
determined for that net, then the net constraint is only tightened in
subsequent iterations. If the net is no longer critical, we continue
to impose the constraint determined when it was previously
critical. If the constraint and additional weights on a non-critical
net is removed, in some cases, the net’s length will increase and
eventually the net becomes critical, once again. This does not lead
to a converging solution for reducing overall timing slack.

Half-perimeter of the bounding box of net
c

wmin

wmax

Additional
net weight

5.2.2 Duplicating nets with severe violations on net
constraints
 We found that nets that are in severe violation of net constraints
do not improve (i.e. meet net constraint) by further increasing the
weights on their edges. Instead we use an upper bound on the
weight of the net. For all nets with weight at the upper bound, we
propose the duplication of every edge of the net in the
formulation. We have shown experimentally that duplication of
all edges of nets with severe constraint violation helps in meeting
net constraints for such nets.

5.2.3 Distributing additional weight of a net among
its edges
 Let us consider the star net model, where a net connecting k cells
has an additional vertex for the net center and k edges connecting
the k cells to this vertex. For star model, assigning a weight to an
edge can be thought about as assigning a weight to its
corresponding cell. The additional weight has two components –
horizontal weight wx and vertical weight wy. We distribute
horizontal weight wx and vertical weight wy of a net among k cells

nt of these cells in the bounding box of
ple of a net with six cells, v1, … , v6,
d a vertex vc for the star model of the

Figure 2. Deriving additional net weights from net
constraints: additional net weight w depends on half-
perimeter of the net exceeding the net constraint c.
Increasing net weight beyond an upper bound does

not help in meeting the net constraint.
During each force spreading iteration, we assign additional
weights for newly constrained nets and for nets whose constraints
are not met currently. The exact value of the additional weight is

depending on the placeme
the net. Consider the exam
shown in Figure 3. We ad
determined iteratively and is adjusted before each spreading
iteration. If a net is not meeting its net constraint c, then we add
an additional weight proportional to the amount of the net’s half
perimeter in excess of c, see Figure 2. The additional weight

net; this vertex will get assigned to the mean center of the k cells
in the solution of the force-directed placement formulation. If a
cell lies strictly inside the bounding box of the net then we assign
a weight of 0 to the cell, since moving this cell closer to vc will

62

not help in meeting the net constraint. If the cell lies on the
boundary of the bounding box then we assign it a fraction of the
weight that is proportional to the distance of the cell from the
center vc. An example of how the additional horizontal and
vertical weights are distributed, for the net shown in Figure 3 is
given below:

v1
vc

v3

v4

v6

v2

v5
x1

y5

x6

y2

()
()

()
()16

6
6

5432

16

1
1

.

0

.

xx
xxwxwx

wxwxwxwx
xx
xxwxwx

c

c

−
−=

====
−
−=

()
()
()
()52

5
5

52

2
2

6431

.

.

0

yy
yy

wywy

yy
yy

wywy

wywywywy

c

c

−
−

=

−
−

=

====

The additional weight assigned to the center vertex vc is the sum of
weights on all cells, since vc shares an edge with every cell on the
net. The weights are distributed in this manner so as to move the
cells on the boundary of bounding box towards the mean center of
the cells. In the example above, two of the six vertices on the net do
not need to be moved at all for meeting the net constraint. Thus, our
weight distribution approach will reduce the impact of net constraint
on total wirelength.
Once weights are assigned to a cell for meeting a net constraint, the
weights are maintained even after the cell is no longer an outlier for
that constraint. If this is not done, the cell may be pulled away from
the net-center due to several reasons including connectivity to other
nets and spreading forces, and may once again become an outlier. If
a cell was not an outlier previously and is now an outlier, we start
pulling it in, by assigning additional weight. Our experimental
results show that the distance-based weight distribution helps
tremendously in meeting net constraints with only a small increase

in total wirelength. The iterative approach prevents us from adding
weights on cells unless it has an impact on reducing the net’s
bounding box. We find that this approach results in lesser total
wirelength as compared to an approach that adds weights to all the
cells on a net being constrained.

