
Timing Driven Force Directed Placement with  
Physical Net Constraints 

ABSTRACT 
This paper presents a new timing driven force directed placement 
algorithm that meets physical net length constraints as well as 
constraints on specific pin sets. It is the first force directed 
placement algorithm that meets precise half perimeter bounding 
box constraints on critical nets. It builds on the work of 
Eisenmann et al. [12], adding a new net model that changes the 
contribution of constrained nets in the quadratic programming 
problem, during solving for each force generation step. We 
propose several methods for selecting and constraining critical 
nets to achieve improved timing. Our work suggests that the force 
directed method with net constraints is a powerful tool for 
placement and timing convergence, achieving an average worst 
negative slack optimization exploitation of 64% and average total 
negative slack optimization exploitation of 48% results on 16 
industry circuits from a 1.5GHz microprocessor.   

Categories and Subject Descriptors 
B.7.2 [Hardware, Integrated Circuits, Design Aids]: Placement 
& routing. 

General Terms: Algorithms, Design. 

Keywords: Timing Driven Placement, Force Directed 
Placement, Net Constraints. 

1. Introduction 
Placement has long been an important step for timing 
optimization during the IC design flow. Placement is significant 
because it determines the length of interconnects. Semiconductor 
process advances increase the impact of interconnect delay in 
determining circuit performance since the wire delays do not 
reduce as rapidly as gate delay [4] [17]. In high speed 
interconnect dominated designs, placement has a significant 
impact on design functions such as buffering, gate sizing, logic 
synthesis and logic design. Process scaling also allows larger 
designs and the importance of the placement step grows with 
design size [25]. 

 

The placement field has been the subject of much research 
[1][2][7-12][14-16][19-25]. There are 3 main goals in the 
automated placement problem: minimizing chip area, achieving 
routable designs, and maximizing circuit performance. 
Maximizing circuit performance, the topic of this paper, has been 
the focus of continued attention. In the placement of very high 
performance circuits there are only a few combinational cells 
between the timed elements in a path. Given a circuit, the best 
possible delay for a path is the sum of the gate delays assuming no 
interconnect. This delay is referred to as the unloaded delay of the 
path. Assuming all of the unloaded delays meet the desired circuit 
performance requirement, the timing critical paths will be caused 
by interconnects whose delay pushes the unloaded delays beyond 
the timing specification.  

Timing driven placement techniques can be classified as either 
path-based [1][9][7] or net-based [2][12][14][15][24]. Path based 
modeling is the most natural as it reflects the true nature of the 
timing problem, but for large circuits it is not possible to 
enumerate all of the paths. For this reason much of the recent 
timing driven work has been net-based [12][15][24]. In the net-
based approach, critical nets are identified and either given higher 
weights or net length constraints. Since net weights do not have 
any direct analogy in the timing space, the net weighting 
approaches [12] suffer from the problem of identifying the proper 
net weights. Net length constraints are a more natural choice since 
there is a direct and computable correspondence between a net 
length and the delay of a net. In [24], a net constraint approach is 
used with recursive bi-section placement. But this placement 
technique is limited in its ability to do iterative refinement. 

2. Motivation 
Traditionally, timing optimization of a design is achieved by 
repeated application of various steps – timing driven placement, 
buffer insertion, cell sizing and circuit re-synthesis. In the present 
interconnect-dominated deep sub-micron era, a simple sequential 
execution of these optimization steps is not sufficient to converge 
critical designs. Hence, a powerful timing convergence flow 
should tightly integrate the optimization steps of buffer insertion, 
cell sizing and circuit re-synthesis with the timing-driven 
placement engine. It is important that the placement engine should 
be able to smoothly integrate the changes made by these 

 techniques like [12] lend themselves 
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due to their very incremental nature. This technique works well in 
tandem with sizing, re-synthesis and buffering. Though there have 
been a number of works in literature on timing driven placement, 
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not too many of them are incremental and handle netlist changes 
as smoothly as this method. Another important attribute of this 
method is that it is ideal for eco placement.  

