
Abstract

The design of a test response compactor called aBlock Compactor
is given. Block Compactors belong to a new class of compactors
called Finite Memory Compactors. Different from space
compactors, finite memory compactors contain memory elements.
Also unlike time compactors, finite memory compactors have
finite impulse response. These properties give finite memory
compactors the ability to achieve higher compaction ratios than
space compactors and still be able to tolerate unknown values in
test responses. The proposed Block Compactors, as an instance of
finite memory compactors generate a signature of response data in
several scan cycles. Results presented on several industrial designs
show that Block Compactors provide better test quality and higher
data compaction than earlier works on test response compactors.

1. Introduction

The major components of the cost of manufacturing test for
VLSI circuits are test application time and tester storage for test
patterns and test responses. Methods to reduce test application
time include generation of compact tests [1, 2] and the use of
multiple scan chains [3]. Methods to reduce tester storage
requirements include methods to reduce test input data volume [4-
11] and methods to reduce test response data volume [3, 6, 12-17].
Some of these methods [6, 13, 14,16, 17] address unknown values
in the output response of the circuit.

Test response data compaction can be achieved using
combinational compactors (also called space compactors) [12]
and/or sequential compactors [13], which are typically multiple
input signature registers and are also called time compactors. Time
compactors have infinite impulse response property. Space
compactors typically use linear circuits comprising of exclusive
OR (XOR) gates. Figure 1 illustrates the use of a space compactor
to compress test responses from a design with multiple scan
chains. The number of inputs to the compactor is N, which is also
the number of scan chains, and the number of outputs is Z, with Z
<< N. The test response data is compacted by a factor of N/Z,
which is referred to as thecompaction ratio. Because of data
compaction some faults detected by a given test set may not be
detected by observing the compactor outputs. This occurs when all
the errors in the test response of a fault are masked by the
compactor. This is referred to as aliasing. An ideal compactor has
zero aliasing.

A method to design space compactors with low aliasing
probability using linear block code parity check matrices were
proposed in [12]. This method assumed that the test responses do
not contain any unknown values (represented by X in this work).
Mitra and Kim proposed a method called X-Compact [16] that
uses compactors also based on parity check matrices and achieves
compaction of test response data containing Xs. This method uses
parity check matrices where all the columns have the same weight
(the weight of a column is the number of ones in it). A method
called I-compact that uses parity check matrices of a linear block
code (e.g., Hamming codes) to achieve compaction of test
response data with Xs was recently proposed in [17]. This method
uses results from coding theory on error detection in the presence
of erasures. Using parity check matrices with equal weight
columns, as in X-compact, is better suited for current architectures
of high performance testers. Such testers employ independent
processors to make detection decisions based on data from each
compactor output independent of the data on other outputs. On the
other hand, the errors and erasure based decisions in I-compact
require consideration of the data on all the compactor outputs
together.

In this work we propose a compactor calledBlock Compactor
to compact test response data with Xs. A Block Compactor is
neither a space compactor nor a time compactor. It belongs to a
new class of compactors calledfinite memory compactors. These
new type of compactors contain memory elements but have finite
impulse response. The design of the proposed Block Compactors
is also based on the parity check matrices of block codes. Another
type of finite memory compactors calledConvolutional
Compactorsbased on the parity check matrices of convolutional
codes is described in [18]. It will be demonstrated that the
proposed compactor achieves much higher levels of compaction
than X-compact and I-compact, which also use parity check
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Figure 1: Use of a combinational compactor
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matrices to design space compactors. Additionally, we consider
several issues related to the design of compactors that achieve
high levels of compaction with negligible aliasing probabilities.

Even though the proposed method can utilize the parity check
matrices of any block code, in this paper we consider parity check
matrices that contain columns of equal weight. The designs we
consider in this paper are scan designs. However the method can
be applied to non-scan designs also.