5.2.4 Specifying constraints between driver and
critical receiver(s) of a net
 Of the k cells on the net, only the driving cell and a few receiving
cells are on the critical timing paths of the circuit. We propose net
segment constraints that are constraints defined only for the segment
of the net connecting the driver and a critical receiver. We meet net
segment constraints by using the idea of weight distribution
described earlier. Here, the weight of the net segment is distributed
between the driver and the critical receivers, which has the effect of
bringing the critical cells close to each other. This approach is a
refinement to that described in section 5.2.3. A net-segment can be
thought of as a virtual net that connects the driver with the critical
receivers. The same approach for meeting a net constraint is applied
to this virtual net.

6. Experimental Results
We have implemented the net constraint driven placement algorithm
in C++ on LINUX. Instead of using MCNC benchmarks [26], we
used circuits from a recent microprocessor, since the effect of net
constraints on meeting timing is more accurately studied by using
data from a recent manufacturing process and standard cell library,
and by using state of the art RC estimation and timing analysis
engines. For our experiments, we used a set of 16 circuits from a 1.5
GHz microprocessor designed on 0.18 micron process. The circuits
range from 548 to 6223 cells, as listed in Table 1.

Table 1. Number of cell instances and number of nets.
Design Number of standard

cells
Number of nets

i1 6039 7081

i2 3441 4228

i3 2096 2569

i4 559 810

i5 1242 1662

i6 1967 2589

i7 1308 1651

i8 3374 4122

i9 686 989

i10 2039 2450

i11 1268 1353

i12 2891 3283

i13 1042 1279

i14 6223 7296

i15 548 708

i16 3399 4150

Figure 3. Example of a net with six cells used to
illustrate distribution of weights.

63

We used a static timing analysis engine that accurately estimates
the delay and transition times across cells and nets of the circuit.
Parameters from a 0.18 micron process were used for
characterizing interconnect resistance and capacitance and the
timing response for standard cells.

For every circuit, we set up two experiments: wirelength driven
and timing driven. In both runs, cells were placed using the force
directed algorithm. The difference between the runs was that, in
the timing driven run, the circuit was timed several times during
the course of placement to setup net constraint as discussed above
in section 5.1.

We found that apart from the calls to the timing engine, there was
no measurable runtime degradation between the wirelength driven
and timing driven placement runs. Introducing the net length
constraints did not increase the runtime of the core placement
algorithm.

Table 2. WNS for global and legalized placements.
WNS Optimization

Exploitation

Global Legal Global Legal

Design

Unloaded

A B A B % %

i1 -0.021 -0.401 -0.168 -0.409 -0.184 61.3% 58.0%

i2 -1.283 -1.394 -1.298 -1.402 -1.297 86.5% 88.2%

i3 -0.083 -0.163 -0.085 -0.17 -0.098 97.5% 82.8%

i4 -0.495 -0.542 -0.496 -0.542 -0.496 97.9% 97.9%

i5 -0.09 -0.12 -0.092 -0.123 -0.109 93.3% 42.4%

i6 -0.071 -0.219 -0.144 -0.227 -0.15 50.7% 49.4%

i7 -0.058 -0.26 -0.182 -0.29 -0.182 38.6% 46.6%

i8 0 -0.561 -0.102 -0.614 -0.12 81.8% 80.5%

i9 -0.061 -0.112 -0.09 -0.135 -0.112 43.1% 31.1%

i10 -0.266 -0.345 -0.267 -0.35 -0.273 98.7% 91.7%

i11 -0.026 -0.372 -0.13 -0.439 -0.139 69.9% 72.6%

i12 -0.294 -0.32 -0.311 -0.321 -0.314 34.6% 25.9%

i13 -0.069 -0.284 -0.182 -0.294 -0.191 47.4% 45.8%

i14 -0.134 -0.298 -0.16 -0.295 -0.183 84.1% 69.6%

i15 -0.003 -0.711 -0.163 -1.077 -0.387 77.4% 64.2%

i16 -0.07 -0.561 -0.201 -0.58 -0.217 73.3% 71.2%

Average 71.0% 63.6%

Column “A” are results with out net constraints

Column “B” are results with net constraints.