In Eisenmann’s work, timing driven placement was implemented 
as weights on timing critical nets in the network. Recent work 
[24] suggests that using net length constraints derived from timing 
is a better way of converging timing. This is because the delay 
through a cell and the net driven by it depends on the wire 
capacitance of the net, which depends on the wire length of the 
net. Thus a net constraint bounds the delay across the driving cell 
as well as the net. Since the importance of all receivers on a net is 
not uniform, it is desirable to be able to constrain specific net 
segments between the driver and specific receiver(s) on the net. 
This work proposes a new formulation of the force directed 
placement technique with general net length and net segment 
constraints and proposes several methods of setting the constraints 
to achieve improved timing results. 

3. Overview of Force Directed Placement 
We first give an overview of the force-directed placement 
algorithm by Eisenmann et al. [12]. The circuit is modeled as a 
graph with cells as vertices and nets as sets of edges. A net 
connecting k cells is modeled as a star with an additional movable 
vertex and an edge connecting each of the k cells to this vertex 
(star model) [10]. In the quadratic placement problem, the cost of 
a net is the sum of the cost of all its edges, where the cost of an 
edge is modeled as the squared distance between the two vertices 
(cells) of the edge. The overall objective function is to minimize 
the sum of the cost of all nets. In matrix notation, the objective 
function is given below in terms of a 2n-dimensional placement 
vector p, where n is the number of vertices: 
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Here, the x and y locations of vertex i are denoted by xi and yi, 
respectively. The cost of an edge between two movable vertices i 
and j is given by (xi-xj)2 = xi

2 –2.xi.xj + xj
2. The first and the last 

terms represent the ith and jth diagonal entry in C matrix, while the 
middle term represents the negative entries at (i, j) and (j, i) 
positions in C. We can assign a weight of w to an edge by 
multiplying the corresponding entries in C by w. In case of a fixed 
cell f, the squared distance is given by (xi-xf)2 = xi

2 –2.xi.xf + xf
2, 

where the first term represents the ith diagonal entry in C, the 
second term represents the negative entry in row i of d vector and 
the third term contributes to the constant. The quadratic objective 
function is optimized by solving the following system of linear 
equations: 

0. =+ dpC
rr

 

The force-directed placement algorithm in [12] modifies the 
above formulation by including an additional force vector er that 
is derived from the cell density distribution in the placement area. 
The force vector er is used to remove cell overlaps by moving 
cells from areas of high cell density to areas of low cell density. 

0. =++ edpC rrr
  

The force-directed placement approach iteratively solves the 
above system of linear equation. At every iteration, the force 
vector is first derived from the density distribution of cells based 
on the current placement and then used to determine the new 
location of cells by solving the above system of equations. 

4. Problem Statement 
The problem of timing-driven placement can be specified as 
follows. Given a circuit and a fixed placement area, find an 
overlap-free placement of all cells in the placement area such that 
the total wirelength and the timing of the circuit are minimized. 
The total wirelength is a good measure of the ease of routing the 
design. Here we focus on extending the force-directed placement 
approach to optimize the timing of the circuit. 

The timing of a circuit is measured in terms of two metrics: worst 
negative slack (WNS) and total negative slack (TNS). The slack at 
a timing point (an input/output pin of a cell or an input/output pad 
of the circuit) is the difference between the required and arrival 
times of the signal at that timing point. A negative slack implies 
that the signal is arriving later than required time. WNS is defined 
as the worst slack among all timing endpoints (input pin of 
latches/flip-flops or output pads of the circuit), while TNS is the 
total sum of negative slacks at the timing endpoints. Given a 
placement of all cells of the circuit, a timing analysis engine gives 
the WNS and TNS for the current placement. 

5. Proposed Approach 
We propose a timing-driven placement approach where a set of 
net constraints on critical nets is derived from the timing 
information of the circuit. A net constraint is an upper bound on 
the half perimeter of the smallest bounding box enclosing all 
connection points to a net. A connection point is the location on a 
cell where a net connects to the cell. Setting net constraints on a 
small number of nets ensures that the effect of net constraints on 
the total wirelength of the circuit is marginal; we want to 
minimize wirelength while meeting the net constraints. The 
timing-driven formulation of our approach can be described in 
two steps.  

� The timing constraints of the circuit are translated into net 
constraints on a small number of nets.  

� The net constraints are modeled in the force-directed 
problem formulation such that these net constraints can be 
met with only a marginal impact on the other nets and cells 
in the circuit. 