The remainder of the paper is organized as follows. In Section
2 a brief review of the design of compactors based on parity check
matrices of block codes is given. In Section 3 the design of the
basic version of the proposed compactor is given together with
analysis that will lead to the design of compactors that
simultaneously achieve high levels of compaction and low aliasing
probability. In Section 4 we describe additional techniques to
reduce the logic required and to reduce the aliasing probability of
the compactor. In Section 5 experimental results on several
industrial circuits are given. Section 6 concludes the paper.

2. Preliminaries

The functionality of a compactor is to compact test responses
into small signatures. In a space compactor such as X-Compact
[16] or I-Compact [17], compaction is achieved by mapping the
test response data ineach scan shift cycle into a signature. All the
bits of the signature are observed at the compactor outputs at each
cycle. A well-designed space compactor can tolerate a certain
number of unknown values (Xs) and support fault detection and
diagnosis. The achievable compaction ratio is determined by the
method used and the desired tolerance to Xs.

In the following, we briefly review the basic idea behind the
use of parity check matrices of block codes to design space
compactors. This idea, originally suggested by Saluja and
Karpovsky [12], is common to the compactor designs proposed in
[12,16,17]. Consider the parity check matrix H given in Figure 2.
H has four rows and six columns. It defines a space compactor
with six inputs and four outputs. The compactor achieves a
compaction ratio of 6/4 = 1.5. The compactor obtained by using H
is shown in Figure 2(b). It can be seen that there is a compactor
output corresponding to each row of the parity check matrix. The
ith output Zi is obtained by the binary sum (XOR) of the inputs
corresponding to the columns that have a 1 in the ith row. For
example Z1= I1⊕ I2⊕ I3, Z2= I1⊕ I4⊕ I5 and so on. Consider the
case of a scan cycle where the test response data of the fault-free
circuit is (001X00) and assume that for some faulty circuit the
value of I2 in the test response is in error (i.e., instead of it being
zero, it is a one). The signature of the fault-free response (i.e., the

compactor outputs) in this cycle will be (Z1,Z2,Z3,Z4) = (1XX1).
In the presence of the error in I2 due to the fault under
consideration the compactor outputs will be (0XX1). It can be
seen that the error in I2 causes an error in Z1. For this example if
the fault-free response in a scan cycle has two X values as in
(X0000X), then the fault-free signature for the cycle would be
(XXXX) and hence any error in this scan cycle will be masked or
blocked. In general, it can be shown that if a space compactor is
based on a parity check matrix with columns of identical weight,
then any single error value in a scan cycle produces an error at the
compactor outputs even in the presence of an X value in another
position in the same cycle. If Xs are not present, then any one or
two errors in the same cycle produce an erroneous output. In X-
compact [16] the parity check matrix columns are chosen to have
odd weight (odd number of ones), which ensures error propagation
to compactor outputs if one, two or any odd number of errors are
present in a scan block with no Xs. In [16,17] construction of
parity check matrices to detect errors in the presence of more than
one X value are also given. Compaction ratios achieved by
compactors using these matrices will be smaller by factors
proportional to the number of X values tolerated.

The number of binary vectors of length Z with W ones in each

vector is given by the binomial coefficient ��
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scan chains using the X-Compact procedure is obtained by

determining Z such that N
W

Z
≥��

�

�
��
�

�
, where W is an odd integer

larger that 1. Since ��
�

�
��
�

�

W

Z
has a maximum value when W is an

odd integer equal to (Z-1)/2 or (Z+1)/2 if Z is an odd integer, and
when W is equal to Z/2-1 or Z/2 if Z is an even integer, the
minimum number of compactor outputs needed for X-Compact is
obtained by setting W to these values.

For example, using X-Compact, if one wants a compactor to
support 200 internal scan chains and guarantee detection of a
single error in the presence of an unknown value in the same scan
cycle as the error, a minimum of ten compactor outputs are
necessary. Thus in this case the maximum achievable compaction
ratio is 20. This limitation may be unacceptable in some cases. For
example, the available tester may not support 10 scan outputs or it
may be necessary to achieve a higher compaction ratio. Clearly, it
is desirable to have a compactor design methodology that works
for any given numbers of scan chains and outputs without
degrading fault detection.