Table 2 compares the slack of the most critical path (WNS) for
the global placements as well as legalized placements. The timing
for unloaded placement is obtained by assuming that interconnect
has zero capacitance and resistance, i.e. ignoring the delay and the
loading due to wires. The improvement in WNS is computed
according to the optimization exploitation. The optimization
potential is a measure of how much a density result (placement

optimized only for minimum wirelength), can be improved
relative to the unloaded path delay. We calculate the exploitation
as a percent of the optimization potential that was achieved by the
timing driven method over its density result.
Across all 16 circuits the average WNS exploitation improvement
is 71.0% before legalization and is 63.6% after legalization. The
amount of improvement is different for different circuits
depending on size, number of nets and circuit topology.

Table 3. TNS for global and legalized placements
Design TNS Optimization

Exploitation

Global Legal Global Legal

Unloaded

A B A B % %

i1 -0.021 -34.929 -7.601 -45.392 -14.09 78.3% 69.0%

i2 -15.782 -29.26 -21.049 -34.402 -24.52 60.9% 53.1%

i3 -0.291 -1.759 -0.799 -3.581 -2.559 65.4% 31.1%

i4 -0.495 -0.736 -0.512 -0.817 -0.556 92.9% 81.1%

i5 -0.331 -2.018 -0.926 -2.407 -1.334 64.7% 51.7%

i6 -0.895 -6.577 -4.243 -8.143 -5.916 41.1% 30.7%

i7 -0.145 -4.944 -2.281 -5.968 -3.578 55.5% 41.0%

i8 0 -48.252 -6.424 -68.183 -9.669 86.7% 85.8%

i9 -0.215 -1.105 -1.005 -2.877 -1.642 11.2% 46.4%

i10 -4.583 -25.153 -20.194 -33.063 -26.232 24.1% 24.0%

i11 -0.051 -7.736 -3.862 -10.089 -6.892 50.4% 31.8%

i12 -2.593 -8.587 -6.499 -10.641 -8.066 34.8% 32.0%

i13 -0.318 -10.502 -5.479 -12.062 -7.481 49.3% 39.0%

i14 -2.39 -43.97 -21.382 -50.332 -29.28 54.3% 43.9%

i15 -0.003 -14.782 -7.782 -25.245 -12.493 47.4% 50.5%

i16 -0.498 -32.745 -13.378 -38.66 -19.188 60.1% 51.0%

Average 54.8% 47.6%

Column “A” are results with out net constraints

Column “B” are results with net constraints.

The net constraint driven algorithm improved TNS as well. In our
experiments, the timing engine reported two worst paths for every
timing endpoint. One corresponds to the rising signal at that
timing endpoint and the other corresponds to the falling signal.
TNS is the sum of all negative slack of these paths. From Table 3,
the average TNS exploitation is 54.8% before legalization and
47.6%after.
We were able to achieve improvements in timing without much
degradation in the wirelength metric. Table 4 compares the wire
length between the wirelength driven and timing driven runs. The
average increase in wirelength due to running the net length
constraint algorithm is 3.3%

64

Table 4. Wirelength comparison before and after legalization.

Table 5. Timing comparison with a net-constraint driven
recursive-bisection placement algorithm [24]

WNS TNS Design

A B % A B %

i1 -0.203 -0.184 9.4% -25.52 -14.09 44.8%

i3 -0.192 -0.098 49.0% -6.67 -2.56 61.6%

i4 -0.498 -0.496 0.4% -0.7 -0.56 20.0%

i6 -0.213 -0.15 29.6% -5.71 -5.92 -3.7%

i7 -0.186 -0.182 2.2% -2.64 -3.58 -35.6%

i9 -0.079 -0.112 -41.8% -1.58 -1.64 -3.8%

i10 -0.286 -0.273 4.5% -39.42 -26.23 33.5%

i15 -0.211 -0.387 -83.4% -11.09 -12.49 -12.6%

Average -3.8% 13.0%

Column “A” is recursive-bisection placement with net constraints.

Column “B” is force directed placement with net constraints.

Table 6. Wirelength comparison with a net-constraint driven
recursive-bisection placement algorithm [24]

Wirelength Design

A B %

i1 93,549,792 8.63E+07 7.7%

i3 20,919,034 17,990,284 14.0%

i4 3,537,436 3,426,342 3.1%

i6 20,258,164 19,097,088 5.7%

i7 13,111,048 11,927,216 9.0%

i9 7,763,368 7,857,532 -1.2%

i10 23,401,844 20,821,298 11.0%

i15 10,796,181 9,814,097 9.1%

Average 7.3%

Column “A” is recursive-bisection placement with net constraints.

