
Effective Graph Theoretic Techniques for the Generalized
Low Power Binding Problem

Azadeh Davoodi
Azade@eng.umd.edu

Ankur Srivastava
Ankurs@eng.umd.edu

Department of Electrical and Computer Engineering
University of Maryland, College Park

MD, USA, 20742

ABSTRACT
This paper proposes two very fast graph theoretic heuristics

for the low power binding problem given fixed number of re-
sources and multiple architectures for the resources. First the
generalized low power binding problem is formulated as an Inte-
ger Linear Programming(ILP) problem which happens to be an
NP-complete task to solve. Then two polynomial-time heuris-
tics are proposed that provide a speedup of up to 13.7 with an
extremely low penalty for power when compared to the optimal
ILP solution for our selected benchmarks .

Categories and Subject Descriptors
B.5.2 [RTL-Implementation]: Design Aids—Automatic syn-
thesis, optimization

General Terms
Algorithms, Performance, Design, Theory

Keywords
Low-power Binding, Graph Theory, High Level Synthesis

1. INTRODUCTION
A portable device today is expected to perform high speed

complex tasks consuming extremely low power. Complex func-
tionality corresponds to more transistors on a chip and con-
sequently more power consumption. Also portability demands
lower power dissipation. Power consumption is so important
that it should be optimized at all the steps of the design flow.

Binding is the process of ordering the operations on available
resources such that the computation could be done successfully.
Low power binding has been an active topic of interest during
the past decade. The way binding is done drastically affects
the power dissipation. Among the optimization techniques at
different design levels, architectural and behavioral decisions
influences the design the most.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

Even though so much work has been done at the behavioral
level, few of them have considered the general low power bind-
ing problem.

Given a set of operations in a scheduled DFG, the general-
ized low power binding problem, binds operations to R resources
and picks the architecture for each resource such that the over-
all power is minimized. This is under the assumption that
different implementations or architectures of a resource type
are available.

It is shown in [5] that the problem is NP-complete. Our
contribution in this paper is two polynomial-time heuristics for
the generalized low power binding problem that result in very
high quality solutions for our selected benchmarks.

In this paper, after initially discussing relevant work in the
literature, the low power binding problem for fixed number of
resources and single architecture of the resources is formulated
as a min-cost flow problem that can be optimally solved [4].
The problem is further extended to the general case of having
multiple architectures for the resources. The general binding
problem is then formulated as an ILP problem that can be
optimally solved but happens to be an NP-complete task [1].
Two polynomial-time heuristics are presented in this paper that
result in very fast high quality solutions.

The first graph-based technique iteratively runs the single-
architecture flow formulation for each architecture and then
chooses the least power consuming assignment from the set of
resulting candidates. Afterwards, it assigns the possible unas-
signed operations through a node coverage algorithm that fol-
lows another flow formulation. The node coverage algorithm
runs iteratively until all the unassigned operations are covered.

The second technique assigns the operations to the resources
of multiple architectures in incremental clock steps similar to
an approach in the left edge algorithm.

Experimental results for 12 selected benchmarks shows a
speed up of up to 13.7 with a maximum penalty of 2.5% com-
pared to the optimal ILP solution.

Section 2 discusses previous work in the literature. Section 3
formulates the low power binding problem for the case of single
and multiple architectures. Sections 4 and 5 describe the two
proposed graph theoretic techniques. Experimental results are
presented in section 6 and finally conclusion is made in the last
section.

2. PRELIMINARIES
The initial steps of the design flow are extremely important

as they impact the final implementation significantly.

152

In particular, architectural decisions during High Level Syn-
thesis(HLS) have a profound impact on the power consumption
of the final design. Therefore, power consumption is considered
in high level synthesis tools as another optimization objective.

There are three phases in the behavioral synthesis. Schedul-
ing takes a Data Flow Graph (DFG)and assigns clock cycle
to each operation. Allocation determines the number of re-
quired resources and assignment or resource binding maps the
operations to the resources. Scheduling is usually done prior
to the other two tasks. Resource binding can be considered
for functional units, registers and multiplexers. Binding of the
functional units specially data intensive ones contributes sub-
stantially to power dissipation.

In a CMOS circuit, the major source of power dissipation is
switching power which is directly proportional to the switching
capacitance. Switching capacitance is defined as the product of
the physical gate output capacitance and transition activity at
the gate. Here for a fixed supply voltage, switched capacitance
is an important optimization metric.