Another limitation of X-Compact is related to the hardware
requirement. Assuming no fan out of more than one from an XOR
gate the number of XOR gates required to compute the signature
(parity checks) using a parity check matrixH of N columns andZ
rows with column weightW is (N*W – Z). This can be seen by
noting that matrix H has a total ofN*W ones. Each parity check
corresponding to a row ofH with R ones needs (R – 1) XOR gates.
Thus the complexity of the compactor for a given design withN
scan chains is primarily determined by the column weightW. In
X-Compact based compactor designsW can be reduced only if the
number of outputsZ is allowed to be larger than the minimum
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required for the givenN. If a higher value ofZ is used the
compaction ratio decreases.

The Block Compactor described in the next section provides a
method to design compactors for any given numbers of scan
chains and compactor outputs. It also provides the flexibility to
use any column weight. Additionally experimental results on
industrial designs show that Block Compactors achieve higher
compression ratios.

3. Block Compactor

The main idea behind the Block Compactor is to encode the
response data of several scan cycles into a sequential signature and
observe each signature in more than one scan shift cycle. By using
the term sequential signature we emphasize the fact that it may
take several clock cycles to observe the signature. This is in
contrast to the earlier proposed space compactors, in which a
signature for each scan cycle is observed in the same scan cycle.
Initially, for the sake of simplicity, we describe a basic version of
the Block Compactor in this section. A hardware efficient version
of the compactor is described in Section 4. In this section we also
propose guidelines to choose parameters of Block Compactors.

3.1 The Basic Block Compactor

Figure 3 illustrates an example of the Block Compactor. In
this example, we are given six scan chains and two outputs. For
this design, the compactor suggested by X-Compact cannot be
used since at least five outputs are required by X-Compact. This
can be seen by the fact that to compact data from six scan chains
we need a parity check matrix with six columns with each column
having the same odd weight larger than one. The minimum

number of rows of the matrix to satisfy this constraint is five.

In Figure 3(a), we show the output side of the scan chains and
we number the last three scan cells of every chain as shown in the
figure. In Figure 3(b), we illustrate the proposed Block
Compactor. In Figure 3(b) the numbered rectangles are memory
elements and the parallelograms are multiplexers. The compactor
outputs are the output of memory element 1 and the output of
memory element 4. Behind each of the two outputs, there are three
memory elements which are used to store the sequential signature.
The output of each numbered scan cell (cf. Figure 3(a)) is
connected to the inputs of three memory elements through XOR
gates that compute the signature, or parity checks, on the data in
three scan cycles. The parity checks computed correspond to the
parity check matrix shown in Figure 4. Note that this matrix has
18 columns corresponding to the eighteen numbered scan
elements in Figure 3(a) and six rows corresponding to the number
of memory elements in the compactor which store the signature
computed over three scan clocks prior to shifting the signature out.
The clock line of these memory elements is the same as the shift
clock of the scan chains. Depending on the value of the control
signal CT that drives the select inputs of the multiplexers, each
memory element can capture either the output of the previous
memory element or the signature computed by the network of
XOR gates on the contents of the last three cells of the scan
chains.

The Block Compactor works in the following manner. Before
we shift out the test response, the control signal CT is set to 1 to
capture the outputs of the XOR circuit computing the signature (or
equivalently the parity checks). After the first clock, the sequential
signature of the numbered scan cells of Figure 3(a) is captured into
the memory of the compactor and CT is reset to 0. At this point,
we can observe the first two bits of the sequential signature from
the circuit output. At the second and third clock pulses, the other
four bits of the signature are shifted out and the numbered scan
cell positions are updated with 3 cycles of response data from scan
cells to their left. After the third clock pulse, the control signal CT
is set again and the above procedure is repeated. Figure 5 shows
the waveform of the control signal and its relation to the scan shift
clock. We call the response data that are compacted together into
one sequential signature adata block. For instance, in the above
example, the data block consists of three consecutive scan cycles.