Column “B” is force directed placement with net constraints

We also compared our algorithm with the timing driven recursive-
bisection placement algorithm based on net-constraints [24]. The
algorithm in [24] shows much better timing results for the MCNC
bench-marks [26]. Table 5 compares the timing metrics (WNS
and TNS) for the two algorithms. On average, TNS from our
placement algorithm is 13% better than TNS from the recursive-
bisection placement algorithm [24]; WNS from the two
algorithms are about the same. The wirelength from our placement
algorithm is on an average 7.3% better than the wirelength from
the recursive-bisection placement algorithm. The results shown
are for legalized placements. A possible explanation for better
timing results from the net-constraint driven force-directed
placement algorithm is that the force-directed placement approach
allows more flexibility of cell movement in later stages of
placement that helps in meeting the net constraints on critical
nets.

7. Conclusions
We have presented an effective way to introduce net length
constraints into a force directed placement algorithm. This
technique enables the placer to gently meet these constraints
without significantly impacting the total wirelength. We present
results using this model in a timing driven placement flow on a
number of designs from a high performance microprocessor. In
our current work we build on the iterative nature of this algorithm
and use it in conjunction with buffering, sizing and re-synthesis to
rapidly converge timing critical designs.

8. REFERENCES
[1] Michael A. B. Jackson, Arvind Srinivasan and E. S. Kuh, “A

Fast Algorithm for Performance-Driven Placement”, Digest
of Technical Papers, ICCAD, pp. 328-331, Nov. 1990.

[2] Bernhard M. Riess and Gisela G. Ellelt, “SPEED: Fast and
Efficient Timing Driven Placement”, pp. 377-380, 1995.

[3] J. Rubenstein , J. Paul Penfield and M. A. Horowitz, “Signal
Delay in RC Tree Networks”, IEEE Transactions on
Computer-Aided Design, vol. 39, no. 11, pp. 825-840, 1992.

Wirelength

Global Legal

Design

A B A B

i1 76,508,072 8.39E+07 9.7% 79,415,344 8.63E+07 8.7%

i2 30,623,224 32,407,498 5.8% 32,869,660 33,605,680 2.2%

i3 16,350,303 17,113,024 4.7% 17,326,240 17,990,284 3.8%

i4 3,047,238 3,227,253 5.9% 3,277,813 3,426,342 4.5%

i5 9,107,331 9,414,814 3.4% 9,796,280 9,891,563 1.0%

i6 18,120,192 18,325,508 1.1% 18,893,960 19,097,088 1.1%

i7 11,031,834 11,378,824 3.1% 11,606,858 11,927,216 2.8%

i8 47,061,444 51,837,004 10.1% 48,546,960 52,830,900 8.8%

i9 6,417,038 7,546,817 17.6% 8,131,880 7,857,532 -3.4%

i10 18,653,544 19,825,388 6.3% 20,024,322 20,821,298 4.0%

i11 6,991,472 7,819,749 11.8% 7,346,770 8,176,857 11.3%

i12 19,675,146 19,797,084 0.6% 20,326,330 20,445,920 0.6%

i13 9,945,988 10,158,826 2.1% 10,308,774 10,566,140 2.5%

i14 68,856,776 79,793,504 15.9% 71,779,504 82,462,656 14.9%

i15 10,705,754 8,610,920 -19.6% 12,177,296 9,814,097 -19.4%

i16 36,970,936 40,938,436 10.7% 38,596,564 42,367,024 9.8%

Average 5.6% 3.3%

Column “A” are results with out net constraints.

Column “B” are results with net constraints.

65

[4] H. B. Bakoglu, Circuits, Interconnects and Packaging for
VLSI. Addison Wesley, 1990.

[5] W. C. Elmore, “The transient response of Damped Linear
network with particular regard to wideband amplifier”,
Journal of Applied Physics, 1948, pp.55-63.

