
Leakage Power Modeling and Optimization in
Interconnection Networks

Xuning Chen and Li-Shiuan Peh
Dept. of Electrical Engineering,
Princeton University, NJ08544

{xuningc,peh}@ee.princeton.edu

ABSTRACT
Power will be the key limiter to system scalability as inter-
connection networks take up an increasingly significant por-
tion of system power. In this paper, we propose an architec-
tural leakage power modeling methodology that achieves 95-
98% accuracy against HSPICE estimates. When applied to
interconnection networks, combined with previous proposed
dynamic power models, we gain valuable insights on total
network power consumption. Our modeling shows router
buffers to be a prime candidate for leakage power optimiza-
tion. We thus investigate the design space of power-aware
buffer policies, propose a suite of policies, and explore the
impact of various circuits mechanisms on these policies .
Simulations show power-aware buffers saving up to 96.6% of
total buffer leakage power.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
architecture and design

General Terms
Measurement, Design

Keywords
Leakage power, interconnection networks, power optimiza-
tion

1. INTRODUCTION
As power becomes the dominant constraint in many com-

puter systems, research into power-efficient systems has thrived.
In many of these systems, the network fabric is a significant
consumer of power. This has resulted in researchers model-
ing [9] and optimizing [8, 10] the dynamic power consump-
tion of interconnection networks. As technology scales to
deep sub-micron processes, leakage power becomes increas-
ingly significant as compared to dynamic power. There is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

thus a growing need to characterize and optimize network
leakage power as well.
In this paper, we propose a new architectural methodology

for estimating leakage power that distinguishes technology-
dependent from technology-independent variables, provid-
ing the flexibility of an architecture-level power model where
architectural parameters suffice, together with the rigorous
accuracy of a low-level model. An accurate model allows
architects to rapidly estimate leakage power as they iterate
across alternative designs. We applied our methodology to
both on-chip and chip-to-chip interconnection networks, and
validated our estimates against HSPICE, obtaining 95-98%
accuracy.
By combining our proposed leakage power model with a

dynamic power model [9], we were able to gather insights
on the total power consumption of networks, characteriz-
ing the power breakdown of various network components as
technology scales. Our modeling guided us to investigate
and propose power-aware buffers as a leakage power opti-
mization technique. We then explore the design space of
architectural policies for power-aware buffers, and propose
a suite of techniques that are able to save up to 96.6% of
total buffer leakage power.

2. AN ARCHITECTURAL LEAKAGE POWER
MODELING METHODOLOGY

Leakage current has five basic components: reverse biased
pn junction current, sub-threshold leakage current, gated in-
duced drain leakage, punch through current and gate tun-
neling current. These leakage current components have an
almost linear relation with transistor width. For instance,
subthreshold current Isub which currently dominates leakage
current is defined as follows [1]:

Isub = I0

[
1− exp(−Vds

Vt
)

]
exp(

Vgs − Vth − V
′
off

nVt
) (1)

I0 = µ
W

L

√
qεsi · NDEP

2Φs
V 2

t (2)

For a given circuit type i and input state s at a pro-
cess technology, subthreshold current is almost proportional
to the transistor width W. Although, different components
will have different impact on leakage current as technology
scales, e.g. gated induced drain current will become more
and more significant, the total leakage current still keeps an
almost linear relation with transistor width.

90

So to derive an architectural leakage power model, we
can separate the technology-independent variables such as
transistor width from those that stay invariant for a specific
process technology:

Ileak(i, s) =
W (type(i, s))

L
· I′

leak(i, s) (3)

where Ileak is total leakage current. I
′
leak is leakage cur-

rent per unit transistor width over length. W (type(i, s))
refers to the transistor width of NMOS when NMOS deter-
mines the leakage current (i.e. type(i, s) is N), or PMOS
(when type(i, s) is P). As transistor width has a negligi-

ble effect on I
′
leak(i, s), I

′
leak(i, s) is fixed for a given circuit

type and input state under certain technology and temper-

ature. With this approximation, armed with I
′
leak for var-

ious kinds of circuit components at different input states,
architects can estimate the leakage power for architectural
units composed from these circuit components. Our pro-
posed modeling methodology is as follows:

1. Identify the fundamental circuit components, and de-

rive I
′
leak(i, s) for each at different input states. Exam-

ples are single NMOS and PMOS transistors, NAND
gates, inverters, etc.