Most of the previous work in HLS for low power propose esti-
mation and optimization of power consumption at algorithmic
and architectural level. In [1], allocation has been formulated
as an Integer Linear Programming(ILP) problem. The objec-
tive function is to minimize the overall switched capacitance
in the data paths. In the ILP formulation, functional units,
registers and multiplexers have been considered. In [4], exter-
nal switching activity of a set of registers has been calculated
following a statistical approach for single architecture of the
resources. Using these values, register allocation and binding
problem has been formulated as a minimum cost clique cov-
ering of an appropriately defined compatibility graph. In [5],
the importance of computing the lower and upper bounds on
power consumption are considered. Low power allocation and
binding with and without constraint on the number of resources
has been formulated. Based on the calculated power cost infor-
mation of the functional units, efficient heuristics are proposed
to measure these bounds. Here, the resources can be consid-
ered from different architectures. Allocation and binding of a
scheduled DFG for fixed number of resources and architectures
is an NP-complete task[5]. Hence, polynomial time algorithms
that efficiently solve the problem of binding the operations to
the resources with minimum power consumption need to get
investigated. The ILP formulation in [1], can be considered for
different architectures but the solution is not efficient. Register
binding formulation in [4] is for single architecture only and in
[5] the main concern is to calculate lower and upper bounds on
power consumption of data paths.

In this paper, the low power binding problem of a sched-
uled DFG for fixed number of resources is extended consider-
ing different architectures of the resources. Since the extended
problem is NP-complete, our contribution is polynomial-time
heuristics that provide great speedup up to 13.7 with very little
loss of quality from the optimal ILP solution.

3. LOW POWER BINDING PROBLEM
Given a scheduled DFG and fixed number of resources, the

low power binding problem, assigns each of the DFG opera-
tions to a resource such that the overall switched capacitance
of the resources is minimized. The problem can have two vari-
ations if the architecture of the functional unit is known or not.
The generalized low power binding problem binds operations
to the given R resources and picks up the architecture for each
resource such that the overall power is minimized.

RESULTING PATHS FROM

T

S

SINK

SOURCE

(C) NETWORK AFTER NODE SPLITTING

MIN−COST FLOW

*

*

+

+

+

+

+

+

++

+

+

+

(B) COMPATIBILITY GRAPHSSCHEDULED DATA FLOW GRAPH(A)

*

*

+

+

+

+

+

+

+

++

Figure 1: Single Architecture Low Power Binding

Assuming a single architecture for the time being for better
insight, the formulation of the binding problem is described as
follows based on work done in [4].

As illustrated in figure 1(A) and (B), the compatibility graph
for a single architecture and operation type is generated from a
given scheduled DFG. Each vertex of the compatibility graph
corresponds to an operation. An edge is added between any
two compatible nodes. Compatible nodes are operations that
can be bound on the same resource.

Given the number of resources of a certain type as the re-
source constraint, the problem of binding the operations of the
compatibility graph onto these resources is usually modelled as
a min-cost flow formulation developed in [4] for a single archi-
tecture. The edge weights or cost values indicate the estimated
switched capacitance on the given module if the source and
destination of the edge form a predecessor and successor pair
of operations on that resource. The cost values are calculated
for the specific single architecture that is considered. Precise
definition and calculation of the edge costs have been previ-
ously investigated in [5] and [1]. Similar to the register binding
formulation described in [4], the node list is augmented by a
sink(t) and source(s) with directed edges from the source to all
the nodes and from all the nodes to the sink.

The non-sink/source nodes are further duplicated resulting in
a network with vertex splitting as figure 1(C) illustrates. Con-
sidering any duplicated pair, any incoming edge to the original
node enters the top one and any outgoing edge from the original
node leaves the bottom one.

153

An edge is added between any pair of duplicated nodes. Here,
the edge weight between each pair of duplicated nodes is -W
where W is the summation of all the edge costs. Each edge
has capacitance of unity.

Resource binding for a specific operation and architecture
given R resources is solved by sending R units of flow from the
source node to the sink such that each node is visited exactly
once, all the nodes are covered and the overall cost is mini-
mized. Note that it is assumed that R, the number of resources
of a specific type is atleast the minimum number required for
scheduling which is specified by the maximum number of opera-
tions scheduled on the same clock cycle. Figure 1(C) illustrates
the sets of operations that are bound together. The operations
on the same bold path in figure 1(C) are assigned to the same
resource.

