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ABSTRACT
The increase in high-performance microprocessor power con-
sumption is due in part to the large power overhead of wide-
issue, highly speculative cores. Microarchitectural specula-
tion, such as branch prediction, increases instruction through-
put but carries a power burden due to wasted power for
mis-speculated instructions. Pipeline over-provisioning sup-
plies excess resources which often go unused. In this pa-
per, we use our detailed performance and power model for
an Alpha 21264 to measure both the useful energy and the
wasted effort due to mis-speculation and over-provisioning.
Our experiments show that flushed instructions account for
approximately 6% of total energy, while over-provisioning
imposes a tax of 17% on average. These results suggest op-
portunities for power savings and energy efficiency through-
out microprocessor pipelines.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Measurement, Experimentation, Performance

Keywords
power, energy, speculation, over-provisioning, alpha 21264

1. INTRODUCTION
Power consumption in high-performance microprocessors

has increased with successive generations. High-end desktop
and server processors such as the IBM Power 4 consume as
much as 120 watts under typical conditions. A root cause
of the dramatic power rise is the increase in clock rate to
improve performance, which in turn has affected nearly ev-
ery facet of superscalar microprocessor design. The drive
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for smaller and faster transistors has caused optimization
in fabrication technologies that have increased leakage cur-
rent. Dynamic circuits provide faster circuits at the expense
of higher power. Deeper pipelines increase clock loading
and overall circuit capacitance. In this paper, we examine
two categories of microarchitectural features used in high-
performance microprocessors that contribute to bottom-line
performance at the cost of substantial power use: specula-
tion and over-provisioning.
Superscalar microprocessors rely on speculation to feed

their wide issue, out-of-order, and deep pipelines. Control
speculation, data dependence speculation, hardware prefetch-
ing, cache way prediction, pipeline scheduling speculation,
and other predictive mechanisms allow the processor core
to make forward progress without waiting for long-latency
operations to complete. Speculation offers opportunities for
saving energy by filling the pipeline with useful work to do,
thereby increasing throughput and reducing the program ex-
ecution time. With fewer idle cycles spent resolving cache
line addresses or branch targets, for example, the processor
could finish tasks earlier, using less static power and allow-
ing more opportunity to transition to a lower-power mode.
However, speculative techniques also cause a power bur-

den from effort wasted on mis-speculated instructions. In
addition to predictor structure control logic and arrays, spec-
ulative features also require additional resources throughout
the chip, effectively providing extra room in the pipeline for
extraneous instructions. Each instruction that is ultimately
discarded contributes indirectly to elevated power levels due
to the need for increased structure sizes, which lead to higher
levels of transistor leakage current and more signal capac-
itance. A useless instruction also directly affects dynamic
power through datapath switching activity until it is ejected
from the pipeline. Our results show that approximately 6%
of the total program energy is spent on mis-speculation.
The second microarchitectural feature examined in this

paper is over-provisioning that results from excess capacity
in the pipeline. Over-provisioned hardware structures have
a wide range of effects on microprocessor power and energy
consumption. Under-used array capacities and read/write
ports cause the array to consume more dynamic power than
necessary for signal switching in larger decoders and longer
wordlines and bitlines. Furthermore, the excessive number
of transistors contribute to greater leakage current. Sec-
ondary effects on neighboring functional units include longer
interconnect to route around the overly large units and pos-
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Figure 1: Alpha 21264 Pipeline Diagram

sibly increased temperature levels. This study examines
the dynamic power wasted by hardware components that
require full power levels to process partially filled pipeline
stages and incur the maximum power penalty. The results
indicate that approximately 17% of the total energy bud-
get pays the power tax produced by over-provisioning in the
map and issue stages.
Section 2 provides an overview of a wide-issue, out-of-

order, superscalar microprocessor pipeline and Section 3 de-
scribes our performance and power model for this pipeline.
Section 4 presents the experimental measurements of power
losses due to speculation and over-provisioning. Section 5
discusses power management, including related work and fu-
ture challenges. Section 6 concludes with final remarks and
future directions for this study.

2. ALPHA 21264 PIPELINE
This section describes the pipeline of the Alpha 21264,

a 4-wide issue, out-of-order, superscalar processor [7, 4, 3].
The 21264’s core pipeline, illustrated in Figure 1 [7], relies
on aggressive use of speculation and hardware resources in
order to achieve high instruction throughput.