We outline our approach in Figure 1. 

5.1 Timing Constraints to Net Constraints  
Choosing the right nets to set net constraints is crucial to 
minimize WNS and TNS. Net constraints can be either specified 
by the user or derived from the timing report using heuristics. The 
timing report generated by a timing analysis engine lists the 
critical paths in the circuit, given the current placement of the 
cells. The timing report also specifies the delay and transition time 
values for cells and nets on the critical paths. After a fixed number 
of iterations of force-directed placement, we run the timing 
analysis engine to get new timing report for the current placement 
of the cells. We use heuristics to identify the critical cells from the 
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procedure timing-driven force-directed placement 
begin 
    create a graph vertex for every movable cell 
    for all nets { 
        k = number of cells connected to the net 
        define an additional vertex for the center of the net 
        create k edges, one from each cell to the center vertex 
        assign a weight of 1 to all edges 
    } 
     
    while (placement is not spread out) { 
       for  (fixed number of iterations) {  
          for (all net constraints) { 
             if (net not meeting constraint) { 
                 distribute additional weight to bounding cells on this net 
            } 
          }  
         calculate spreading forces to form e vector 
         construct the C matrix and the d vector 
         solve for the new placement of cells 
      } 
     run the timing analysis engine on the current placement 
     use heuristics to constrain critical nets 
    } 
end 
 

Figure 1. Pseudo-code for proposed timing-driven placement 
approach 

timing report, and then set new net constraints or tighten the 
existing constraints on the critical nets.  

Our heuristics for selecting critical nets are based on the following 
factors for every net.  
� Drive strength of the cell driving the net.  
� Current wire capacitance of the net. 
� Pin capacitance of pins and fixed pads connected to the net 

(this is the lower bound on the load capacitance on the 
driving cell, when the net length is 0). 

� Transition time change across the driving cell and the net. 

5.2 Modeling net constraints 
We now discuss in detail the modeling of net constraints in the 
force-directed placement approach. An approach to model a net 
constraint is to increase the weight on the cost of all edges of the 
net by the same amount, if the half perimeter of the net is more 
than the constraint on the net. We have made several key 
enhancements to such an approach of modeling net constraints, 
which have resulted in significant improvements in the final 
timing of the design. Next we present the various aspects of our 
modeling of net constraints. 

5.2.1 Additional weight for nets not meeting 
constraints 

assigned to a net is then distributed among all edges of the net. 
This is described in section 5.2.3.  
Once a net is identified as a critical net and a net constraint is 
determined for that net, then the net constraint is only tightened in 
subsequent iterations. If the net is no longer critical, we continue 
to impose the constraint determined when it was previously 
critical. If the constraint and additional weights on a non-critical 
net is removed, in some cases, the net’s length will increase and 
eventually the net becomes critical, once again. This does not lead 
to a converging solution for reducing overall timing slack. 

Half-perimeter of the bounding box of net 
c

wmin 

wmax 

Additional  
net weight 

 

5.2.2 Duplicating nets with severe violations on net 
constraints 
 We found that nets that are in severe violation of net constraints 
do not improve (i.e. meet net constraint) by further increasing the 
weights on their edges. Instead we use an upper bound on the 
weight of the net. For all nets with weight at the upper bound, we 
propose the duplication of every edge of the net in the 
formulation. We have shown experimentally that duplication of 
all edges of nets with severe constraint violation helps in meeting 
net constraints for such nets. 

5.2.3 Distributing additional weight of a net among 
its edges 
 Let us consider the star net model, where a net connecting k cells 
has an additional vertex for the net center and k edges connecting 
the k cells to this vertex. For star model, assigning a weight to an 
edge can be thought about as assigning a weight to its 
corresponding cell. The additional weight has two components – 
horizontal weight wx and vertical weight wy. We distribute 
horizontal weight wx and vertical weight wy of a net among k cells 

nt of these cells in the bounding box of 
ple of a net with six cells, v1, … , v6, 
d a vertex vc for the star model of the 