In general, a Block Compactor with Z outputs that computes
the signature of a data block of M scan cycles from a design with
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N scan chains uses a parity check matrix with M*N columns and
Z*M rows. In addition to the XOR gates for computing the
signature, the compactor also uses Z*M memory elements to store
the sequential signature prior to shifting out. It can be seen that the
compactors proposed earlier in [12, 16, 17] are a special case of
Block Compactors, where the response data ineach shift cycle is a
data block and each signature is observed in one cycle.

Next we consider a number of issues related to the design of
“good” Block Compactors. From experiments conducted on
several industrial designs we develop guidelines to design good
Block Compactors.

3.2 General considerations

Given the number of scan chains and the number of desired
outputs, we need to answer two questions in order to design a
Block Compactor. One is how to choose the columns of the parity
check matrix and the other is how many scan cycles are to be
included in a data block. The latter determines the number of
columns of the parity check matrix as well as the number of
memory elements used in the compactor.

As mentioned earlier in this paper, we use equal weight
columns as in X-Compact. That is, every column of the parity
check matrix should have the same odd number of ones and no
two columns are the same. When this rule is followed, it is
guaranteed that one, two and any odd number of errors in a data
block will be mapped to an incorrect signature and hence detected.
In addition, a single error in a data block is guaranteed to be
detected in the presence of an unknown value in the same data
block.

With the parity check matrix column described above, we
next determine the minimum amount of memory in the compactor
or equivalently the minimum number of scan cycles in a data
block. Let N be the number of scan chains, Z the number of
outputs of the compactor and W the weight of the columns of the
parity check matrix. Then the minimum number of scan cycles in
a data block should satisfy the inequality given below.

Table 1 lists some compactor configurations and the
maximum number of scan chains that can be accommodated for
the given number of compactor outputs. The first column of Table
1 shows the number of outputs considered. The second column
shows the maximum number of scan chains accommodated if X-
compact is used. The last two columns give the maximum number
of scan chains accommodated by two Block Compactor
configurations with parity check matrix column weights 3 and 5,
respectively. For each weight, we give two entries of maximum

number of scan chains supported corresponding to the value of M,
the number of scan cycles in a data block, equal to 4 and 6,
respectively. It can be seen that for a given number of scan
outputs, a Block Compactor can support a much larger number of
scan chains than X-compact by using a sequential signature that
requires a small number of memory elements. In other words,
Block Compactors have the potential to achieve much higher
compaction ratios than X-Compact. Actually, even with a single
output, Block Compactors can support any number of scan chains
if the data block size is large enough. Another observation is that
larger column weights enable the compactor to support more scan
chains than smaller column weights with the same number of
memory elements. It can also be observed that for the same
column weight W, the number of scan chains supported by a
Block Compactor can be increased by increasing M, the data block
size. Thus, in designing a Block Compactor for a design with a
given number of scan chains and a desired compaction ratio, one
can trade off the parity check column matrix weight W and the
data block size M. Such flexibility does not exist in the designs
based on X-Compact and I-Compact.

It is worth mentioning that if we use larger data blocks than
the minimum necessary for given numbers of scan chains and
compactor outputs, parity check columns can be randomly chosen
from the available pool of columns, which is larger than needed.
This random selection helps to balance the XOR connections and
reduces the probability of aliasing.

3.3 Unknown Value Tolerance Considerations

It is important for a compactor to enable detection of errors in
the presence of unknown values in the test responses. Using an
appropriate procedure for selecting columns of the parity check
matrix, an error in a data block is guaranteed to be detected in the
presence of one unknown value in the same data block. However,
if a data block contains two or more unknown values, some of the
known values in the data block may become unobservable or
masked. As an example, consider the compactor illustrated in
Figure 3 based on the parity check matrix of Figure 4. If the data
in scan cells 1 and 2 are unknown, the data in cell 4 is blocked or
masked. If all the errors in the test response of a faulty circuit are
blocked, a defective chip escapes test and hence test quality is
reduced due to the use of the compactor. To maintain high test
quality using a Block Compactor, we next investigate the impact
of data block size and parity check column weight on the unknown
value tolerance of Block Compactors.