Fetch: The fetch stage reads four consecutive instructions
from the instruction cache and enters them into the fetch
queue. Cache line and cache way predictions, which specu-
latively select the next bytes to fetch every cycle, maintain
high fetch rates.

Slot: The slot stage assigns four incoming instructions to
integer and floating-point execution units each cycle. If the
branch predictor opposes the cache line prediction made in
the previous stage, the slot logic squashes the instructions
and clears the fetch queues to correct the mis-speculation.

Map: Register renaming is performed in the map stage
by separate integer and floating point mappers, which are
80-entry content-addressable memory arrays, each capable
of handling four incoming instructions every cycle.

Issue: The issue stage places the instructions in the in-

teger and floating point issue queues. The integer issue
queue contains 20 instructions and the floating point holds
15 instructions. As operands and execution resources be-
come available, the instructions issue from the queues to
the ALUs.

Execute: The ALU units perform operations in the exe-
cute stage. Execution units and register files are separated
into three distinct clusters: two integer and one floating-
point cluster each contain two ALU units. Multi-cycle op-
erations are pipelined to support a maximum of four integer
and two floating point instructions entering the execution
clusters each cycle.

Writeback: Once the instruction has completed, the re-
sults are written back to the destination registers.

Commit: The core pipeline terminates with the write-
back stage, and then the commit stage follows to re-order
instructions to their original fetched sequence and retire the
instructions from the pipeline. In the commit stage, each
instruction checks to see if it has generated traps, which oc-
cur due to incorrect execution or incorrect branch targets. If
a trap has occurred, the entire processor pipeline is cleared
and instructions are re-fetched. The trap types tracked in
this study are branch mispredictions, load-store traps, load-
load traps, and memory traps.
In the case of branch instructions, the commit stage com-

pares the actual target with the predicted target. An ad-
dress mismatch indicates a branch misprediction, which re-
quires a pipeline flush to correct. Load-store traps occur
when a load is speculatively issued before an older store to
the same address is committed, potentially loading an incor-
rect value. Multiple load instructions with the same address
may be speculatively issued out of order; detecting incor-
rect completion order and triggering load-load traps enforces
consistency in shared-memory multiprocessor environments.
The on-chip memory system is capable of handling multiple
cache misses. However, if this capacity is exceeded or if there
are conflicts between cache requests, the memory system will
generate a trap for the offending instruction.
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Table 1: Power Model
Component Energy Per Average Power

Cycle (nJ) (W)
Clock 38.33 23.00
System 6.53 3.92

Energy Per Average Power
Access (nJ) (W)

Fetch 3.49 6.74
FP mapper 1.05 2.51
FP issue queue 0.60 1.50
FP ALU 3.58 0.0
FP register file 1.67 0.0
Integer mapper 1.55 3.72
Integer issue queue 2.06 4.95
Integer ALU 2.33 2.34
Int register file 2.51 8.48
Load and
store queues 4.25 0.98
Data cache 10.00 2.210

gzip Total: 64.48

3. EXPERIMENTAL METHODOLOGY
This section describes the simulation infrastructure used

in this study to model a high-performance superscalar pro-
cessor pipeline. We used a validated microarchitectural sim-
ulator, sim-alpha [5] that models behavior of the Alpha
21264 design, and incorporated the Wattch [1] power model
with augmented power and performance measurements.

3.1 Microarchitectural Simulator
Sim-alpha models many low-level hardware features that

support speculation throughout the pipeline. The cache
model includes cache line and associative way prediction,
and optimistically issues loads and stores as if there were no
address conflicts and no port contention. The fetch unit uses
the Alpha tournament branch predictor to speculatively de-
termine the direction and target address of branch instruc-
tions [11]. The simulator also models trap detection and
recovery, including clearing the pipeline and re-fetching in-
structions.
We augmentedWattch’s power model with additional com-

ponents, such as I/O pins and an estimate of bus and system
interface power, and adapted the model for Alpha-specific
features with a datapath width of 64 bits and processor fre-
quency of 600 Mhz.
We designed the power model to produce power levels sim-

ilar to published data [16, 8, 13]. Our baseline power rating
with all units consuming full power is 71 watts. However,
in our study, we separate the pipeline into structures that
consume constant power each cycle regardless of the num-
ber of incoming instructions, such as map logic and issue
queues, and other components such as ALUs and register
files that vary in power consumption depending upon in-
struction activity. For the power-variable structures, we
make the simplifying approximation that structures con-
sume a fixed amount of power per instruction and are ef-
fectively clock-gated when idle; for example, an adder con-
sumes the same amount of power for each add operation,
regardless of the operand bit values. For the benchmarks
in this study, our model produces power levels ranging from

54 to 62 watts, reflecting reduced power due to clock-gating
and limited use of the floating-point cluster.
Table 1 lists components of the power and energy model.