2. Define major architectural building blocks. For inter-
connection networks, typical building blocks will be
buffers, crossbars, arbiters and links [9]. For micro-
processors, suitable building blocks will be cache lines,
adders, etc.

3. Identify the distribution of the input states based on
operation characteristics or simulation and derive ar-
chitectural equations that estimate the leakage power
for each building block.

We believe this is the first leakage power modeling method-
ology that truly separates technology-dependent and inde-
pendent variables. In [2], a single kdesign is used to reflect
the composition of device types (N/P), geometries (W/L),
states (on/off), and stacking factors. As a result, kdesign is
extremely sensitive to changes in any of the variables and
the impact of architectural parameters hard to isolate. In

[6], P lib
leak = χlib · CellsSlib

is used to estimate the leak-
age power in an ASIC design environment, where χlib, Slib

are technology-dependent parameters derived through ex-
periments and ”Cells” is the number of cells in the design.
This model targets a later design stage then the architec-
tural stage, when designers explore various circuit designs
for a selected architecture.

2.1 Derivation of I
′
leak

For each component i, we simulate I
′
leak(i, s) using HSPICE

and the Berkeley Predictive Technology Model [1] for the
range of process technologies and associated parameters listed

in Table 1. Table 2 lists the I
′
leak(i, s) simulated for each fun-

damental circuit component i (Leakage currents differs at
different states due to staking and body bias effects). Cir-
cuit structures can then be hierarchically composed from
these fundamental circuit components.

Table 1: Parameters for various technologies.

0.18µm 0.10µm 0.07µm
Vth0 0.4V 0.3V 0.2V
Vdd 1.8V 1.2V 0.9V

Table 2: I
′
leak(i, s) for each fundamental circuit compo-

nent i at different input states s at temperature 80oC.

Type(i, s) indicates if the NMOS or PMOS transistor is

dominant in determining leakage current.

I
′
leak(i, s)

type Process Technology, T
i s (i, s) 0.18µm 0.10µm 0.07µm
NMOS 0 N 7.9e-9 10.9e-9 67.6e-9
PMOS 1 P 4.0e-9 9.7e-9 80.4e-9
INV 0 N 7.9e-9 10.9e-9 67.6e-9

1 P 4.0e-9 9.7e-9 80.4e-9
NAND2 00 N 0.3e-9 0.4e-9 9.6e-9

01 N 7.9e-9 10.8e-9 46.0e-9
10 N 4.7e-9 5.1e-9 44.0e-9
11 P 8.1e-9 19.4e-9 159.5e-9

NOR2 00 N 15.9e-9 21.7e-9 133.8e-9
01 P 3.6e-9 5.9e-9 45.3e-9
10 P 4.3e-9 9.7e-9 77.5e-9
11 P 0.9e-9 0.7e-9 5.9e-9

dw dw

hcell Tm

wcell
Tpr

Tpw

T

T Tc

wd

sense amp

bd

F columns

B rows

Figure 1: A FIFO buffer with 1 read port and 1 write

port (adapted from [4]). Tc is the pre-charging transis-

tor, Twd the wordline driver, Tbd the write bitline driver,

Tm the memory cell inverter, and Tpr and Tpw the pass

transistors connecting read and write ports to memory

cells respectively.

2.2 Leakage power modeling of router buffers
We applied our methodology to the major building blocks

of interconnection networks as identified in [9] – buffers,
crossbars, arbiters, and links. Here, we walk through our
modeling of router buffers to demonstrate the methodology.
Fig. 1 sketches the circuit structure of a router buffer pool
with B flit1 buffers, each F bits wide, with Pr read ports and
Pw write ports. It shows a FIFO buffer that is composed
of the fundamental circuit components of PMOS, NMOS
transistors and inverters. Dimensions of the circuit struc-
ture such as hcell, wcell, dw are estimated by Orion [9] from
architectural parameters.

