
A Critical Analysis of Application-Adaptive Multiple Clock
Processors∗

Emil Talpes, Diana Marculescu
{etalpes, dianam}@ece.cmu.edu

Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213

ABSTRACT
Enabled by the continuous advancement in fabrication technology,
present day synchronous microprocessors include more than 100
million transistors and have clock speeds well in excess of the
1GHz mark. Distributing a low-skew clock signal in this frequency
range to all areas of a large chip is a task of growing complexity.
As a solution to this problem, designers have recently suggested
the use of frequency islands that are locally clocked and externally
communicate using mixed timing communication schemes. Such a
design style fits nicely the recently proposed concept of voltage
islands that, in addition, can potentially enable fine grain dynamic
power management. This paper proposes a design exploration
framework for application-adaptive multiple clock processors
which provides the means for analyzing and identifying the right
inter-domain communication scheme and the proper granularity for
the choice of voltage/frequency. In addition, the proposed design
exploration framework allows for comparative analysis of newly
proposed or existing application-driven dynamic power
management strategies. Such a design exploration framework and
accompanying results can help designers and computer architects
in choosing the right design strategy for achieving better power-
performance trade-offs in multiple clock high-end processors.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – clocking

strategies, multi-voltage circuits, application-adaptive processor.

General Terms
Algorithms, Management, Performance, Design, Experimentation

Keywords
Microarchitecture, Multi Clock Processors, Globally Asynchronous

Locally Synchronous, Dynamic Voltage Scaling, Simulation
Framework.

1 Introduction
The last few decades have been dominated by Moore’s Law, with

performance being the primary driving force in processor design. This
trend has lead to a vast increase in the number of transistors used in
modern microprocessors, while constantly pushing clock frequencies.
Unfortunately, this has also resulted in a huge increase in power
dissipation as well, with current processors already dissipating more
than 100 Watts. One major design bottleneck in today’s high-
performance VLSI systems is the clock distribution network. Large
clock nets perform like very long signal paths, making it hard for
designers to keep the clock skew within tolerable limits. With
increasingly large processor dices and clock frequencies in the multi-
gigahertz range, ever more complex clocking schemes are needed [1].
Furthermore, the clock skew is getting worse with each shrink due to
the increasingly high process and system parameter variation.

To address these problems, two approaches are possible. The first
option is to use fully asynchronous designs. While this has been tried
successfully in isolated cases [2][3][4], the design methodology for
asynchronous design is far from being mature and thus, far from
widespread acceptance.

Another alternative is to use globally asynchronous, locally
synchronous (GALS) architectures [5][6][7][8], which attempt to
combine the benefits of both fully synchronous and asynchronous
systems. A GALS architecture is composed of synchronous blocks that
communicate with each other using an asynchronous communication
scheme. Such systems have important advantages, as they do not
require a global clock distribution network or de-skewing circuitry.
Using locally generated clock signals within each individual domain,
they make it possible to take advantage of the industry-standard
synchronous design methodology. However, the overhead introduced
by communicating data across clock domain boundaries may become a
fundamental drawback, limiting the performance of these systems.
Thus, the choice of granularity for these synchronous blocks or islands
must be very carefully done in order to prevent the inter-domain
communication from becoming a bottleneck. At the same time, the
choice of the inter-domain communication scheme, as well as of the
on-the-fly mechanisms for per-domain dynamic speed/voltage scaling
become critical when analyzing overall power-performance trends.

The contribution of the work proposed in this paper is twofold:
• First, we propose a design exploration framework for application-

adaptive multiple clock high-end processors that is fully
parameterizable and allows for detailed analysis of available
power/performance trade-offs.

• Second, this paper introduces a new type of dynamic control strategy
for application-adaptive multiple clock processors that matches the
voltage/speed for various frequency/voltage islands to the ones
required by the application workload.
The paper is organized as follows: in Section 2 we present previous

work related to the aspects addressed in this paper. In Section 3 we
present the baseline microarchitecture under consideration. Section 4
details our simulation framework and the experimental setup, while the
results of all the tests are presented in Section 5. Finally, we conclude
the paper with an analysis of the trends observed in the experimental
results together with our conclusions and directions for future research.