More formally the objective and constraints can be repre-
sented as:

Minimize
∑

ij∈E

XijCij (1)

∑

∀isuchthatsi∈E

Xsi = R (2)

∑

∀isuchthatit∈E

Xit = R (3)

∑

∀j suchthatij∈E,

Xij = 1 ∀i, i �= s, t (4)

∑

∀isuchthatij∈E,i�=s

Xij = 1 ∀j, j �= s, t (5)

Xijshould be positive integer (6)

Where
R: Number of Resources
Cij : Switching Cost of an Edge ij
(Cost = 0 if either i ∈ s, t or j ∈ s, t)
(Cost = −W if(i, j) is a pair of duplicated nodes)

The above formulation can be implemented as a min-cost
flow problem and then solved optimally under the assumption
of single architecture.

As illustrated in figure 1(C), the algorithm results in exactly
R discrete paths from sink to source. These paths are verified
by bold lines in figure 1(C). Each path corresponds to a unit
of flow. Each unit of flow represents a resource and the edges
that this flow traverses decide the switching activity of this
resource. Note that duplicated nodes with a connecting edge
of capacity 1 ensure discrete paths in the final solution. Also
having an edge weight of -W between each pair of duplicated
nodes ensures coverage of all the nodes, as W will be more
than the weight of any possible path.

Note that the proposed min-cost flow formulation does not
consider re-iterative effects and focuses on a single architecture.
An extension of this problem finds the best architecture from a
library of architectures available for a resource type such that
the overall switched capacitance is minimized.

In order to solve this problem, the formulation shown in fig-
ure 1(C) needs to be extended to consider multiple architec-
tures as described in [2] and [1].

Architecture 1

ST

SS

s
S

TT

SUPER SOURCE

SUPER SINK

SINK

SOURCE

Architecture 2

SOURCE

SINK

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 2: Multiple Architecture Low Power Binding

As figure 2 shows, let us suppose there are M different archi-
tectures and as before we also have a resource constraint (total
number of resources available) of R. The problem is binding
of operations together on R resources and deciding the archi-
tecture for each resource such that the overall switched capac-
itance is minimized. To address the issue of different architec-
tures, the graph shown in 1(C) is replicated M times (figure
2). Hence a node i in the original compatibility graph occurs
M times in this graph. Each s node in the graph is connected
to a node called Super-source and each t node is connected to
a Super-sink. We need to send R units of flow from the Super-
source to Super-sink such that the overall cost is minimized.
The constraints force us to use an operation in exactly one re-
source. Each of the replicated sub-graphs represent a particular
architecture. The cost values of an edge in that sub-graph rep-
resent the estimated switched capacitance of having the source
and sink of the edge as predecessors and successors on that par-
ticular architecture. The cost of the same edge in some other
sub-graph will be decided by the corresponding architecture.
The objective and constraints are formally described below. In
order to better understand the formulation, we introduce the
following notation. If n is a node in the original compatibility
graph (refer to figure 1(B)), then it gets replicated M times.
We denote each of the replicates as n1, n2.....nM .

Minimize
∑

ij∈E

XijCij (7)

∑

∀j Super−sourcej∈E

XSuper−sourcej = R (8)

∑

∀j jSuper−sink∈E

Xj Super−sink = R (9)

154

0 ≤ XSuper−sourcej ≤ R ∀jSuper − sourcej ∈ E (10)

0 ≤ Xj Super−sink ≤ R ∀j jSuper − sink ∈ E (11)

∑

k:1..M

∑

∀ink∈E

Xink = 1∀n (12)

∑

k:1..M

∑

∀nkj∈E

Xnkj = 1∀n (13)

∑

∀ink∈E

Xink =
∑

∀nki∈E

Xnki (k : 1..M, ∀n) (14)

Xijshould be positive integer (15)

Equations 8, 9, 10, 11 represent the resource constraints.
Equations 12, 13, 14 force each operation in the scheduled DFG
to be in exactly one resource. Again this formulation does not
consider re-iterative effects. The problem is NP-complete as a
general case of the problem discussed in [5]. It could be solved
optimally using any ILP solver.

Even though some previous papers have considered the ex-
tended version of the problem, no work has been done to pro-
vide fast solutions with negligible error for the generalized low
power binding problem. In sections 4 a very high speed and
accurate algorithm motivated by the min-cost flow formula-
tion in [4] is proposed to solve the generalized resource binding
problem. Section 5 presents another graph-based alternative.
Our results are compared to the ILP solution resulted from the
formulation above for multiple architectures.