Figure 2.  Deriving additional net weights from net 
constraints: additional net weight w depends on half-
perimeter of the net exceeding the net constraint c. 
Increasing net weight beyond an upper bound does 

not help in meeting the net constraint. 
During each force spreading iteration, we assign additional 
weights for newly constrained nets and for nets whose constraints 
are not met currently. The exact value of the additional weight is 

depending on the placeme
the net. Consider the exam
shown in Figure 3. We ad
determined iteratively and is adjusted before each spreading 
iteration. If a net is not meeting its net constraint c, then we add 
an additional weight proportional to the amount of the net’s half 
perimeter in excess of c, see Figure 2. The additional weight 

net; this vertex will get assigned to the mean center of the k cells 
in the solution of the force-directed placement formulation. If a 
cell lies strictly inside the bounding box of the net then we assign 
a weight of 0 to the cell, since moving this cell closer to vc will 
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not help in meeting the net constraint. If the cell lies on the 
boundary of the bounding box then we assign it a fraction of the 
weight that is proportional to the distance of the cell from the 
center vc. An example of how the additional horizontal and 
vertical weights are distributed, for the net shown in Figure 3 is 
given below:  
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The additional weight assigned to the center vertex vc is the sum of 
weights on all cells, since vc shares an edge with every cell on the 
net. The weights are distributed in this manner so as to move the 
cells on the boundary of bounding box towards the mean center of 
the cells. In the example above, two of the six vertices on the net do 
not need to be moved at all for meeting the net constraint. Thus, our 
weight distribution approach will reduce the impact of net constraint 
on total wirelength.  
Once weights are assigned to a cell for meeting a net constraint, the 
weights are maintained even after the cell is no longer an outlier for 
that constraint. If this is not done, the cell may be pulled away from 
the net-center due to several reasons including connectivity to other 
nets and spreading forces, and may once again become an outlier. If 
a cell was not an outlier previously and is now an outlier, we start 
pulling it in, by assigning additional weight. Our experimental 
results show that the distance-based weight distribution helps 
tremendously in meeting net constraints with only a small increase 

in total wirelength. The iterative approach prevents us from adding 
weights on cells unless it has an impact on reducing the net’s 
bounding box. We find that this approach results in lesser total 
wirelength as compared to an approach that adds weights to all the 
cells on a net being constrained. 

5.2.4 Specifying constraints between driver and 
critical receiver(s) of a net 
 Of the k cells on the net, only the driving cell and a few receiving 
cells are on the critical timing paths of the circuit. We propose net 
segment constraints that are constraints defined only for the segment 
of the net connecting the driver and a critical receiver. We meet net 
segment constraints by using the idea of weight distribution 
described earlier. Here, the weight of the net segment is distributed 
between the driver and the critical receivers, which has the effect of 
bringing the critical cells close to each other.  This approach is a 
refinement to that described in section 5.2.3. A net-segment can be 
thought of as a virtual net that connects the driver with the critical 
receivers. The same approach for meeting a net constraint is applied 
to this virtual net.  

6. Experimental Results 
We have implemented the net constraint driven placement algorithm 
in C++ on LINUX. Instead of using MCNC benchmarks [26], we 
used circuits from a recent microprocessor, since the effect of net 
constraints on meeting timing is more accurately studied by using 
data from a recent manufacturing process and standard cell library, 
and by using state of the art RC estimation and timing analysis 
engines. For our experiments, we used a set of 16 circuits from a 1.5 
GHz microprocessor designed on 0.18 micron process. The circuits 
range from 548 to 6223 cells, as listed in Table 1.   
 

Table 1. Number of cell instances and number of nets. 
Design Number of standard 

cells 
Number of nets 

i1 6039 7081 

i2 3441 4228 

i3 2096 2569 

i4 559 810 

i5 1242 1662 

i6 1967 2589 

i7 1308 1651 

i8 3374 4122 

i9 686 989 

i10 2039 2450 

i11 1268 1353 

i12 2891 3283 

i13 1042 1279 

i14 6223 7296 

i15 548 708 

i16 3399 4150 

 

Figure 3. Example of a net with six cells used to 
illustrate distribution of weights. 
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We used a static timing analysis engine that accurately estimates 
the delay and transition times across cells and nets of the circuit. 
Parameters from a 0.18 micron process were used for 
characterizing interconnect resistance and capacitance and the 
timing response for standard cells. 