2 Related Work
With high clock frequencies driving an ever-increasing number of

transistors available on-chip, the power burned in the clock distribution
network starts to become a limitation. In [9], the authors identify the
clock distribution circuitry as a primary source of power consumption.
An approach that allows for aggressive future frequency increases,
maintains a synchronous design methodology, and exploits the trend
towards making functional blocks more autonomous is the Globally
Asynchronous, Locally Synchronous clocking style [5][12]. Several
VLSI designs that can benefit from such a technique were proposed
[10][11]. All of them are based on the observation that in these specific
cases the communication performance is not critical.

∗This research was supported in part by SRC Grant No. 2001-HJ-898 and by
NSF CAREER Award No. CCR-008479.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’03, August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008… $5.00

 Previous studies focused on assessing the viability of a GALS
clocking strategy to a superscalar, out-of-order processor. The
performance and power consumption of such a processor are evaluated
in [7]. While performance is worse than in the fully synchronous case
(with an average of 10%), the paper identifies the ability of the GALS
processor to use different clock frequencies and supply voltages for
each synchronous island. The same idea of scaling the clock frequency
and the supply voltage is studied in [8], concluding that such

278

processors can be more power efficient than their fully synchronous
counterparts. The paper proposes an algorithm based on the attack-
decay strategy, which can select an optimum voltage and clock
frequency out of a large number of possible levels.

Another area of research related to the proposed design exploration
framework addresses mixed-clock interface design for robust
communication among frequency islands. A number of mechanisms
for avoiding race conditions are evaluated in [13]: asynchronous
wrappers, stretchable clock generators, demand ports, poll ports. While
these designs can ensure a proper behavior of the system, they
introduce some performance penalties when compared to their
synchronous counterparts. To address this issue, asynchronous queues
were proposed in [14]. This mechanism does not improve the
communication latency but it increases the bandwidth, allowing data
transfers on each clock cycle.

3 Baseline microarchitecture
In this paper, we start with a fairly typical out-of-order, superscalar

microarchitecture and analyze the impact of various design decisions
on the power and performance of the GALS processor. To this end, we
assume a 10-stage pipeline implementing a 4-way processor. While
this pipeline is significantly longer than the ones studied in [7] or [8],
we feel that this increased length resembles the pipelines that are
currently implemented in commercial processors more accurately. The
underlying microarchitecture organization is shown in Figure 1.

Figure 1. The baseline microarchitecture

4 GALS microarchitecture design knobs
Of extreme importance for the proposed design exploration

framework is the choice of various design knobs that impact the
overall power-performance trade-offs in GALS processors. The
following design choices are of interest for such processors:
• The choice of the asynchronous communication scheme
• The granularity chosen for the frequency islands.
• The dynamic control strategy for adjusting voltage/speed of clock

domains so as to achieve better power efficiency.

4.1 Clock domain granularity
To assess the impact of introducing a mixed-clock interface inside

our pipeline, we have to break it into several synchronous blocks. The
natural approach – minimize communication over the synchronous
blocks boundaries – does not necessarily work here. An instruction
must pass through all the pipeline stages in order to be completed.
Thus, we have to find other criteria for partitioning.

One possible criterion for placing the asynchronous interfaces is to
minimize clock skew, allowing for faster local clocks. Our results [17]1
show that the most significant speed-up can be achieved by increasing
the clock speed in the Fetch or Memory, followed by Integer and FP
partitions. Thus, these modules should be placed in separate clock
domains if possible.

1 Due to the page limit, we were unable to include detailed results for this analysis and
the newly proposed dynamic control mechanism.

For the execution block, we have used the same partitioning scheme
proposed in [7] and [8]. Starting with a processor with separate clusters
for integer, floating point and memory execution units (much like the
Alpha 21264 design) we can naturally separate these clusters in 3
synchronous modules. The drawback of this scheme is that it increases
the latency of forwarding a result to another functional unit. This can
effect be seen mainly in the overall latency of load-use operations that
are executed in separate clock domains.

To limit the latency of accessing register data, the Register Read
and the Write Back stages must be placed together, in the same
synchronous partition as the Register File. Using the same logic, the
Rename and Retire stage access the Rename Table and the list of
available registers so they must be placed in the same partition.