4. IRBINC: ITERATIVE RESOURCE BIND-
ING ITERATIVE NODE COVERAGE

Given M different architectures and R different resources of
the same type, consider running the min-cost flow algorithm
iteratively for M times for different architectures. The edge
costs in each graph relates to its corresponding architecture.
From each graph, R discrete paths will be obtained.

The goal here is to select up to R disjoint paths that would
cover all the nodes with the least cost from the available R×M
set. IRBINC iteratively selects the path with the smallest
weight from the set of available paths. Whenever a path is
selected and added to the solution set, all of the overlapping
paths from the available set will be removed. IRBINC iterates
until the available set becomes empty meaning that each path
that is not selected has at least one overlap with a path in the
final solution set.

Consider figure 3(A). The single architecture flow formula-
tion of the previous section results in 3 × 2 paths here for 2
architectures and 3 resources (6 bold and dashed paths). After
the iterative path selection, 3 final paths are obtained illus-
trated by the dashed lines. As can be seen the first path is
from the first architecture and the second and third ones are
from the second architecture for this example.

At this point up to R paths are obtained but there is still
possibility of some uncovered nodes which are the operations
that have not yet been assigned to any resource as the example
of figure 3(A) shows.

P2 P1P1 P2

ND ND

P3

NDNDN1

SOURCE NODES

SINK NODES

P3

N1

(B) COVERING UNASSIGNED OPERATIONS

(A) ITERATIVE SINGLE ARCHITECTURE MIN−COST FLOW SOLUTION

Architecture1

Architecture2

Architecture1

SOURCE

SINK

SOURCE

SINK

UNASSIGNED
OPERATION

SINGLE ARCHITECTURE
MIN−COST FLOW OUTPUTS

IRBINC SELECTED PATHS

IN TWO ARCHITECTURES

SELECTED PATHS

UNCOVERED NODE

DUMMY NODES

Architecture2

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 3: Node Coverage Algorithm

We proposed a node coverage algorithm that simultaneously
assigns the uncovered nodes of the same clock cycle in the DFG
to the resources obtained before. It runs iteratively for each
group of unassigned operations until all the nodes are covered.
Each group contains unassigned operations in the same clock
cycle.

The strategy of the node coverage algorithm is to assign the
uncovered nodes into these R paths with the smallest overall
cost following another flow formulation. The node coverage al-
gorithm described below runs iteratively until all the uncovered
operations are assigned.

Node coverage algorithm: Given up to R selected paths
(assigned resources) and P uncovered nodes (unassigned op-
erations) of the same clock cycle in the DFG, a new graph
is constructed as follows. Consider a node for each path and
a node for each uncovered operation. If the number of uncov-
ered nodes is less than the number of resources(P<R), dummy
nodes will be added to make it equal.

An edge goes from a ”path-vertex” to an ”operation-vertex”,

155

W_PATH_NEW = W_PATH_OLD − Wij + Wik + Wkj

Wkj

Wik

Wij
k

i

j

Figure 4: Updating a path cost

if the node can be augmented in the corresponding path [there
is no operation scheduled on the path in the related clock cycle].
As figure 3(B) illustrates, the described structure is repeated
M times. R source and R sink nodes are added. Each source
node corresponds to a path and each sink node corresponds to
an uncovered operation. Directed edges of 0 cost goes from each
source node to its corresponding path-vertex and from each of
the R×M operation-vertices to the corresponding sink node.
All the edge capacities are unity to ensure disjoint solutions.

The edge costs are modified correspondingly for each archi-
tecture. The cost of an edge from a path-vertex to an operation-
vertex is the cost of the new path obtained after augmenting
the node as figure 4 illustrates. The cost of an edge to a dummy
node is simply the path cost.

By sending one unit of flow from each source node to any
of the sink nodes such that all the costs are minimized, up
to R new paths are obtained that cover the P uncovered op-
erations simultaneously. The edge from a path-vertex to an
operation-vertex having a positive flow decides the coverage of
the corresponding operation in the corresponding path. The
subgraph that this edge occurs at, decides the architecture.

Note that if the actual number of paths from the iterative re-
source binding is smaller than the number of resources, some of
the path-vertices will be ”dummy paths”. A dummy path cov-
ering an operation-vertex corresponds to a new resource that
will be assigned to an unassigned operation. The node coverage
algorithm considers the set of unassigned operations simulta-
neously for different architectures and resources. It runs iter-
atively for each set of unassigned operations of the same clock
cycle in the DFG until all the nodes are covered.

