
Energy-Efficient Data Scrambling
on Memory-Processor Interfaces

Luca Benini† Angelo Galati ∗ Alberto Macii ∗

Enrico Macii ∗ Massimo Poncino ‡

† Università di Bologna ∗Politecnico di Torino ‡ Università di Verona
Bologna, ITALY 40136 Torino, ITALY 10129 Verona, ITALY 37134

ABSTRACT
Crypto-processors are prone to security attacks based on the
observation of their power consumption profile. We propose
new techniques for increasing the non-determinism of such
profile, which rely on the idea of introducing randomness in
the bus data transfers. This is achieved by combining data
scrambling with energy-efficient bus encoding, thus provid-
ing high information protection at no energy cost. Results
on a set of bus traces originated by real-life applications
demonstrate the applicability of the proposed solution.

Categories and Subject Descriptors
B.4 [Hardware]: Input/Output and Data Communication;
E.3 [Data]: Data Encryption

Keywords
Bus Encoding, Data Scrambling, Power Attacks

General Terms
Algorithms, Design, Security

1. INTRODUCTION
One of the consequences of the pervasiveness of electronic

devices in everyday’s life is that an increasing amount of
confidential information is electronically processed, stored
and communicated. Protection of confidential data is thus
becoming a serious concern for many electronic systems.
Smart cards, in particular, are critical devices from the se-
curity viewpoint, because they often contain “critical” data
(e.g., credit card PINs) and because their physical size and
weight prevent them from being under continuous surveil-
lance.
Modern smart cards offer many dedicated features for

implementing native security measures. For example the
P9CC160 smartcard by Philips [1] contains a 32-bit RISC
CPU, several storage resources (ROM, FLASH, SRAM,
caches), a MMU, a crypto-engine, a separate DES/AES

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

unit, a random number generator, and Java support. All
these hardware and software resources can be used to imple-
ment cryptographic protocols. Unfortunately, the strength
of these protection capabilities seems to be often overesti-
mated: A large number of smart card processors have been
successfully reverse-engineered.
A very successful class of attacks is based on the obser-

vation of side channel information. The basic strategy is
to unintrusively monitor various physical quantities (side
channels) during encryption and decryption, and try to ex-
tract from them information such as secret keys. In par-
ticular, power analysis (PA) techniques, which monitor the
absorbed current over time, have been quite successful in
breaking industry-standard cryptographic algorithms (e.g.,
DES, RSA, AES) in smart cards [2]. Among the various
countermeasures to PA attacks, hardware-supported tech-
niques based on the addition of random noise to determin-
istic encryption-decryption computation have proven quite
effective [4, 3].
Decreasing the determinism of a computation through

noise insertion, however, has the undesirable drawback of
increasing the energy consumption required by that compu-
tation. This issue can be particularly critical for devices like
smart cards, where power is supplied only through external
devices (e.g., card readers).
Recently, there has been some research effort in trying

to combine noise insertion with energy-efficient design solu-
tions. The work by Benini et al. [5] focused on the design
of arithmetic units typically employed by cryptographic al-
gorithms (e.g., multipliers, modular operations, etc.).
Protecting computation against power analysis addresses

only one facet of a complex problem. On-chip buses are
one of the most critical sources of side channel information:
Switching heavily loaded bus lines causes significant peaks
in the current profile, which leak information on the trans-
mitted data.
In this work, we focus on protecting information exchange

on the data bus interface. Our technique combines a pro-
tection mechanism based on randomization with energy-
efficient bus encoding techniques, to achieve a reversible
scrambling of the information transmitted. We propose sev-
eral high-security, low-power encoding and decoding circuits,
tuned for various power constraints. Preliminary results
show that a high degree of protection of the bus information
can be achieved while keeping power consumption below a
given budget.