Thus, we can now split the pipeline into at least 4 clock regions.
The first one is composed of the Fetch stage, together with all the
branch prediction and I-cache. The Decode stages can be included
either in the first clocking region or in the second one – all instructions
will be passing through both of them. In order to limit the load
capacitance variations [15] inside synchronous blocks, we introduce
the boundary after the Decode stages. The second clocking region will
be organized around the Renaming mechanism, containing the Reorder
Buffer and Retire logic. Given the variation in the pipeline register
width, an asynchronous boundary can be also introduced after
Dispatch. The third clocking region must be organized around the
Register File, containing Register Read and Write Back. Finally, the
out-of-order part of the pipeline (Issue logic and execution) is split into
clusters that amount for 3 different clock regions. The forwarding
paths can thus be internal – towards a unit of the same type, placed in
the same clock region – or external – towards other clock regions.

4.2 Inter-domain communication scheme
The conventional scheme to tackle such problems is the extensive

use of synchronizers - a double latching mechanism that conservatively
delays a potential read, waiting for data signals to stabilize. This makes
classical synchronizers rather unattractive, as their performance
diminishes and the probability of failure for the whole system rises
with the number of synchronized signals.

Pausable clocks have been proposed as a scheme that relies on
stretching the clock periods on the two communicating blocks until the
data is stable or the receiver is ready to accept it [6]. While the latency
is smaller, stretching the clock is reflected in the performance of the
synchronous blocks and thus can be applied on a per cycle basis only
when the two blocks use a similar clock frequency.

Another approach is to use arbiters for detecting any timing
violation condition (i.e. the write-to-read time is smaller than a certain
threshold). While the mechanism is conceptually similar to that of
synchronizers, it offers a much smaller latency.

Asynchronous FIFO queues were proposed [14], using either
synchronizers or arbiters. This approach works well under the
assumption that the FIFO is neither completely full, nor completely
empty. The scheme retains the extra latency introduced by the use of
synchronizers, but improves the bandwidth through pipelining. During
nominal operation, a read is serviced by a different cell than the one
handling the next write, without the need of further synchronization.

4.3 Dynamic control strategy
One of the main advantages offered by the GALS approach is the

ability to run each synchronous module at a different clock frequency.
If the original pipeline stages are not perfectly balanced, the
synchronous blocks can naturally be clocked at different frequencies.
Furthermore, even with a perfectly balanced design (resizing the
transistors to speed-up the longer signal paths), we can slow down
synchronous blocks that are off the critical path while keeping the
others running at nominal speed. The slower clock domains could also
operate at a lower supply voltage, thus producing additional power
savings. Since energy is quadratically dependent on Vdd, reducing it
can lead to significant energy benefits: D≈Vdd / (Vdd - Vt)α where D is
the logic delay, Vdd is the supply voltage, Vt is the threshold voltage
and α is a technology dependent constant (currently, 1.2-1.6).

279

Different schemes have been previously proposed for selecting the
optimal frequency and voltage supply. In [7], a simple threshold-based
algorithm is used for selecting the best operating point for modules that
have a low power mode. It monitors the occupancy of each issue
window, deciding to switch to the low power mode when this
occupancy drops below a predefined threshold, or ramp the voltage up
when a high-threshold is exceeded. A more complex model is
proposed in [8]. Here, an attack-decay algorithm selects the operating
point for processors that offer a wide range of frequencies and supply
voltages. It monitors the instruction window occupancy and, based on
its variation, decides whether the frequency should be increased or
decreased. Any significant variation triggers a rapid change of the
clock frequency in order to counter it. Otherwise, the clock frequency
is decayed continuously, while monitoring the overall performance.

Looking at each of these methods, we note that instruction window
occupancy may not be the only significant aspect to be considered for
deciding a switch. Even though an issue window has high occupancy,
this could be due to a bottleneck in another cluster. In this case, inter-
domain dependencies may be more significant than the window
occupancy. Furthermore, both [7] and [8] allow dynamic voltage
scaling for the execution core only, assuming the speed of the front-
end to be critical for the overall performance. However, there are
portions of the code where the achievable IPC is significantly smaller
than the theoretical pipeline throughput. In these cases, it makes sense
to reduce the speed of the front-end since it produces more instructions
than can be processed by the back-end. In order to study the efficiency
of these observations, we propose to modify the previously described
methods to include both information about cross-domain dependencies
and dynamic scaling capabilities for the front-end of the pipeline [17].