Complexity Analysis: The single architecture min-cost
flow is of O(n3) for n operations and runs iteratively M times
for each architecture. Iterative path selection is O(RMlog(RM))
for R×M paths. Each iteration of the node coverage algorithm
is of O((2R + 2RM)3) = O((RM)3), as figure 3(B) illustrates,
the total number of nodes for any such graph is 2R for the
source and sink nodes and 2R nodes for each architecture. The
node coverage algorithm iterates at most T clock steps. There-
fore the running time of the IRBINC algorithm is described as
O(Mn3 +RMlog(RM)+TR3M3) = O(Mn3 +TR3M3) which
is a polynomial expression.

IRBINC considers selection of different architectures of each
resource at the time of resource binding. Our experimental
results show a very high quality solution and great speed up
compared to the optimal ILP discussed in section 3. In section
5 another heuristic with similar characteristics is presented.

+ +

+

+

+

+ +

+

+

+

+ +

+

+

+

+ +

+

+

+

Figure 5: Development of paths in CTDA

5. CTDA: CONSTRUCTIVE TOP DOWN AS-
SIGNMENT

We propose another approach in which the solution is gener-
ated in a constructive manner. The scheduled DFG is traversed
in a top down fashion from clock step 1 to clock step T, hence
the name Constructive Top Down Assignment. Starting from
clock-1, we have a set of operations in clock-1 that need to be
bound onto R resources. We arbitrarily make this assignment
to the available resources. The clock steps are traversed itera-
tively in a top down fashion. Let us suppose we have traversed
the first i clock steps. At this stage we have an intermediate
solution in which a set of operations belonging to the first i
clock steps have already been bound to R resources. Clock
i + 1 contains a set of operations that need to be bound onto
these R resources. This can be done using the node coverage
algorithm presented in the previous section. That formula-
tion assigned operations in the same clock step to a set of R
resources on which some operations have already been bound.
There is one key difference though. The cost of an edge con-
necting a path-vertex to an operation-vertex will be decided by
the cost of the compatibility edge between the operation and
the last operation bound (in terms of clock step) onto that re-
source. This formulation simultaneously assigns operations in
the same clock step to available resources and also selects the
architecture with power as the optimization objective. Then
we proceed to the next clock step, i + 2 and the same thing is
repeated.

Figure 5 illustrates running of the algorithm. The operations
in bold are the ones that have been assigned, the bold edges
signify the paths or sequence of operations on the corresponding
resource. It can be seen that operations are considered one
clock at a time in a top down fashion. Please note that this
strategy is similar to the left edge algorithm on interval graphs.
The scheduled operations could be considered as intervals in a
temporal sense with finite lifetimes (starting time to ending
time) indicating lengths or intervals of nodes. We proceed on
this so-called interval graph in a left edge (or top down) fashion,
solving a local binding problem optimally at each step. The
global algorithm is of course a heuristic.

Complexity Analysis: At most R operations are covered
at each clock cycle. Assuming T clock steps, the node coverage
algorithm will be called at most T times. Each iteration of
the node coverage algorithm is of O(R3M3) as described in the
previous section. Therefore the time complexity of CTDA is
O(T × R3M3).

156

SUIF COMPILER

SCHEDULER

TRACE DRIVEN
SIMULATOR

INPUT
TRACE

PRECHARACTERIZATION
ENGINE

C/C++/Fortran Files

INPUT DFGs

SYNOPSYS,VSS

RESOURCE LIBRARY

POWER DRIVEN
RESOURCE BINDING

Figure 6: Experimental Flow

Bench IRBINC CTDA ILP
Time Speedup Time Speedup Time

fft-2 1.00 3.87 0.73 5.30 3.87
motion-2 0.76 10.70 1.20 6.75 8.13
motion-3 0.80 10.12 1.73 4.68 8.10
noisest-2 0.73 5.89 4.48 0.96 4.30
ecb-enc-4 1.17 13.7 1.30 12.33 16.03
dct 1.03 1.52 0.70 2.24 1.57
ellipt 1.77 2.56 1.57 2.88 4.53
jdmerge-1 0.73 7.85 1.00 5.73 5.73
jdmerge-3 0.87 11.49 2.03 4.93 10.00
jdmerge-4 0.63 9.36 0.80 7.37 5.90
fir 0.80 1.25 0.40 2.50 1.00
jctrans2 0.70 5.71 0.60 2.40 4.00

Table 1: Performance of the Proposed Techniques

6. RESULTS
The experimental environment was setup similar to [2]. The

design flow is shown in figure 6. We take functions written in C
and extract data flow graphs from them using SUIF/Machine-
SUIF. These DFGs are then scheduled using a path based
scheduler [6]. We also take an input trace which is a repre-
sentative of the input statistics for the DFG. Based on this
trace, the DFG is simulated and the values for all the internal
variables of the DFG are computed. This information along
with the scheduling information is given to synopsys design
compiler and the VSS simulator which generate the switched
capacitance information. These values correspond to the edge
costs for the compatibility graph of the corresponding schedule.