3.3.1 Data Block Size

From Inequality (1) of Section 3, we know that if the number
of scan chains, the number of outputs and the parity check column
weight are given, there is a minimum data block size that should
be used for the Block Compactor. Smaller block sizes lead to
smaller compactor hardware cost. However, the compactor with
minimum block size may not achieve satisfactory test quality.

To compare the X tolerance ability of different compactors for
a given design, we conduct the following experiment. First, we
prepare a compact test set for the design without considering the
compactor. Next, we simulate the test set on the design assuming a
compactor is employed. After the simulation, we record the
percentage of known response data blocked or masked due to
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Table 1. Maximum number of observable scan
chains in X-Compact and block compactor

Outputs X-Compact W=3 W=5

4 4 140, 337 1092, 7084

6 20 506, 1190 10626, 62832

8 56 1240, 2882 50344, 285384
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unknown values in the responses of the fault-free circuit to the
tests. We repeat the above simulation procedure assuming
different data block sizes.

The first experiment is conducted on an industry design that
does not have many unknown values in its test response. We name
the design D1. It has over 0.5M gates, 45K flip-flops and 308 scan
chains. The percentage of Xs in the response for this circuit is
0.03%. Let the number of allowed compactor outputs be four and
the weight of the parity check columns be three. Since the number
of scan chains in the design is 308, from Inequality (1) we can
calculate the minimum data block size for this design to be six
scan cycles. In Table 2, we show the X tolerance ability of Block
Compactors with different data block sizes for design D1.

The first column of Table 2 gives the data block size of the
Block Compactor. In brackets after the block size, we show the
block size relative to the minimum block size. For example 3M
means 3 times as large as the minimum block size of six, which is
18. The second column shows the percentage of known response
data bits that are blocked due to the corresponding compactor. In
the last column, the percentage of blocked data in the second
column is normalized such that the percentage of blocked data
corresponding to the minimum block size is taken as one unit. It
can be seen that with increasing block size, masking due to the use
of the compactor decreases. Another observation is that the
percentage of blocked data drops quickly as the block size changes
from 1M to 3M and this improvement slows down when the block
size is increased above 3M.

We verify the observations made above by performing the
same experiment on another design. The design used in this
experiment is D3 with 474 scan chains, 2.5M gates and 57K flip-

flips. The percentage of Xs in the test response of D3 is 0.39%. In
this case, we used 12 outputs and parity check column weight of
five. Given that the number of scan chains in D3 is 474, we find
that the minimum block size is one. Table 3 shows the
experimental results for D3. The data in Table 3 is arranged
similar to Table 2. Observations similar to the earlier ones can be
made from Table 3. Actually, the compactor in the first row of
Table 3 corresponds to the design using X-Compact. This example
shows that even in the case where an X-Compact design can be
used, a Block Compactor with larger data block size reduces
masking or blocking of known data.

The relationship between the normalized percentage of
blocked data and the relative block size is shown graphically in
Figure 6. Since we obtain similar results from the experiments
performed on different designs with different parity check column
weights and different compaction ratios, we conclude that our
observations are likely valid for other designs. That is, a larger
block size is better than a smaller block size in tolerating unknown
values in test responses. In addition, the improvement obtained by
increasing the block size is large if the block size is no more than
3M where M is the minimum block size. If the block size is larger
than 3M, the incremental benefit is minimal. So, our suggestion is
to use block size of 3M in the Block Compactor design. In the rest
of this work, we will follow this design rule for the compactors
used in other investigations.

3.3.2 Weight of Parity Check Matrix Columns

To evaluate the impact of the weight of the parity check
columns on the tolerance of X values for the compactors, we
conducted experiments similar to the ones in the last subsection. In
these experiments, we use design D1 and we consider four
compaction ratio situations. For each compaction ratio, we built
three Block Compactors, with column weights three, five and
seven. For all the compactors considered, the block size is always
3M where M is the minimum block size for the configuration.
Table 4 summarizes the results of this experiment.