Input state probabilistic analysis. Next, we analyze
the probability distribution of each input state of a circuit
component by examining how architectural units function
. For instance, the word line inverter Twd is set (s = 0)
whenever that buffer/row is read or written. Thus, at any
point in time, only one out of B word line inverters will be
set. Hence, Ileak(Twd) =

1
B

W (type(INV,0))
L

· I
′
leak(INV, 0) +

B−1
B

W (type(INV,1))
L

· I′
leak(INV, 1).

Basically, given these I
′
leak(i, s), and the probabilities of

1A flit is short for flow control unit, and is a fixed-length
segment of a packet.

91

each input state Prob(i, s), the leakage current for a building
block is:

Ileak(Block) =
∑

i

∑
s

Prob(i, s)
W (type(i, s))

L
· I′

leak(i, s) (4)

where W (type(s)) refers to the transistor width of NMOS (when

type(s) is N) or PMOS (when type(s) is P).
Input state simulation. Input states can also be tracked

through network simulation.

Ileak(Block, t) =
∑

i

W (type(i, s(t)))

L
· I′

leak(i, s(t)) (5)

where, Ileak(Block, t) is the leakage current at time t, and
s(t) is the state of circuit type i at time t within this circuit
block.
Finally, we can estimate the total leakage current of a

router buffer (Eq. 6) while its leakage power is leakage cur-
rent multiplied by supply voltage (Eq. 7).

Ileak(buffer) =(Pr + Pw)BIleak(Twd) + 2PwFIleak(Tbd)

+ 2BFIleak(Tc) + 2BFIleak(Tm)

+ 2BF (PwIleak(Tpw) + Pr · Ileak(Tpr)) (6)

Pleak(buffer) = Ileak(buffer) · Vdd (7)

2.3 Validation
We validated our model with HSPICE simulation of each

complete functional unit of a chip-to-chip router (crossbar,
arbiter, and buffers) in 0.07µm technology. Leakage cur-
rents under different input states were estimated with our
model and compared with the leakage currents obtained
from HSPICE simulation for the same functional unit with
the same input states, the exact structure and feature sizes.
For instance, a 5-by-5 matrix crossbar unit has 5 data in-
puts and 25 control signals. The combination of their values
determine the input state of the crossbar and thus the leak-
age current. For such functional units with a vast number
of possible input states, we select a random sample of typ-
ical input states for validation. The accuracy of our model
for these functional units is computed by averaging across
different input states. Table 3 shows mean and standard de-
viation of our model’s error in 0.07µm technology compared
with HSPICE simulation. Since leakage current is large at
0.07µm, we expect the magnitude of error to be larger than
that in earlier process technology.

Table 3: Validation of our model vs. HSPICE simula-

tion for each major building block of a router.

Buffers(%) Crossbar(%) Arbiter(%)
Average error 5.0 1.6 1.8

Standard deviation 1.1 2.9 3.0

3. DYNAMIC AND LEAKAGE POWER CH-
ARACTERIZATION OF INTERCONNE-
CTION NETWORKS

Combined with Orion, an architectural dynamic power
model for networks [9], we characterized the total power
consumption of both an on-chip network and a chip-to-chip

network. The on-chip network is parameterized as in [3],
with a 4-by-4 mesh network on a 12mm2 chip, each node
clocked at 1GHz, with 5 input/output ports (one of which
is the injection/ejection port), 64 flit buffers per input port
(each flit 128 bits wide), connected with a 5-by-5 matrix
crossbar and 5 5:1 arbiters. The router in the chip-to-chip
network has 256 128-bit flit buffers per input port instead,
other parameters remaining the same as that in the on-chip
network. The feature size of the transistors is derived by
Orion [9] from architectural parameters based on the timing
delay requirements and assuming minimum area.

Effect of process technology. Tables 4 and 5 show the
estimates for a router in a chip-to-chip and on-chip network
respectively at 50% flit arriving rate in 1s at 80oC. As tech-
nology scales, leakage power becomes increasingly signifi-
cant, starting from 2.5% of total (leakage+switching) power
at current 0.18µm technology, to a hefty 60% at 0.07µm
technology if clock frequency is kept invariant for the chip-
to-chip network. Even assuming doubling clock frequencies
as we scale process technology, leakage power remains a sig-
nificant 27% at 0.07µm. Though the on-chip network has
fewer storage elements, leakage power still rises to a signifi-
cant 21% at 0.07µm, assuming clock frequency doubles each
process generation.