The second column shows the breakdown of energy per cycle
for global components and energy per instruction for indi-
vidual structures. To calculate energy use, we multiply the
count of structure accesses by the power cost per access for
individual components. We multiply the clock and system
(including bus interface units and package pins) power costs
per cycle with the program length for the global-structure
energy total. The total energy is the sum of individual and
global structures; average power is the total energy divided
by program length. The third column in Table 1 shows re-
sults for average power for a representative program, gzip.
Our benchmark suite consists of several programs from

the SPEC 2000 suite that represent a range of application
behavior: gzip, vpr, gcc, crafty, parser, eon, gap, bzip2 and
equake. We simulated each benchmark for a total of one
billion committed instructions after fast-forwarding through
initialization code to the maximum amount allowed by the
simulator.

3.2 Pipeline Monitoring
To gain insight into pipeline over-provisioning and specu-

lation, we monitor the simulated pipeline by two simultane-
ous methods. We track each instruction’s path through the
pipeline and keep a record of its hardware structure accesses.
Meanwhile, we compile histograms of accesses to each major
structure in the pipeline. With these two measurements, we
are able to observe pipeline utilization for programs in the
benchmark suite, evaluate speculative mechanisms’ ability
to fill the 4-wide pipeline with useful work, and determine
the power overhead of speculation and over-provisioning.

3.2.1 Speculation
We monitor the power overhead of speculation by observ-

ing each instruction throughout the pipeline. When an in-
struction exits the pipeline, its hardware access record is
classified into one of six categories according to reason for
termination. The categories separate work performed by the
processor core into useful work for committed instructions
(COM) and distinct causes of wasted effort: branch mis-
predictions (BR), cache line predictor (LP) mispredictions,
load-load (LL) conflicts, load-store (LS) mis-speculation, and
memory traps (MEM). For example, an ADD instruction
ejected from the pipeline when another instruction triggers
a memory trap would contribute its access history to the
MEM category even though it did not cause the trap be-
cause effort expended on its behalf was wasted by the mem-
ory mis-speculation.
At the conclusion of program simulation, power models

applied to structure access counts determine the total en-
ergy, or power accumulated over time. We maintain a sep-
arate energy account for supporting structures such as the
global clock network, system interface, and I/O pins that
are not attributed to individual instructions.

3.2.2 Over-provisioning
We monitor structure utilization by collecting the number

of accesses to each structure, every cycle. Then, we apply
our per-access power model and sum the structures’ power
use over the duration of the program execution to estimate
the total energy consumed.
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Figure 2: Energy Expenditure: (a) Overview (b) Speculation Energy by Category

Some microarchitectural structures, such as the integer
and floating-point units and the caches can be designed
to burn a negligible amount of power when they are un-
needed. The calculated energy totals include contributions
from these units according to the number of structure ac-
cesses, with no penalty calculated for over-provisioning.
However, other structures are typically accessed every cy-

cle, regardless of how many instructions actually use them.
This class of structures is designed with sufficient capac-
ity and ports to handle peak throughput, but under typical
loads add an excess power burden to the pipeline. For exam-
ple, the floating-point mapper and issue queue run contin-
uously even during predominantly integer programs as they
search the incoming instruction stream for useful work to
perform. In our model, the power consumed by the integer
and floating-point mappers, integer and floating-point issue
queues is separated into power spent on instructions and
power wasted by unused slots in the pipeline. The instruc-
tion power is categorized into useful and non-useful work
(as specified in section 3.2.1); the empty-pipe power is ac-
counted separately as a distinct power overhead.
Note that in the over-provisioning analysis, some portion

of a chip’s global clock network and supporting circuitry is
over-provisioned due to the extra capacitive load and area of
the over-provisioned structures; this study does not include
the global structures in the utilization accounting.
We include only dynamic power in this study, based on

our model of the 21264’s 350nm process technology with neg-
ligible static power due to leakage current. In more recent
fabrication technologies, larger leakage currents significantly
increase the penalty of unused and under-used structures
throughout the pipeline.