Table 2. X tolerance ability vs. block size for D1

Block Size % block
Normalized
Blockage

6 (1M) 1.65 1.00
12 (2M) 1.08 0.65
18 (3M) 0.58 0.35
24 (4M) 0.40 0.24

Table 3. X tolerance ability vs. block size for D3

Block Size % block
Normalized
Blockage

1 (1M) 11.62 1
2 (2M) 8.05 0.69
3 (3M) 5.80 0.50
4 (4M) 5.67 0.49

Figure 6. Block size vs. % blocked data
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The first two columns of Table 4 give the number of
compactor outputs and the corresponding compaction ratio. The
last three columns give the percentage of blocked known values
for the three Block Compactors. The data of Table 4 is given in
graphical form in Figure 7. One observation that can be made
from the results of this experiment is that if we keep the column
weight constant, the percentage of unobserved known values
increases as the compaction ratio increases. It can also be seen
from the results that if the compaction ratio is large, a smaller
column weight is better than a larger column weight in tolerating
X values. However, if the compaction ratio is small, using a larger
column weight gives better performance.

In reality, the impact of column weight is not only related to
the compaction ratio but also to the density of unknown values in
the test response. For example, when the compaction ratio is about
30 in Table 4, we find that the compactor with column weights
five or seven is better than the compactor with weight three.
However, when we performed the above experiment on D3, for
which the percentage of unknown values is much higher than for
D1, we found that the compactor with column weight three is
better than the compactor with weight seven when the compaction
ratio is near 30.

In conclusion, we observe that if the product of the
compaction ratio and the percentage of unknown values is low, a
Block Compactor with larger parity check column weight leads to
higher test quality. On the other hand, if this product is high, a
Block Compactor with a smaller parity column weight is better.
We also noticed that in the situation where a larger column weight
works better, the Block Compactor with a smaller weight also
gives good enough results. For example, in the last row of Table 4,
even though weights five and seven are better than weight three,
the difference is not significant and the results using weight three
may be adequate. Since the percentage of unknown values for a
design is not known when the compactor is designed at the RTL
level, we suggest using smaller column weight such as three. This
choice leads to compactors with smaller logic and good
performance.

3.4 Aliasing

In the presence of X values, aliasing due to data compaction
may occur if the signatures of the fault-free circuit and a faulty
circuit are the same as well as if all the errors in the response are
masked by the X values. The experiments in the previous section
showed that the probability that a known value in the test response
is blocked or masked by the X values can be decreased by
increasing the size of the data block or equivalently the size of the
memory in the compactor. In this section, we show that the
probability of aliasing in the absence of X values also decreases
with the memory size of the compactor.

Given that the Block Compactor calculates the parity checks
of a block code, it is known [12] that error patterns that alias must
be code vectors or equivalently vectors that are in the null space of
the parity check matrix. Let H be the parity check matrix. It has
N*M columns and M*Z rows, where N is the number of scan
chains, M is the number of scan cycles in a data block and Z is the
number of outputs of the compactor. If all error patterns are
equally probable then the aliasing probability is given by Equation
(2) given below.

Equation (2) shows that the probability of aliasing in the
absence of X values decreases with M and Z. For a given number
of compactor outputs Z, the probability of aliasing decreases with
M.

4. Advanced Block Compactor Design Techniques

In the last section, we introduced the basic design of a Block
Compactor. There are two hardware related disadvantages in this
basic design. First, the inputs to the compactor come from the
outputs of the scan cells in the last M stages of the scan chains.
Thus, the core of the circuit under test is affected. It is preferable
to drive the compactor inputs only from the outputs of the scan
chains as done in most designs. Second, the number of XOR gates
used to compute the parity checks are large due to the fact that
parity checks on all bits in the data block with M scan cycles are
computed simultaneously and stored in the compactor memory.
While the contents of the compactor memory are shifted out, the
XOR gates are not computing useful information.

A simple solution to remove the two disadvantages of the
basic Block Compactor noted above is to choose a compactor
design such that its inputs are driven only by the outputs of the
scan chains. This can be achieved by properly selecting the parity
check matrix for the compactor. This is described next.