For every circuit, we set up two experiments: wirelength driven 
and timing driven.  In both runs, cells were placed using the force 
directed algorithm.  The difference between the runs was that, in 
the timing driven run, the circuit was timed several times during 
the course of placement to setup net constraint as discussed above 
in section 5.1.  

We found that apart from the calls to the timing engine, there was 
no measurable runtime degradation between the wirelength driven 
and timing driven placement runs. Introducing the net length 
constraints did not increase the runtime of the core placement 
algorithm. 
 

Table 2. WNS for global and legalized placements. 
WNS Optimization 

Exploitation 

Global Legal Global Legal

Design 

Unloaded 

A B A B % % 

i1 -0.021 -0.401 -0.168 -0.409 -0.184 61.3% 58.0%

i2 -1.283 -1.394 -1.298 -1.402 -1.297 86.5% 88.2%

i3 -0.083 -0.163 -0.085 -0.17 -0.098 97.5% 82.8%

i4 -0.495 -0.542 -0.496 -0.542 -0.496 97.9% 97.9%

i5 -0.09 -0.12 -0.092 -0.123 -0.109 93.3% 42.4%

i6 -0.071 -0.219 -0.144 -0.227 -0.15 50.7% 49.4%

i7 -0.058 -0.26 -0.182 -0.29 -0.182 38.6% 46.6%

i8 0 -0.561 -0.102 -0.614 -0.12 81.8% 80.5%

i9 -0.061 -0.112 -0.09 -0.135 -0.112 43.1% 31.1%

i10 -0.266 -0.345 -0.267 -0.35 -0.273 98.7% 91.7%

i11 -0.026 -0.372 -0.13 -0.439 -0.139 69.9% 72.6%

i12 -0.294 -0.32 -0.311 -0.321 -0.314 34.6% 25.9%

i13 -0.069 -0.284 -0.182 -0.294 -0.191 47.4% 45.8%

i14 -0.134 -0.298 -0.16 -0.295 -0.183 84.1% 69.6%

i15 -0.003 -0.711 -0.163 -1.077 -0.387 77.4% 64.2%

i16 -0.07 -0.561 -0.201 -0.58 -0.217 73.3% 71.2%

Average 71.0% 63.6%

Column “A” are results with out net constraints 

Column “B” are results with net constraints. 

 
Table 2 compares the slack of the most critical path (WNS) for  
the global placements as well as legalized placements.  The timing 
for unloaded placement is obtained by assuming that interconnect 
has zero capacitance and resistance, i.e. ignoring the delay and the 
loading due to wires. The improvement in WNS is computed 
according to the optimization exploitation. The optimization 
potential is a measure of how much a density result (placement 

optimized only for minimum wirelength), can be improved 
relative to the unloaded path delay. We calculate the exploitation 
as a percent of the optimization potential that was achieved by the 
timing driven method over its density result. 
Across all 16 circuits the average WNS exploitation improvement 
is 71.0% before legalization and is 63.6% after legalization. The 
amount of improvement is different for different circuits 
depending on size, number of nets and circuit topology.   
 

Table 3. TNS for global and legalized placements 
Design TNS Optimization 

Exploitation 

Global Legal Global Legal 
 

Unloaded

A B A B % % 

i1 -0.021 -34.929 -7.601 -45.392 -14.09 78.3% 69.0% 

i2 -15.782 -29.26 -21.049 -34.402 -24.52 60.9% 53.1% 

i3 -0.291 -1.759 -0.799 -3.581 -2.559 65.4% 31.1% 

i4 -0.495 -0.736 -0.512 -0.817 -0.556 92.9% 81.1% 

i5 -0.331 -2.018 -0.926 -2.407 -1.334 64.7% 51.7% 

i6 -0.895 -6.577 -4.243 -8.143 -5.916 41.1% 30.7% 

i7 -0.145 -4.944 -2.281 -5.968 -3.578 55.5% 41.0% 

i8 0 -48.252 -6.424 -68.183 -9.669 86.7% 85.8% 

i9 -0.215 -1.105 -1.005 -2.877 -1.642 11.2% 46.4% 

i10 -4.583 -25.153 -20.194 -33.063 -26.232 24.1% 24.0% 

i11 -0.051 -7.736 -3.862 -10.089 -6.892 50.4% 31.8% 

i12 -2.593 -8.587 -6.499 -10.641 -8.066 34.8% 32.0% 

i13 -0.318 -10.502 -5.479 -12.062 -7.481 49.3% 39.0% 

i14 -2.39 -43.97 -21.382 -50.332 -29.28 54.3% 43.9% 

i15 -0.003 -14.782 -7.782 -25.245 -12.493 47.4% 50.5% 

i16 -0.498 -32.745 -13.378 -38.66 -19.188 60.1% 51.0% 

Average 54.8% 47.6% 

Column “A” are results with out net constraints 

Column “B” are results with net constraints. 