26

2. DPA AND COUNTERMEASURES
Power analysis cryptographic attacks are based on the

idea that the power consumption over time of a module can
be used to recover secret information (e.g., keys) used dur-
ing the computation. Power analysis attacks have been first
introduced by Kocher et al. [6], and can be categorized into
two classes. The first, Simple Power Analysis (SPA), con-
sists of the direct analysis of the monitored power data to
determine actions and data, by correlating the time-domain
supply current profile with the steps of the algorithm. If the
algorithm has a key dependent execution flow (e.g., if its
branching behavior depends on the key value), the current
waveform can reveal key information.
Differential Power Analysis (DPA) [2], is a much more

dangerous attack that combines power measurements with
statistical and signal processing techniques on a large num-
ber of power consumption traces, to reduce noise and
strengthen the differential signal so that it is easier to distin-
guish between logical values (0/1). DPA can be successful
even when the execution flow is not data-dependent. For a
detailed discussion of the technical details of DPA the reader
is referred to [2].
The key assumption in DPA is that the supply current

profile for an encryption algorithm depends in some parts
on the value of the secret key. All known DPA counter-
measures attempt to falsify this premise [8]. This approach,
also known as whitening, is pursued in [3, 4]. Unfortunately,
it is extremely difficult to guarantee perfect whitening, and
high-resolution, high-accuracy DPA defeats equalization at-
tempts.
Most recently proposed DPA countermeasures take an

alternative approach, namely random noise insertion [9].
Randomization techniques range from randomized masking
of the secret key, to clock noise insertion, to embedding the
secret key into a much larger random key [9]. DPA can
in principle cancel randomization noise by averaging over a
larger number of traces. However, it has been shown that
the number of traces to be averaged increases rapidly with
the noise level [9]. For this reason, randomization appears
to be more generally accepted as DPA countermeasure than
equalization.
System buses are one of the most severe sources of DPA

vulnerability in cryptography hardware, because switching
of their large capacitive loads at a high rate creates signif-
icant current spikes on the power supply. Obviously, these
peaks are data-dependent. Hence, an attacker can gather a
large amount of information on the data transmitted on a
bus by just sampling the power supply. Randomization on
bus communication is therefore highly desirable as a power
analysis countermeasure. Unfortunately, noise injection and
whitening approaches proposed in the past to protect buses
have always implied a hardware redundancy and power over-
head. For instance, several authors [3, 4] have proposed
dual-rail bus encoding, characterized by an equal number of
raising and falling transitions for any bus value, to whiten
the bus power profile.
Our approach aims at reducing the power overhead in data

protection. It is based on the simple idea of transmitting
scrambled data on the bus in a reversible way. The power
cost of scrambling and de-scrambling is reduced by low-
power encoding and conditional de-activation of the scram-
bling hardware (if data protection is not needed for 100% of
the bus operation time).

3. BUS SCRAMBLING

3.1 Pure Scrambling
In the following, D will denote the plain data, as sent by

the processor on the bus. The scrambling process transforms
D into a new value DS by applying an injective (i.e., one-to-
one) function f to D (i.e., DS = f(D)). The inverse process
is done at the receiver’s end.
The first scrambling scheme we consider (Figure 1-(a)) is

similar to those used for data whitening in wireless stan-
dards, such as IEEE 802.15 or Bluetooth. The scrambler
consists of two main blocks: A random pattern generator
(block Randomizer, e.g., a LFSR), that produces a new pat-
tern r at each new bus cycle, and the block “⊕”, which per-
forms modulo-2 addition (i.e., bitwise XOR) between the D
and r. Let us denote the scrambled word by Dr = D ⊕ r.
In this scheme, called pure scrambling (PS), DS ≡ Dr. PS
will be used as a reference for comparing other schemes.
Correct decoding is guaranteed by keeping sender’s and re-
ceiver’s clocks synchronized, and by using the same initial
seed for the two LFSRs.

��������	
���

�

���

� �
�

�

��������	
���
�
���

���

��

�
�

�

��

�

��� ���

�

Figure 1: Pure (a) and Conditional (b) Scrambling.

Pure scrambling has the usual drawback of all randomiza-
tion techniques: The noise added to scramble the sequence
will increase energy consumption. This increase in switch-
ing depends on the statistical property of the stream D. For
close-to-random distributions, the modulo-2 addition with
a random word will not generally change the amount of
switching. However, as soon as the source exhibits some
correlation between symbols, scrambling will increase the
switching. As an example, we have analyzed a sequence of
integer samples used for a FFT computation over a 32-bit
bus. The original, unscrambled sequence yields 18087 tran-
sitions; after scrambling, the number of transitions grows to
38375 (a 114% increase).