4.1 Hardware Efficient Design of Block Compactors

Consider the parity check matrix H of Figure 4. The second
column of H is obtained from the first column by rotating the first
column down once (by one position). Similarly, the third column
is obtained by rotating the second column down once, or rotating
the first column down twice. It can be verified that the (3i+1)th,
(3i+2)th and (3i+3)th columns have similar relations, i=0,1, …, 5.
This relationship between columns can be exploited to design a
much simpler compactor that is driven only by the outputs of the
scan chains. The resulting design of the compactor is given in
Figure 8. The operation of the compactor is discussed below.

It can be noted that only the last cells of the scan chains are
connected to the XOR gates of the compactor and the output
circuit consisting of the flip-flops and multiplexers is the same as
in the basic compactor design. Additional memory elements and
gates are included between the XOR gates computing the parity
checks and the output memory elements. These additional memory
elements develop the signature by rotating and adding the parity
checks of the previous scan cycle to the parity checks of the
current scan cycle. After the complete signature is computed for a
data block, it is loaded into the output memory elements. While
the sequential signature of the previous data block is shifted out,
the signature of the next block is developed. Because the signature
of the initial data block is computed over M scan cycles, the
compacted response data is delayed by M cycles.

(The number of vectors in the null space of H) - 1
P(aliasing)=

The total number of vectors of dimension N*M

2N*M-M*Z -1
=  ≈ 2-M*Z (2)

2N*M
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In general by selecting a parity check matrix such that a
column corresponding to a scan cell is obtained by rotating down
the column corresponding to the scan cell on its right in the same
data block of the same scan chain, a compactor that is driven only
by the outputs of the scan chains can be obtained. The
investigations of the last section established the desirability of
using larger than the minimum data block size needed for the
Block Compactors. This also leads to a very large pool of parity
check columns of chosen weight from which one can select
column vectors to derive parity check matrices with the property
described above. It should also be noted that the number of XOR
gates to compute the parity checks is now much smaller since
these are used only to compute the parity checks on the outputs of
the scan chains and not on M scan cycles in a data block as in the
case of the basic compactor design given in Section 3.

We conclude this section by an example comparing the logic
for X-Compact and Block Compactors discussed in this section
for design D1 with 308 scan chains. For this case X-Compact
needs a minimum of eleven compactor outputs and parity check
column weight of 5. The number of XOR gates needed for X-
Compact is (5*308 – 11) = 1,529. Using parity check matrix
column weight of 3 and 11 compactor outputs, the minimum
number of scan cycles in a data block for the Block Compactor is
2. As we suggested in the last section we use three times larger
data block of size 6. For this Block Compactor we need 859 XOR
gates, 66 two input multiplexers, 66 two input AND gates and 132
flip-flops.

4.2 Programmable connections to the compactor

The unknown values in test responses are usually not uniformly
distributed. Some scan cells capture unknown values more
frequently than others. If the connection between the scan chain
outputs and the Block Compactor is fixed, some scan cells tend to
be blocked more often than others due to the non-uniform
distribution of unknown values. Thereafter, some faults may have
much lower observability than other faults because these faults
may only propagate to scan cells that are prone to being blocked
by X values. If we have more than one way to connect the scan
chains to the compactor, we can dynamically change the
connections to reduce aliasing due to masking by X values.

To have multiple connections, we can use multiplexers.
Figure 9 shows an example of how to implement four

programmable connections between the core design and the
compactor. In Figure 9, S1 and S2 are control signals provided by
test stimuli. C1-C4 stand for four scan chains and P1-P4 for four
inputs of the compactor. It can be seen from Figure 9 that with
different S1, S2 combinations, C1-C4 connect to different
compactor inputs.