We used the media bench suite [3] together with some HLS
benchmarks to extract the data flow graphs. Our experiments
are done on a Solaris 2.7 operating system (Sparc edition) with
256M memory. Here, power optimization for only additions are
considered from different operation types in the DFG. Table 1
illustrates the performance of the two proposed methods com-
pared to the ILP case for multiple architectures formulated in
section 3. Both the IRBINC and the CTDA result in great
speedups up to 13.7. Even though the speedup of the two
methods are similar, in the case of motion-3, noisest-2 and
jdmerge-3, IRBINC results in greater speedups. The proposed
methods have better performance on large benchmarks. As can
be seen in the case of dct which represents a small benchmark,
the speedup is really small.

Bench IRBINC CTDA ILP
Pnlty SwitchCap Pnlty SwitchCap SwitchCap

fft-2 2.49 130.78 0.93 128.79 127.60
motion-2 0.01 163.33 2.19 166.91 163.32
motion-3 0 158.11 2.48 162.04 158.11
noisest-2 0.47 107.98 1.09 108.64 107.47
ecb-enc-4 1.45 196.76 0.57 195.04 193.94
dct 0.2 79.78 0.64 80.13 79.62
ellipt 1.19 179.54 2.28 181.48 177.43
jdmerge-1 0 161.07 0 161.07 161.07
jdmerge-3 0.46 219.00 0.70 219.52 217.99
jdmerge-4 2.50 138.53 2.58 138.64 138.15
fir 0.67 59.75 0 59.35 59.35
jctrans2 0 66.46 0 66.46 66.46

Table 2: Penalty of the Proposed Techniques

The average speedup from the 12 benchmarks is 7.00 and
4.84 for IRBINC and CTDA respectively.

Table 2 shows the power cost penalty of both of the schemes
to be really small. The maximum penalty is only 2.58% in the
case of jdmerge-4. Average penalties are 0.78% and 1.12% for
IRBINC and CTDA respectively.

As the results show, simple and fast heuristics make enor-
mous difference in the speedup with a negligible deviation from
the optimal solution.

7. CONCLUSION
This paper formally discusses the low-power binding prob-

lem for multiple resources and architectures. It introduces two
fast polynomial-time alternatives to the optimal ILP approach.
They result in a maximum speedup of 13.7 with a maximum
deviation of only 2.5% from the optimal solution. The proposed
algorithms provide much better speedups for larger benchmarks
which should make them very suitable in real-world applica-
tions. In the end, we would like to point out that the above
formulation can be useful in similar optimization problems that
more than one choice/implementation exist for the inputs.

8. REFERENCES
[1] A. Raghunathan and N. Jha. ”An ILP Formulation for

Low Power Based on Minimizing Switched Capacitance
During Datapath Allocation”. In Procs of IEEE
Symposium on Circuits and Systems, 1995.

[2] A. Srivastava. ”Predictability: Definition, Analysis and
Optimization”. In Procs of International Conference on
Computer Aided Design, Nov 2002.

[3] C. Lee, M. Potkonjak and W.H. Mangione-Smith.
”MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”. In
International Symposium on Microarchitecture, 1997.

[4] J.M. Chang and M. Pedram. ”Low Power Register
Allocation and Binding”. In Proc. Design Automation
Conference, pages 29–35, June 1995.

[5] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, A.
Schulz, E. Macii and W. Nebel. ”Estimation of Lower and
Upper Bounds on the Power Consumption from Scheduled
Data Flow Graphs”. In IEEE Trans. on VLSI Systems,
pages 3–14, Feb 2001.

[6] S. Ogrenci-Memik, E. Bozorgzadeh, R. Kastner and M.
Sarrafzadeh. ”A Super Scheduler for Embedded
Reconfigurable Systems”. In Procs of International
Conference on Computer Aided Design, pages 391–394,
Nov 2001.

157

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