Table 4: Dynamic and leakage power estimates of a

router in a chip-to-chip network.

Process Leakage Switching
power(W) power(W)

0.18µm 0.024 0.950(1GHz)
0.10µm 0.039 0.350(1GHz), 0.700(2GHz)
0.07µm 0.278 0.185(1GHz), 0.740(4GHz)

Distribution of leakage power between router and
links. From Table 5, it is evident that full-swing on-chip
link drivers and wires consume substantial dynamic power,
overwhelming that of the router core in 0.10 and 0.07µm pro-
cesses. However, when you look at leakage power consump-
tion of router vs. links, the converse is true. As wires do not
dissipate leakage power, the leakage power consumption of
just the drivers is minimal, compared to that of the router
core. This prompted us to delve into a leakage power break-
down of various functional units within an on-chip router.

Breakdown of leakage power within a router. Fig. 2
shows the leakage power consumed by the various major
functional units of an on-chip router and its links at dif-
ferent process technologies. It shows buffers consuming ap-
proximately 64% percent leakage power of the total node
(router+link) for all process technologies, standing as the
largest leakage power consumer. Our characterization high-
lights router buffers as a prime candidate for leakage power
optimization.

4. POWER-AWARE BUFFERS
As interconnection networks experience significant tem-

poral and spatial variance in workload that leads to highly
varying buffer utilization, we propose power-aware buffers
as an architectural technique for leakage power optimization
in interconnection networks –i.e. buffers that regulate their
own leakage power consumption based on actual utilization.

92

Table 5: Dynamic and leakage power estimates of an on-chip router and its links.
Process Leakage power Switching Power

Router (W) Links (W) Router (W) Links (W)
0.18µm 0.0090 0.0004 0.9334 (1GHz) 0.7066(1GHz)
0.10µm 0.0151 0.0008 0.3513(1GHz), 0.7025(2GHz) 0.5018(1GHz), 1.0036(2GHz)
0.07µm 0.1087 0.0057 0.1052(1GHz), 0.4108(4GHz) 0.1389(1GHz), 0.5556(4GHz)

�

����

����

����

����

���

����

�

����	
 ����	
 ����	

���

��������

������

�	����

Figure 2: Leakage power distribution across the major

functional units of an on-chip router: buffers, arbiters,

crossbar and links. Arbiter leakage power is negligible

and not visible in the figure.

To explore the potential of power-aware buffers, we first
characterize network buffer utilization with the traffic model
proposed in [8], with Poisson task inter-arrival rate, and
self-similar packet inter-arrival rates within each task ses-
sion. This workload exhibits the high temporal and spatial
variance present in many real-life networks. We simulate
the chip-to-chip network described in Sec. 3 (2 virtual chan-
nels per port). Fixed-length packets of 20 flits are assumed.
Fig. 3 graphs the average and minimum number of idle
buffers as traffic increases. As expected, a large number of
buffers is left idle at low injection rates. Interestingly, while
there are routers whose buffers are fully-occupied (minimum
number of idle buffers = 0) at high network load, average
buffer utilization remains rather low, with about 85% idle
buffers. This is reflective of the high variance in the work-
load that results in a large gap between average and max-
imum network utilization that is inherent in many actual
workloads. Clearly, placing these idle buffers in an inactive
mode that uses less leakage power will result in significant
leakage power savings.

4.1 Power-aware buffer policy design
A router buffer is utilized in a stream-like fashion. When

a flit enters a router, it gets written into an unoccupied
buffer, and sits there while a series of router operations is
triggered: routing, virtual-channel allocation and switch al-
location. When it is scheduled to leave the router, the flit
is read from the buffer pool, and the buffer is then marked
as unoccupied and released back to the free list, ready to be
reused when a new flit enters the router.
We term a policy that turns a buffer to inactive mode

only when it’s unoccupied single and one that switches a
buffer to inactive mode anytime it’s not being accessed, i.e.
when it’s both unoccupied and occupied, double. To evalu-
ate the effectiveness of any policy, we need a yardstick – we
define two theoretically ideal, though unachievable, policies:

�

��

��

��

��

���

���

���

��� ��� ��� ��� ��� ��	

�������������������������

�
�
�
�
�
�
�
�
�
�
�
	

���������������	
�����
�����
�������	
�����

Figure 3: Average and minimum number of idle buffers

out of 128flits/buffer.