5. Experimental results

In this section, we present the fault aliasing performance of
Block Compactors on industrial designs. Compactors are
evaluated as follows. For a given design and a test set for the
design, we know the number of faults Nf that can be detected by
the test set. By adding a compactor on top of the design and fault
simulating the test set, we find that the number of detected faults
Nc is smaller than or equal to Nf. The fault coverage loss or the
difference between Nf and Nc gives a measure of goodness of the
compactor. The experimental results on four industrial designs are
summarized in Table 5. In our experiment, all the test sets are
generated by a well-known commercial ATPG tool.

In Table 5, after each design name, we list the number of
faults detected by the tests, the number of scanned D flip-flops and
the number of scan chains in the design. The column named X
shows the percentage of unknown values in the test response.

For each design, we consider three compactor schemes. The
first compactor investigated is the compactor by X-Compact [16]
and the other two compactors are Block Compactors labeled C1
and C2, respectively (the descriptions of C1 and C2 are given
below). For each considered compactor, we assume that there are
16 different connections between the design and the compactor.
The method we used to determine which connection is to be used
for a particular pattern is greedy, i.e., for each test pattern we
select, out of the sixteen available, the connection that enables a
maximum number of faults to be detected. Using an appropriate
fault simulation procedure, one pass of fault simulation can be
used to determine the optimal connection for a given pattern. It
should be mentioned that the programmable connections to the
compactor inputs were used in the case of X-Compact also to
obtain comparable data. The number of outputs for the compactor
of X-Compact is determined as given in [16]. For example, in
order to observe 474 scan chains of design D3, at least 12 outputs
are needed for X-Compact. Block Compactors C1 are built in such
a way that their numbers of outputs are the same as that for the
corresponding X-Compact compactors. The Block Compactors C2
are obtained by reducing the number of compactor outputs from
that required for X-Compact and C1 until the number of faults left
undetected is close but not higher than that for X-Compact. The
columns denoted by W and M are the parity check column weights
and the number of scan cycles in the data block used in the
compactors, respectively. For all the constructed Block

Figure 8. Block compactor accessing only scan
chain outputs
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Compactors, the column weight used is three and the data block
size is 3M, where M is the minimum block size. The column
weights for X-Compact compactors is 5 for all circuits. The last
column of the table shows the number of faults (Nf - Nc) left
undetected due to compaction. Inside parentheses, for designs D3
and D4, we give the number of faults left undetected by X-
Compact if the programmable connections to the compactor inputs
are not used.

Comparing the number of faults left undetected by X-
Compact compactors and C1 compactors, we can see that with the
same compaction ratio, well designed Block Compactors lose
fewer faults for two of the designs and both compactors do not
lose any faults for the other two designs. By observing the
performance of compactors C2, we notice that on the average,
over the four designs, Block Compactors provide a compaction
ratio of 75 compared to a compaction ratio of 36 provided by X-
Compact.

Finally from the last column of Table 5 we observe that the
programmable connections to the compactor, suggested in this
work, helps reduce the number of faults left undetected by X-
Compact by over an order of magnitude. The hardware for X-
Compact and Block Compactors for the four designs studied is
comparable.

6. Conclusions

Finite memory compactor called a Block Compactor was
proposed for compacting test response data with unknown values.
Based on experiments, guidelines to design Block Compactors
that achieve high compaction ratios and low aliasing were
presented. Experimental data on several industrial designs showed
that Block Compactors achieve lower aliasing and higher
compaction than the recently proposed space compactors based on
X-Compact [16].
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Table 5. Experimental results

Design #det. flts DFFs Scans X Comp. # out Ratio W M Fault loss Nf- Nc

X-Compact 11 28 5 1 0

C1 11 28 3 6 0D1 0.85M 45K 308 0.03%

C2 3 103 3 27 0

X-Compact 11 35 5 1 0

C1 11 35 3 6 0D2 2.23M 45K 380 0.01%

C2 5 76 3 15 0

X-Compact 12 40 5 1 1,635 (77,212)

C1 12 40 3 6 464D3 1.65 M 57K 474 0.39%

C2 8 59 3 24 1,416

X-Compact 11 42 5 1 12 (638)

C1 11 42 3 6 0D4 3.50 M 138K 457 0.09%

C2 7 65 3 12 9
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