4. EXPERIMENTAL RESULTS
Figure 2a shows the measured energy components for each

benchmark. The chart shows the clock and system interface
uses about half of the total energy. Energy spent on useful
work that results in committed instructions contributes an-
other 26%. Energy wasted on instructions that are flushed
due to mis-speculation of all types combined constitutes
about 6% of the total program energy. Finally, approxi-

mately 17% of the energy is spent on under-used map and
issue structures that burn power each cycle.

4.1 Speculation
The energy wasted on pipeline flushes is a relatively small

percentage of the total energy expended during program ex-
ecution. However, it is significant (11% to 40%) when com-
pared to the energy spent in the pipeline on committed in-
structions. Figure 2b shows the energy wasted by each trap
type. In general, branch misprediction and incorrect cache
line prediction are the main causes of wasted energy, though
the energy spent on mis-speculation is dependent on pro-
gram characteristics and varies widely among benchmarks.
For example, wasted energy due to mispredicted branches is
much greater for bzip2 than for gap, which spends a higher
percentage of energy on load-store mis-speculation. Also,
the effect of branch misprediction is least in the benchmark
equake as a result of its high branch prediction accuracy.
Table 2 shows the average number of instructions that

are flushed from the pipeline as a result of each type of
mis-speculation and how often the trap was triggered per
benchmark. Even rare occurrences of mis-speculation can
affect energy consumption. For example, vpr and gzip waste
almost the same amount of energy due to mis-speculation
and have an almost equal number of branches. However, vpr
wastes more energy due to branch mispredictions than gzip
despite a better branch predictor accuracy rate because it
evicts more instructions in pipeline flushes. Vpr evicts an
average of 53 instructions from the pipeline when a branch
misprediction occurs, compared to 34 in gzip. With a fuller
pipeline, vpr incurs a higher energy cost per pipeline flush,
for an overall higher energy penalty.

4.2 Over-provisioning
We found that overprovisioned structures consume be-

tween 15% and 21% of the total energy. Our study highlights
the inherent overprovisioning of the Alpha 21264 front-end
structures. The pipeline has sufficient capacity to map a
total of eight and issue a total of six instructions in the
floating-point and integer clusters each cycle, despite a lim-
ited supply of four instructions fetched per cycle. The built-
in extra space wastes effort on futile map and issue switch-
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Table 2: Mis-speculation Occurrence and the Average Number of Instructions Evicted Per Flush
BR LL LS MEM

Benchmark Branch # # avg. # avg. # avg. # avg
SPECcpu2000 Pred. branches traps # inst. traps #inst. traps # inst. traps # inst.

Accuracy (mil.) (mil.) evicted (mil.) evicted (mil.) evicted (mil.) evicted
164.gzip 0.925 104 7.24 34 1.40 53 0.21 37 2.47 34
175.vpr 0.942 108 5.95 53 0.50 53 1.25 46 2.52 34
176.gcc 0.965 152 4.95 28 0.50 29 0.48 28 1.33 29
186.crafty 0.934 123 7.20 28 0.98 26 0.51 29 1.37 31
197.parser 0.960 162 6.22 31 0.90 34 0.49 34 2.37 32
252.eon 0.948 119 6.06 42 0.14 46 4.91 47 2.52 32
254.gap 0.957 781 3.04 34 2.19 26 1.31 34 5.27 24
256.bzip2 0.936 143 8.09 37 2.03 42 0.46 34 3.31 33
183.equake 0.993 174 0.38 32 3 2.0 32 0.20 30 3.02 25
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Figure 3: Pipeline Utilization

ing. With our predominantly integer benchmark suite, we
found that the floating point mapper and issue queue were
essentially unused but consumed power continuously.
The benchmarks did use integer structures, though not

to their full capacity. Despite aggressive speculation to fill
the pipeline with potentially useful instructions, the inte-
ger mapper and issue stages produced less than half of their
peak output under typical conditions. Every missed oppor-
tunity to map and issue four integer instructions caused an
additional power penalty. Thus, the map and issue stages
spend most of their power on over-provisioning in these ex-
periments.