5 Simulation Framework
To measure the impact of our GALS microarchitecture, we have

simulated a cycle-accurate model of the original pipeline (Figure 1).
Our simulator is based on SimpleScalar [15], but reflects the target
pipeline more accurately. It uses normal pipeline registers, separate
Instruction Windows for each execution cluster and a Retire Buffer.
Register Renaming is similar to the MIPS R10000 processor. We have
also moved the execution from Decode (as it is done in SimpleScalar)
to the Execute stage, to better reflect the behavior of the pipeline. To
model a GALS environment without global synchronization points, we
developed an event-driven simulation engine. Events associated with
each frequency island are synchronized with a local, randomly started
clock signal. This event-driven simulation engine allows for any
mixture of clocks speeds and starting phases.

 We have used Wattch [16] for including power models in our
framework. These models (including the ones for the asynchronous
communication) are integrated in our baseline and GALS simulator
versions to provide energy statistics. Similar to [16], unused units are
modeled as consuming 10% of their normal in-use power consumption
to account for all the overheads associated with clock gating.

In addition to modeling the switching capacitance of memories and
buses inside the processor, we have also modeled the clock grids. We
have assumed a clock distribution hierarchy resembling the one used
by the Alpha 21264 processor. We have modeled one global clock grid
and local clock grids corresponding to each of the synchronous
domains. The area and metal density for each clock grid are the ones
published for the 21264 processor.

Table 1. Microarchitecture parameters
Parameter Value
Pipeline 10 stages, 4 way out-of-order
Instruction Window 64 entries – 32 Int, 16 FP, 16 Mem
Load / Store Queue 32 entries
I-Cache 32k, 2 ways, 1 cycle hit time
D-Cache 32k, 4 ways, 2 cycles hit time
L2 Cache Unified, 256k, 4 way set-associative, 10 cycles
Memory access time 100 cycles
Functional Units 4 Integer ALUs, 2 Integer MUL/DIV

2 Memory ports
2 FP Adders, 1 FP MUL/DIV

Branch Prediction G-share

The parameters for our test microarchitecture are presented in Table
1. We have used integer and floating-point benchmarks from both
SPEC95 and SPEC2000 suites. For all experiments, we have fast-
forwarded over the first 500 million instructions and then continued
simulation for another 50 million. Since clock signals are randomly
staggered in the GALS cases, simulations were run three times
averaging the results. To compare the various strategies, we have used
arbiter-based FIFOs with a synchronization time of 30% of the
smallest cycle time. To have a fair comparison, we used similar
frequency levels for all methods, further divided into 8 sub-levels for
the attack-decay algorithm.

6 Experimental results
We have analyzed the impact of the granularity and asynchronous

communication choice, as well as the impact of the dynamic control
strategy on the overall performance and power. Assuming the
communication mechanism uses FIFOs, a penalty of up to 16% is
observed for 6 clock domains. As shown in Figure 2, the performance
hit increases with the number of asynchronous interfaces – from an
average of 7% for 4 clock domains to almost 11% for 6 clock domains.
In all cases, the baseline is the fully synchronous microarchitecture.

28
Figure 2. Performance degradation for a GALS microarchitecture

0
4
8

12
16
20

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

4 clock domains 5 clock domains 6 clock domains

In terms of power consumption, the GALS processor is more
efficient due to its lack of global clock grid. However, due to the
increase in execution time, even though the power per cycle is
significantly improved, the total energy per task required by the GALS
processor can actually be higher (Figure 3). Since a 6 clock domain
architecture would only allow an independent speedup in the register
file, it seems that the best choice is a 5 clock domain design which
allows the Fetch and Execution to run at possibly different speeds.