Ideal-Single, that reduces leakage power to zero instantly for
buffers that are unoccupied with no additional power over-
head, and Ideal-Double, that does so similarly for buffers
when they are both unoccupied and not being accessed.
A power-aware buffer policy can be oblivious, i.e. it does

not take current buffer utilization or workload into account;
or adaptive, tuning the policy according to current utiliza-
tion. It can also be conservative, making sure network per-
formance is not impacted, vs. aggressive, targeting as much
leakage power savings as possible, even if this comes at the
expense of network performance.
Fig. 4 shows the design space of power-aware buffer poli-

cies that we envision, and several simple policies that we
propose at each design point. Each policy can target either
single or double leakage power savings. First, we propose
a conservative policy, Lookahead, that obliviously places
buffers in low-leakage mode and wakes them up N cycles
before they are accessed. When a flit is read from the buffer
queue, that buffer will be switched to the low-leakage in-
active mode (if there are more than N free buffers), and
when a flit arrives and is written into a router buffer at the
tail of the queue, the buffer that is N cells ahead will be
switched to normal operating mode. The policy is conser-
vative as it sets the lookahead window of N to the number
of cycles needed to switch a buffer from inactive to active
mode (transition delay), so a free buffer will always be avail-
able when flits arrive, and network performance will never
be affected. Clearly, if the buffer size B is less than N , our
policy will result in no leakage power savings. An aggres-
sive variant of this policy, Lookahead-Agg simply shortens
N to less than the transition delay, trading off performance
for higher leakage power savings. Our implementation of
Lookahead inserts a newly freed buffer back at the head
of the free list, so an active buffer has the highest chance
of reuse, minimizing the impact on network performance
significantly. A simple adaptive policy, we call Predictive,
uses prior buffer utilization history to predict future usage,
adjusting the lookahead window N accordingly. We use a

93

Predictive

Lookahead
Lookahead
-Aggressive

Adaptive

Oblivious

AggressiveConservative

Figure 4: Design space of power-aware buffer policies.

simple statistic – when there are more writes than reads to
a buffer in a time window W , N is incremented till it hits
an upper-bound Nhigh. Otherwise, it is decremented to a
lower-bound Nlow. The intuition is that when buffer writes
outnumber reads, the buffer pool is building up, with fewer
and fewer free buffers, so an adaptive policy should be less
aggressive in switching buffers to inactive mode in order to
enhance network performance. Conversely, when more flits
are leaving rather than entering the router, an adaptive pol-
icy can more aggressively switch off buffers, guessing that
fewer will be needed.

4.2 Circuit-level mechanisms
Power-aware buffers require circuit-level mechanisms that

allow buffers to be put into inactive mode for leakage power
savings. Several circuit-level mechanisms have been pro-
posed for leakage power savings in SRAMs [4, 7], targeted
for microprocessor caches. Since router buffers are usually
constructed with SRAMs, these can be readily applied to
power-aware buffers.
The characteristics of circuit-level mechanisms that are

critical to power-aware buffers are: (1) transition delay -
the time it takes to switch a buffer between the normal op-
erating mode and the inactive mode; (2) transition energy
- the dynamic energy incurred each time to effect a tran-
sition; (3) leakage power savings - the difference between
the leakage power incurred at normal operating mode and
that at inactive mode; and (4) data preservation - whether
the inactive mode preserves the contents of the SRAMs, i.e.
whether this circuit technique can be applied to both single
and double power-aware buffer policies.
In this paper, we choose two circuit-level mechanisms with

fairly different characteristics – Drowsy [4], and Gated Vdd

SRAMs [7]. Drowsy SRAMs have faster transition delays
than Gated SRAMs, preserves data content, but delivers
less leakage energy savings in the inactive mode as shown
in Table 62. Both techniques have negligible effect on the
access time.