                    
The net constraint driven algorithm improved TNS as well.  In our 
experiments, the timing engine reported two worst paths for every 
timing endpoint. One corresponds to the rising signal at that 
timing endpoint and the other corresponds to the falling signal. 
TNS is the sum of all negative slack of these paths. From Table 3, 
the average TNS exploitation is 54.8% before legalization and 
47.6%after.  
We were able to achieve improvements in timing without much 
degradation in the wirelength metric.  Table 4 compares the wire 
length between the wirelength driven and timing driven runs. The 
average increase in wirelength due to running the net length 
constraint algorithm is 3.3% 
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Table 4.  Wirelength comparison before and after legalization. 

  
 

Table 5. Timing comparison with a net-constraint driven 
recursive-bisection placement algorithm [24] 

WNS TNS   Design 

A B % A B % 

i1 -0.203 -0.184 9.4% -25.52 -14.09 44.8%

i3 -0.192 -0.098 49.0% -6.67 -2.56 61.6%

i4 -0.498 -0.496 0.4% -0.7 -0.56 20.0%

i6 -0.213 -0.15 29.6% -5.71 -5.92 -3.7% 

i7 -0.186 -0.182 2.2% -2.64 -3.58 -35.6%

i9 -0.079 -0.112 -41.8% -1.58 -1.64 -3.8% 

i10 -0.286 -0.273 4.5% -39.42 -26.23 33.5%

i15 -0.211 -0.387 -83.4% -11.09 -12.49 -12.6%

Average -3.8%  13.0%

Column “A” is recursive-bisection placement with net constraints.

Column “B” is force directed placement with net constraints. 

 
 
 
 

Table 6. Wirelength comparison with a net-constraint driven 
recursive-bisection placement algorithm [24] 

Wirelength Design 

A B % 

i1 93,549,792 8.63E+07 7.7% 

i3 20,919,034 17,990,284 14.0% 

i4 3,537,436 3,426,342 3.1% 

i6 20,258,164 19,097,088 5.7% 

i7 13,111,048 11,927,216 9.0% 

i9 7,763,368 7,857,532 -1.2% 

i10 23,401,844 20,821,298 11.0% 

i15 10,796,181 9,814,097 9.1% 

Average 7.3% 

Column “A” is recursive-bisection placement with net constraints. 

Column “B” is force directed placement with net constraints 

 
We also compared our algorithm with the timing driven recursive-
bisection placement algorithm based on net-constraints [24]. The 
algorithm in [24] shows much better timing results for the MCNC 
bench-marks [26]. Table 5 compares the timing metrics (WNS 
and TNS) for the two algorithms. On average, TNS from our 
placement algorithm is 13% better than TNS from the recursive-
bisection placement algorithm [24]; WNS from the two 
algorithms are about the same. The wirelength from our placement 
algorithm is on an average 7.3% better than the wirelength from 
the recursive-bisection placement algorithm. The results shown 
are for legalized placements. A possible explanation for better 
timing results from the net-constraint driven force-directed 
placement algorithm is that the force-directed placement approach 
allows more flexibility of cell movement in later stages of 
placement that helps in meeting the net constraints on critical 
nets. 

7. Conclusions  
We have presented an effective way to introduce net length 
constraints into a force directed placement algorithm. This 
technique enables the placer to gently meet these constraints 
without significantly impacting the total wirelength. We present 
results using this model in a timing driven placement flow on a 
number of designs from a high performance microprocessor. In 
our current work we build on the iterative nature of this algorithm 
and use it in conjunction with buffering, sizing and re-synthesis to 
rapidly converge timing critical designs. 
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