3.2 Conditional Scrambling
Pure scrambling tends to yield random sequences, and as-

sumes that scrambling is applied to any transmitted pattern.
This may be unavoidable when the bus is dedicated to the
transmission of critical data. However, in most cases, buses
will transmit a mix of critical and non-critical information.
For example, a cryptographic computation may consist of
an initial phase in which instructions and plain data are
fetched from memory, followed by a second phase in which
the encryption keys are fetched from another memory. In
this case, scrambling could be applied only to the second
phase. To allow this, we introduce a new scheme, in which
the scrambling can be conditionally activated (Figure 1-(b)).
We call this scheme conditional scrambling (CS).
In CS, the randomization is controlled by an external sig-

nal FS (Forced Scrambling). The block labeled DCM (Duty
Cycle Modulator) works as a switch driven by FS that, at

27

each cycle, determines what operand r′ must be supplied to
the modulo-2 adder. The DCM implements the following
function:

if (FS==1) r’ = r else r’=0;

Given the non-periodic nature of FS, this scheme requires
an additional bus line s that signals to the decoder what
word (D or Dr = D ⊕ r′) has been transmitted.
The FS signal can also be used for trading off energy con-

sumption for the degree of data protection. For instance,
even when transmitting critical data, we can decide not
to apply scrambling, in order to keep energy consumption
within some assigned budget.
The energy efficiency of CS is related again to the degree

of randomness of the transmitted data. Consider, for exam-
ple, the sequence of FFT samples described in the previous
section. By forcing FS to be activated at a fixed rate, the re-
sults show that even a moderate amount of scrambling (e.g.,
10%) already causes a significant increase in the number of
transitions (21383).

4. ENERGY-EFFICIENT SCRAMBLING
To solve the energy increase problem, we resort to a more

complex scrambling scheme, which exploits the existing cor-
relation to realize some kind of low-switching encoding of
the data; for instance, by replacing the modulo-2 addition
with a suitable encoder.
When the protection of the transmitted data is the pri-

mary target, however, this is not the best choice. Such
scheme, in fact, would result in the transmission of either
the plain data, or, at random times, the encoded ones. Un-
der the assumption that the attacker has full knowledge of
the underlying hardware (and thus, also of the used encoding
scheme), it is clear that extracting the plain data becomes a
relatively simple task: By observing the sequence DS , and
by knowing the encoding function used, re-constructing the
sequence D simply implies to determine whether the encod-
ing has been applied or not.
We can conclude that randomizing the application of an

encoding function is not as effective as randomizing the en-
coding itself. In Figure 1-(b), the randomness is intrinsic to
the encoding function, and even the knowledge of the hard-
ware implementation (the modulo-2 sum) does not provide
enough information. The solutions proposed in this section
leverage the basic scheme of Figure 1-(b) and combine it
with low-power bus encoding techniques.

4.1 Scrambling and Bus Encoding
The choice of what encoding scheme to use is driven by

(i) its complexity (performance and energy of the encoding
circuitry), and (ii) its applicability to generic bus streams (in
particular, its effectiveness on streams with close-to-random
distributions).
In fact, regardless of the existing correlation, the candi-

date encoding scheme should be effective on non-correlated
streams, since the transmission of a random value at ran-
dom times will destroy any existing correlation in the orig-
inal stream. Therefore, we regard the actual data sent on
the bus (after scrambling) as random patterns. Among the
schemes that satisfy the two above requirements, we have
chosen the Bus-Invert encoding [11]. In Bus-Invert, the cur-
rent word is compared with the previously transmitted one.
If the Hamming distance between the two exceeds N/2 (for
N bus lines) the complement of the word is sent on the bus.

This choice is communicated to the receiver through an ex-
tra bus line.