5. EXPERIMENTAL RESULTS
We extend a C++ network simulator to investigate the

power-performance of power-aware buffers [5]. The same
set of router parameters as that in section 3 with an 8-by-8
mesh in 0.07µm technology is used. Here average latency,
throughput and leakage power savings are the metrics used
to evaluate our policy. Latency refers to the time from the
creation of the first flit of the packet till the ejection of its
last flit from the network at the destination, throughput
refers to the injection rate at which average network latency
exceeds twice the latency at zero network load, and leakage

2While we assumed the characteristics of Gated Vdd SRAMS
as published, that it does not preserve data in inactive mode,
it can be sized to ensure data preservation though with a
poorer transition delay.

power savings is expressed as a percentage of the total leak-
age power consumed by router buffers. Simulations are run
for 1 million cycles.

Leakage power savings of Lookahead policy. Fig. 5
compares the effectiveness of the conservative Lookahead
policy (N = 10 for Gated Vdd, and 1 for Drowsy cells)
against the ideal policies. Ideal-Double saves close to 100%
of buffer leakage power, since it only keeps a buffer active
during accesses. Ideal-Single gets savings close to that of
Ideal-Double at low traffic workloads as flits do not stay
in buffers for long. As traffic increases, however, not shut-
ting buffers off when they are occupied in-between writes
and reads result in almost 10% less leakage power savings.
A similar difference is observed between Lookahead-Single
and Lookahead-Double with Drowsy cells.
With 256 flit-buffers at each router input port, Lookahead-

Single saves more leakage power with Gated Vdd rather than
Drowsy cells. While the long transition delay of Gated Vdd

results in a large N = 10, potentially leading to up to 9 fewer
buffers turned inactive, this is overwhelmed by the remain-
ing substantial number of buffers that can still be leveraged.
Thus, with large buffers, the higher leakage power savings
per SRAM cell of Gated Vdd leads to higher overall network
power savings as compared to Drowsy SRAMs.
The converse is however true with smaller buffers (Fig. 6).

Here, the large N of Lookahead (Gated Vdd) constrains the
number of buffers that can be turned inactive, and the low
transition delay of Drowsy cells win over. Note that as traf-
fic rate increases, however, flits occupy buffers for a longer
time, so Lookahead-Single (Drowsy) is unable to exploit its
fast transition delay. Lookahead-Double (Drowsy) however
leverages this for higher leakage power savings at high traffic
injection rates.

Leakage power savings of aggressive and predic-
tive policies. We simulated single Lookahead-Agg poli-
cies, with a lookahead window N shortened from 10 to 4
and 2, for Gated Vdd. The Predictive policy simulated has
W=10, Nlow=1, Nhigh=2. Fig. 7 shows that as expected,
Lookahead-Agg improves the leakage power savings of Looka-
head, pushing savings up to 81% at low traffic. Predictive
pushes it even further, up to 88% savings at low traffic. Even
at very high traffic loads, Predictive still saves 71% leakage
power, as it better adapts to actual utilization. This shows
that even a simple adaptive policy can outperform oblivious
policies.

Performance impact of power-aware buffer poli-
cies. Lookahead, being a conservative policy, does not have
an impact on performance as it always ensures there will at
least be an active buffer available awaiting an arriving flit.
However, the aggressive Lookahead-Agg and Predictive poli-
cies can potentially cause performance penalties. Fig. 8 sim-
ulates the latency-throughput performance of these two poli-
cies, showing negligible performance degradation for both
policies as compared to a network with no power-aware
buffers.

6. CONCLUSIONS
We have proposed a methodology for modeling leakage

power on the architecture level. To facilitate the use of

this methodology, we will distribute the I
′
leak tables online.