4 clock domains 5 clock domains 6 clock domains
Figure 3. Energy reduction for a GALS design for 4-6 partitions
-6
-4
-2
0
2
4
6

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

To evaluate the effectiveness of each asynchronous communication
scheme, we have considered arbiter-based and synchronizer-based
FIFOs, as well as pausable clocks. For both arbiters and pausable
clocks, we assume that an additional interval of 0.3 cycles is needed
for ensuring correct synchronization. Since pausable clocks effectively
delay an active clock edge when the synchronization cannot be done,
the effective producer-to-consumer latency of this approach is 0.3
cycles. In the arbiters approach however, a failed synchronization is
followed by a normal consumer cycle, completely unsynchronized
with respect to the producer clock. This introduces an additional
average delay of 0.5 cycles, bringing the total latency to 0.8 cycles. For
similar reasons, the 1 cycle latency associated with the synchronizers is
actually 1.5 cycles when coupled with random starting phases for the
producer and consumer clocks. As expected, the worst performance
corresponds to synchronizers. In this case, the performance hit for a 5-
clock domain design can be up to 25%, with an average of 17.7%. The
smallest hit in performance is achieved when using pausable clocks,
with an average of 4.8%.

None of the 3 mechanisms brings a significant energy reduction.
While a small gain can be noticed for pausable clocks and arbiters
(3.6% and 1.9% on average), the use of synchronizer-based FIFOs
leads to an increase of 2.6% in the energy demands (Figure 5).

0

Figure 4. Performance degradation using different mechanisms for
the asynchronous communication

 As expected, our results show that the mechanism introducing the
smallest additional latency (pausable clocks) is the best both in terms
of performance and energy. However, by delaying the clock signal in
the consumer to observe the synchronization latency, pausable clocks
do not allow the use of different speeds across domains. Thus, in order
to be able to implement dynamic control of local speeds/voltages, we
have to use FIFOs based on either arbiters or synchronizers.

Figure 5. Energy reduction for a GALS design using different
 asynchronous communication mechanisms

One advantage of the GALS architectures is the ability to scale the
voltage and clock speed independently, for each of its synchronous
partitions. We evaluate both the performance and the energy using two
previously proposed algorithms: the threshold-based one that can
select the best out of two operating points [7] and the attack-decay
algorithm that assumes a much larger set of operating points [8]. For
both of them, we test the efficiency of focusing on the average
Instruction Window occupancy (threshold TO and attack-decay ADO)
or on the number of inter-domain dependency (TD and ADD).

Figure 6. Performance of the DVS-enabled GALS design

All the dynamic control mechanisms introduce an average drop in
performance of 10.5% to 16% when compared to the synchronous
baseline architecture. A very interesting aspect is that the inter-cluster
dependency information does not improve performance in both cases.
While TD performs better than TO, in the case of the attack-decay the
additional information actually decreases the performance. This
behavior is caused by a significant variance of the communication
across decision windows. In the case of the threshold-based approach,
this variance is covered by the hysteresis of the algorithm and large
variations can trigger a frequency change. In the case of the attack-
decay algorithm on the other hand, smaller variations are taken into
consideration because of the finer speed/voltage control.

In terms of energy requirement, the DVS-enabled GALS design
saves between 10% and 37% (Figure 7). On average, the savings is
between 20% and 25% for the four DVS algorithms that we study, thus
making it possible to achieve better power efficiency when compared
to a synchronous, DVS-enabled counterpart.

7 Conclusion
In this paper, we propose a simulation framework that allows for

rapid evaluation of the different design choices available when
implementing a GALS processor microarchitecture.

40 TO TD ADO ADD

0
5

10
15
20
25
30

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

pausable clocks arbiter-based FIFO synchronizer-based FIFO

-6

-3

0

3

6

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

0
5

10
15
20
25
30

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

TO TD ADO ADD

28
Figure 7. Energy consumption of the DVS-enabled design

0

10

20

30

gcc ijpeg mesa equake parser vortex bzip2 turb3d average

[%
]

By using this framework, we can evaluate the power and
performance achieved by several GALS implementations of a
superscalar, out-of-order processor. Our results show that
asynchronous interfaces introduced between the several synchronous
modules can have a very significant effect, varying from 5% when
using pausable clocks to almost 18% when using synchronizers.
However, even though pausable clocks seem to be a better choice, they
do not allow communicating modules to run at different clock
frequencies. Thus, for implementing DVS we have to select another
mechanism – asynchronous FIFOs based on arbiters in our case. In
9 pausable clocks arbiter-based FIFO synchronizer-based FIFO
terms of power consumption, the GALS design paradigm does not
offer a significant benefit when dynamic voltage scaling is not
implemented. The reduced clock power is offset in this case by the
additional runtime needed to finish the same computation. By using
DVS however, an average energy reduction of up to 25% can be
achieved at the expense of a 10 to 15% reduction in performance.