4.3 Pipeline Analysis
The 4-wide pipeline with extra map and issue resources

provides flexibility for high-throughput processing for di-
verse applications. Typical programs in our suite do not take
full advantage of the wide datapaths, and the performance
benchmark of instructions per cycle (IPC) hovers between
one and two committed instructions per cycle.
Figure 3 illustrates the integer portion of the pipeline with

a plot of average utilization per stage for selected bench-
marks that use the integer clusters almost exclusively (less
than 0.5% of these instructions use floating-point resources).
The drop between fetch and map stages is largely due to fre-
quent cache line mispredictions in our simulations. The in-
struction flow is fairly steady between the issue and execute

stages, averaging between 1 to 2 instructions per cycle. A
small percentage of “innocent bystander” instructions will
be evicted during pipeline flushes, but most travel through
the datapath unscathed. The majority will retire success-
fully at a rate between 1 and 2 instructions per cycle, as
shown in the graph as the program IPC.
The useful pipeline width effectively narrows between fetch

and commit stages from four down to less than two instruc-
tions wide for our benchmarks. The remaining space in
the pipeline translates to under-used execution units, queue
entries, and read/write ports throughout the design. The
extent of over-provisioning pipeline resources is a function
of hardware capacity and software behavior. We observed
consistent under-use of resources throughout the pipeline
in our predominantly integer suite. The pipeline is de-
signed to handle a wide variation in workloads, with extra
resources provided to support three pipeline clusters. Other
computation-intensive programs could have higher utiliza-
tion rates throughout the wide pipeline, or due to data
dependences, might spend more time waiting for previous
results. Seldom-used resources may provide a significant
performance benefit for critical applications, and reduce the
total energy expended.

5. POWER MANAGEMENT
The Alpha 21264 design team addressed that processor’s

critical power issues with a hierarchical clock distribution,
conditional clocking in the floating-point cluster, and low-
swing busses. [8], Other power management techniques for
this class of superscalar processors approach the problem
from a microarchitectural perspective. Previous work for
reducing power wasted by speculation includes a pipeline-
gating technique that limits speculatively issued instructions
that are likely to be mispredicted [12]. One study investi-
gated the power of branch predictors and evaluated pipeline
speculation control in [14]. Another scheme is just-in-time
instruction delivery [10], whereby instructions are fetched as
late as possible, which reduces the number of instructions
flushed from front-end queues. We suggest further explo-
ration in front-end structures, such as sentries that moni-
tor the instruction stream and select alternate lower-power
structures or reduced-power modes as warranted.
Several researchers have proposed hardware resizing and

reconfiguring techniques [2, 15, 6, 9] to address power wasted
by oversized hardware structures. A power manager could
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actively use information gathered from issue queue usage
statistics to tailor the datapath width to fit the instruction
stream, and direct unused or underused resources into a low-
power mode.
Judicious use of hardware resources will become even more

important as the projected increase in leakage current adds
to the power liability of each transistor on die. The shifting
balance of static and dynamic power is likely to dictate in-
tegrated power management strategies from circuit through
architecture for future generations of microprocessors.

6. CONCLUSION
Our experimental infrastructure provides a detailed de-

scription of pipeline resource use (and misuse) within a 4-
way issue superscalar processor. We identified the power
overhead associated with two classes of microarchitectural
features that boost performance: speculation and pipeline
over-provisioning. We found that power wasted by mis-
speculation accounts for approximately 6% of the total en-
ergy, and power spent on under-used map and issue re-
sources contributes 17% of total energy, considering only
dynamic power and explicit power overheads. We find that
the beginning of the core pipeline is most directly affected
by speculation-related effort, subject to clearing and refilling
to correct mis-speculation. The tail end of the pipeline has
the advantage of of containing fewer enqueued instructions
subject to eviction upon a pipeline flush, and more informa-
tion available from upstream stages for detection and power
control of idle or under-used resources.
Our results suggest that a power management policy that

provides effective speculation and hardware resource recon-
figuration could be highly effective in reducing the power
and energy in a wide-issue superscalar processor. Technol-
ogy trends indicate continuing issues with dynamic power
due to high clock rates, and emerging challenges due to static
power from leakage current. In addition to semiconductor
manufacturing and circuit styles, microarchitectural deci-
sions provide an opportunity to effectively manage pipeline
power and energy.
Future work for this project will include extensions to the

microarchitectural simulator to evaluate the power overhead
of other microarchitectural features and develop energy ef-
ficient techniques based on pipeline utilization statistics.
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