4.2 Bus-Inverted Pure Scrambling
The most straightforward combination of scrambling and

Bus-Invert (BI) consists of cascading the scrambler block of
Figure 1-(a) and a BI encoder, as shown in Figure 2-(a).
We call this scheme PS+BI. At every cycle, the transmitted
word DS is eitherDr orDr (i.e., its complement), depending
on what word will minimize bus switching.
Based on the same arguments of Section 3, we expect

the PS+BI scheme to perform well in the case of highly
uncorrelated streams, and, in particular, better than PS.
In fact, the same efficiency of Bus-Invert is guaranteed: The
resulting encoded stream will have no more than N/2 (for N
bus lines) transitions for each pair of consecutive patterns.
In the case of streams with some degree of correlation,

however, the whitening effect of scrambling may possibly
cancel the benefits obtained by applying BI. Finally, with
respect to the non-redundant scheme of Figure 1-(a), the
bus now includes an extra line INV that signals whether Dr

or Dr is transmitted.

��������	
���

�

�

�
�

�
�

� �
���

�� �

��������	
���
�

���

�	

�

�

� �

�
�

�

���

���

�
�

Figure 2: Pure Scrambling (a) and Conditional
Scrambling (b) with Bus-Invert.

4.3 Bus-Inverted Conditional Scrambling
A more flexible scheme consists of the combination of CS

and Bus-Invert (CS+BI). As for CS, signal FS determines
whether to apply scrambling or not. Whatever the decision,
BI is always applied to the pattern (Figure 2-(b)).
We expect CS+BI to be more effective than PS+BI, when

scrambling is applied selectively. In such cases, in the cycles
in which FS is kept low, the encoding becomes a plain BI.
This is not necessarily more energy-efficient than plain CS,
because the effectiveness of BI depends on the correlation of
the target stream D. It has been shown [11] that BI tends
to become virtually useless when applied to streams with
significant correlation. In the remaining cycles, FS is kept
high and scrambling is activated, and CS+BI is equivalent
to PS+BI.
Notice that now two extra lines are required: One to signal

the occurrence of scrambling s, and another one to signal the
transmission of an inverted pattern INV.

5. EXPERIMENTAL RESULTS
5.1 Random Streams
By random streams we mean sequences of values, such

as cryptographic keys, that require some form of protection
at all times. In this case, since scrambling must always be
active, conditional schemes are not of interest.

28

We have generated two streams (RAND1 and RAND2), of
equal length (105 patterns), using the API described in [12].
Table 1 shows the results for the two streams when applying
PS and PS+BI. Values are relative to a 32-bit, 1-mm long
bus, in a 0.18µm, 1.8V technology by STM.
The values in the table only consider bus energy, and do

not include the cost of the encoder. Column E reports the
total energy of the original stream, in nJ , while columns
PS and PS+BI report energy and percentage savings with
respect to the unscrambled stream.

Stream E [nJ] PS PS+BI
E [nJ] ∆ [%] E [nJ] ∆ [%]

RAND1 7317 7315 0.1 6756 7.7
RAND2 7329 7315 0.2 6759 7.8

Table 1: Results for Random Streams.

We notice that even in the case of PS, scrambling does
not increase energy. Although the hardware overhead is
limited for PS (a battery of 32 XOR gates), the PS en-
coder in the same technology consumes 195nJ , about 3%
of the overall bus energy. Therefore, PS does not allow to
do scrambling without, although marginally, increasing the
total power. With PS+BI, conversely, although the encoder
consumes about twice the PS encoder, the power savings
allow to implement a continuous scrambling without any
power increase.