8 References
[1] N. Kurd, J. Barkatullah, R. Dizon, T. Fletcher, and P. Madland. Multi-GHz
Clocking Scheme for Intel Pentium 4 Microprocessor, in Proceedings of the
International Solid-State and Circuits Conference, February 2001.
[2] S. Furber, J. Garside, and D. Gilbert. AMULET3: A High-Performance Self-
Timed ARM Microprocessor, in Proceedings of the International Conference on
Computer Design, September 2000.
[3] K. Stevens, S. Rotem, R. Kol, C. Dike, and M. Roncken. An Asynchronous
Instruction Length Decoder, in Proceedings of the Fifth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, April 1999.
[4] A. Martin, A. Lines, M. Nystrom, P. Penzes, R. Southworth, U. Cummings, and T.
K. Lee. The Design of an Asynchronous MIPS R3000 Microprocessor, in Proceedings
of the 17th Conference on Advanced Research in VLSI, September 1997.
[5] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg, D. Lindqvist, H.
Tenhunen, and A. Postula. Evaluating benefits of Globally Asynchronous Locally
Synchronous VLSI architecture, in Proceedings of the 16th Norchip, November 1998.
[6] J. Muttersbach, T. Villiger, N. Felber, and W. Fichtner. Globally Asynchronous
Locally Synchronous Architectures to Simplify the Design of On-Chip Systems, in
Proceedings of the 12th IEEE International ASIC/SOC Conference, September 1999.
[7] A. Iyer and D. Marculescu. Power and Performance Evaluation of Globally
Asynchronous Locally Synchronous Processors, in Proceedings of the International
Symposium on Computer Architecture, May 2002.
[8] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, and M. L. Scott.
Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic
Voltage and Frequency Scaling, in Proceedings of the International Symposium on
High Performance Computer Architecture, February 2002.
[9] V. Tiwari, and F. Baez,.Reducing Power in High-performance Microprocessors, in
the Proceedings of the 35th Design Automation Conference, June 1998.
[10] C. Jesshope and A. Shafarenko. Asynchrony in Parallel Computing – A question
of Scale, in Proceedings of the International Conference on Massively Parallel
Computing Systems, April 1998.
[11] L. Bengtsson and B. Svensson. A Globally Asynchronous, Locally Synchronous
SIMD Processor, in Proceedings of the International Conference on Massively
Parallel Computing Systems, April 1998.
[12] R. Ronen, A. Mendelson, and J.P. Shen. Coming Challenges in Microarchitecture
and Architecture, in Proceedings of the IEEE, Vol 89, No. 3, March 2001.
[13] J. Muttersbach, and W. Fichtner. Practical Design of Globally-Asynchronous
Locally Synchronous Systems, in Proceedings of the 6th International Symposium on
Advanced Research in Asynchronous Circuits and Systems, April 2000.
[14] T. Chelcea and S. Nowick. Robust Interfaces for Mixed Systems with
Application to Latency-Insensitive Protocols, in Proceedings of the Design
Automation Conference, June 2001.
[15] P. Zarkesh-Ha, and J.D. Meindl. Characterization and Modeling of Clock Skew
with Process Variations, IEEE Custom Integrated Circuit Conference, May 1999.
[15] D. Bourger, T. Austin, and S. Bennet. Evaluating Future Microprocessors: the
SimpleScalar Tool Set, Technical Report 1308, University of Wisconsin, July 1996.
[16] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations, in Proceedings of the
International Symposium on Computer Architecture, June 2000.
[17] E. Talpes and D. Marculescu, Application-Adaptive Multiple Clock Processors,
Technical Report, Carnegie Mellon University, July 2003

1

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