[6] Lawrence T. Pillage and Ronald A. Rohrer, “Asymptotic
Waveform Evaluation for Timing Analysis”, IEEE
Transactions on Computer-Aided Design, pp. 352-366, 1990.

[7] William Swartz and Carl Sechen, “Timing Driven Placement
for Large Standard Cell Circuits”, DAC, pp. 211-215, 1995.

[8] Wern-Jieh and Carl Sechen, “Efficient and Effective
Placement for Very Large Circuits”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pp. 349-359, 1995.

[9] A. Srinivasan, A. K. Chaudhary, E. S. Kuh, “RITUAL:
Performance Driven Placement Algorithm for Small Cell
ICs”, ICCAD, pp. 48-51, Nov. 1991.

[10] Jurgen M. Kleinhans, Georg Sigl, Frank M. Johannes, and
Kurt Antreich, “GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization”, IEEE Transactions
on Computer Aided Design, Volume 10, No. 3 pp. 356-365,
1991.

[11] K. Doll, F. M. Johannes, and K.J. Antreich, “Iterative
placement improvement by network flow methods”, IEEE
Transactions on CAD, vol. 13 pp.1190-1200, Oct. 1994.

[12] H. Eisenmann and F. M. Johannes, “Generic Global
Placement and Floorplanning”, ACM/IEEE DAC, 1998.

[13] J. Cong, “Timing models for Interconnects and Devices”,
DAC, 1997.

[14] R.S. Tsay, “Timing-Driven Placement”, DAC, 1997.

[15] Shih-Lian Ou and Massoud Pedram, “Timing-driven
Placement Based on Partitioning with Dynamic Cut-Net
Control”, DAC, 2000.

[16] Habib Youssef and Eugene Shragowitz, “Timing Constraints
for Correct Performance”, ICCAD, 1990

[17] D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep
Submicron”, pp. 203-211, ICCAD 1998.

[18] Jorge Nocedal and Stephen J. Wright, “Numerical
Optimization”, Springer-Verlag, 1999.

[19] Bill Halpin, C.Y. Roger Chen, and Naresh Sehgal, “A
Sensitivity Based Placer for Standard Cells”, GLS-VLSI,
1999.

[20] Ren-Song Tsay and Juergen Koehl, “An Analytic Net
Weighting Approach for Performance Optimization in
Circuit Placement”, DAC, pp. 620-624, 1991.

[21] X. Yang, B-K. Choi, and M. Sarrafzadeh, "A Standard-Cell
Placement Tool for Designs with High Row Utilization".
International Conference on Computer Design, pages. Sept.
2002.

[22] S. Hur and J. Lillis. ``Mongrel: Hybrid Techniques for
Standard Cell Placement'', in International Conference on
Computer-Aided Design, pp. 165-170, IEEE, 2000.

[23] A. B. Kahng, S. Mantik and I. L. Markov, “Min-max
Placement For Large-scale Timing Optimization”, in Proc.
ACM/IEEE Intl. Symp. on Physical Design, pp. 143-148,
Apr. 2002.

[24] Bill Halpin, C.Y. Roger Chen, and Naresh Sehgal, “Timing
Driven Placement using Physical Net Constraints” Design
Automation Conference, pp. 780-783. IEEE/ACM, June
2001.

[25] Yih-Chih Chou, Youn-Long Lin, “A performance-driven
standard-cell placer based on a modified force-directed
algorithm.”, pp. 24-29, ISPD 2001.

[26] www.cbl.ncsu.edu/benchmarks/layoutsynth92/.

9. Author Contact information
Address for Intel Corporation authors (except Tal Shaked):
Intel Corporation MS SC12-606
2200 Mission College Blvd.
Santa Clara, CA 95052
USA

Karthik Rajagopal
Email: karthik.rajagopal@intel.com
Phone: 408 765 3222

Yegna Parasuram
Email: yegnashankar.parasuram@intel.com
Phone: 408 765 7864

Tung Cao
Email: tung.d.cao@intel.com
Phone: 408 653 4942

Amit Chowdhary
Email: amit.chowdhary@intel.com
Phone: 408 765 0721

Bill Halpin
Email: william.halpin@intel.com
Phone: 408 765 9867

Tal Shaked
Email: tshaked@cs.washington.edu
Department of Computer Science & Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350

66

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