5.2 MultiMedia Streams
The second class of streams we consider represent typi-

cal data processed by a smartcard such as multimedia files
(images, sound files, or movies). Since all standard formats
(e.g., MPEG/JPEG) are compressed, the streams exhibit
very little correlation, and we expect results similar to the
case of random streams.
Results (not reported for space reasons) show that en-

ergy savings are only slightly higher than those for random
streams: The average savings are 0.8% for PS, and 10.5%
for PS+BI. For this type of streams, however, conditional
scrambling schemes can be used to trade the degree of scram-
bling for the energy consumption. Figure 3 plots the energy
savings vs. the percentage of forced scrambling (i.e., the
fraction of cycles in which signal FS in Figure 1-(a) is high).
The case of FS=100% is equivalent to PS.
The plot shows some interesting facts. First, due to the

intrinsic randomness, the energy savings are always below
2%. Second, for benchmarks with very weak, but non-null
correlation (e.g., MPEG and AVI), increasing FS decreases
energy savings. Conversely, WAV is insensitive to FS (de-
noting an almost null correlation). Therefore, CS by itself
does not provide any significant benefit over PS, for streams
with little or no correlation.
Cascading BI to CS, however, changes the situation, as

shown by Figure 4. For this scheme, the energy savings are
always greater than 10%, allowing enough slack to accom-
modate the energy consumption of the encoder. Further-
more, all streams but WAV are now insensitive to the value
of FS. This behavior can be explained by the fact that Bus-
Invert cancels any weak correlation possibly existing in the
streams.
In summary, the effectiveness of conditional scrambling

depends on the stream, even when randomness is high. From
the results, in most cases, PS+BI is as effective as CS+BI.

������

�����

�����

�����

�����

�����

�� ��� ��� ��� 	�� ���
�� ��� ��� �� ���� ��

���

���

����

����

Figure 3: CS Results: MultiMedia Benchmarks.

�����

�����

������

������

������

������

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�

�
�
�

�
�
�
�

��

���

���

����

	���

Figure 4: CS+BI Results: MultiMedia Benchmarks.

6. CONCLUSIONS
We have proposed a set of techniques to enhance the secu-

rity of information transmitted on a communication bus, by
combining data scrambling with energy-efficient bus encod-
ing, with different trade-offs between the achieved degree of
security and energy consumption. Preliminary results show
that a high degree of protection of the data transferred on
the bus can be achieved at no power cost.

7. REFERENCES
[1] Philips Semiconductors, HiPerSmart Computing Platform,

http://www.semiconductors.philips.com/markets/
identification/products/hipersmart/

[2] P. Kocher, J. Ja, B. Jun, “Differential Power Analysis,”
CRYPTO’99, Springer-Verlag, pp. 388-397, 1999.

[3] N. Vijaykrishnan, M. Kandemir, M. Irwin, “Masking the
Energy Behavior of DES Encryption,” DATE’03, Munich,
Germany, 2003, pp. 84–89.

[4] S. Moore, R. Anderson, M. Kuhn, “Improving Smart Card
Security using Self-Timed Circuit Technology,” IEEE Int.
Symposium on Asynchnronous Circuits, Manchester , UK,
pp. 120-126, 2002.

[5] L. Benini, A. Macii, E. Macii, E. Omerbegovic, M. Poncino, F.
Pro, “Design of Power Maskable Units for Cryptographic
Applications,” DAC-40, Anaheim (CA) 2003.

[6] P. Kocher, “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS and Other Systems,” CRYPTO96,
Springer-Verlag, pp. 104-113, 1996.

[7] T. Messerges, E. Dabbish, R. Sloan, “Examining Smart-Card
Security under the Thread of Power Analysis Attacks,” IEEE
Transactions on Computers, Vol. 51, No. 5, pp. 541-552, 2002.

[8] T. Lash, A Study of Power Analysis and the Advanced
Encryption Standard, George Mason University, MS Scolarly
Paper, 2002.

[9] S. Chari, C. Jutla, J. Rao, P. Rohatgi, “Towards Sound
Approaches to Counteract Power-Analysis Attacks,”
CRYPTO99, Springer-Verlag, pp. 398-412, 1999.

[10] S. Rankl and W. Effing. Smart Card Handbook, John Wiley &
Sons, 1999.

[11] M. Stan, W. Burleson, “Bus-Invert Coding for Low-Power
I/O,” IEEE Transactions on VLSI Systems, Vol. 3, No. 1,
pp. 49-58, 1995.

[12] S. Park, K. Miller, “Random Number Generators: Good Ones
Are Hard To Find” Communications of the ACM, Vol. 31,
No. 10, pp. 1192-1201, 1988.

29

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