We here also incorporated our network architectural leakage
power models into Orion [9] so architects can easily factor
in dynamic and leakage power estimates when evaluating

94

Table 6: Characteristics of Drowsy and Gated Vdd SRAM cells. The leakage numbers are per line per cycle.
Technique Normal leakage Inactive leakage Leakage energy Transition Transition delay Data

energy(J) energy(J) savings(%) energy(J) (cycles) preservation
Drowsy 2.09e-13 3.31e-14 84 3.2e-12 1 Yes
Gated Vdd 1.86e-13 9.3e-16 99.5 4.48e-14 10 No

��

��

��

���

� ��� ��� ��� ��	 ��
 ��� ���

���������	
���	��������������

�
�
�
�
�
�
�
�
�
�
�
	

�
�
� ���������	��

������
����

����������
����
�����������

�������������	��
�����
��

����������
����
�����
��

Figure 5: Leakage power savings under Ideal and Looka-
head policies for 256-flit buffer.

��

��

��

��

��

� ��� ��� ���

���������	
�����������������

�
�
�
�
�
�
�
�
�
�
�
	

�
�
�
�

������������	
��
�������

����������������
�������

����������������
�����������

Figure 6: Leakage power savings under Lookahead-

Single policy for 64-flit buffer.

network architectures.
By delineating the design space for power-aware buffer

policies, and exploring the impact of several simple alterna-
tives, we hope our work will motivate the proposal of so-
phisticated policies in the future.

Acknowledgments
The authors are grateful to K. Flautner of University of
Michigan and S. Kim of Carnegie Mellon for providing de-
tailed parameters of Drowsy Cache and Gated Vdd respec-
tively. At Princeton, we wish to thank Hang-Sheng Wang
for his help in characterizing dynamic power using Orion

��

��

��

��

���

� ��� ��	 ���

������������������������

�
�
�
�
�
�
�
�
�
�
�
	

�
�
�
� ��������	
��

������������	
��

�����������

�����

�����������

�����

Figure 7: Leakage power savings under Lookahead-

Aggressive and Predictive policies for 64-flit buffer.

�

���

���

���

� ��� ���

��	
��������

�����
�������
�

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�
�
�
�

��
����

���
������

� �
���

���
��
����
�!"��

!������
��
����

Figure 8: Average latency under different policies for

Gated Vdd SRAMs.

and Li Shang for assistance with the PopNet network simu-
lator. This work is partially funded by NSF CAREER grant
CCR-0237540.

7. REFERENCES
[1] Berkeley Predictive Technology Model and BSIM4.

Available at
http://www-device.eecs.berkeley.edu/research.html.

[2] J. A Butts and G. S. Sohi, “A static power model for
architects”, In Proc. Intl. Symp. Microarchitecture,
Califonia, Dec. 2000, pp. 191–201.

[3] W. J. Dally and B. Towles. “Route packets, not wires:
On-chip interconnection networks”, In Proc. Design
Automation Conference, Las Vegas, June 2001

[4] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T.
Mudge, “Drowsy caches: simple techniques for reducing
leakage power”, In Proc. Intl. Symp. Computer
Architecture, Alaska, May 2002, pp. 219-230.

[5] http://www.ee.princeton.edu/∼lshang/popnet.html
[6] R. Kumar, C. P. Ravikumar, “Leakage power estimation

for deep submicron circuits in an ASIC design
invironment”, In Proc. ASP-DAC / VLSI Design,
Bangalore, India, 2002. pp. 45-50.

[7] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gated-Vdd: a circuit technique to reduce
leakage in deep-submicron cache memories”, In Proc. Intl.
Symp. Low Power Electronics and Design, Italy, July,
2000, pp. 90-95.

[8] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage
scaling with links for power optimization of interconnection
networks”, In Proc. Intl. Symp. on High-Performance
Computer Architecture, California, Jan. 2003, pp. 79-90.

[9] H. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a
power-performance simulator for interconnection
networks”, In Proc. Intl. Symp. Microarchitecture,
Istanbul, Turkey, Nov. 2002, pp. 294-305.
[http://www.ee.princeton.edu/∼peh/orion.html]

[10] F. Worm, P. Ienne, P. Thiran and G. D. Micheli, “An

adaptive low power transmission scheme for on-chip

networks”, In Proc. Intl. Symp. Systems Synthesis, Kyoto,

Japan, October 2002, pp. 92-100.

95

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

