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ABSTRACT
We have created a stochastic impulse-response (IR) moment-
extraction algorithm for RC  circuit networks. It employs a
newly discovered Feynman Sum-over-Paths Postulate. Full
parallelism has been preserved. Numerical verification results
for coupled RC lines confirmed rapid convergence. We believe
this algorithm may find useful application in massively cou-
pled electrical systems, such as those encountered in high-end
digital-IC interconnects.

Categories and Subject Descriptors
[Verification, Modeling and Simulation]: 3.1 Interconnect-
parameter extraction and circuit-model generation. 3.2 Signal-
integrity analysis. Power/Ground network analysis.

General Terms
Algorithms, Interconnect Performance.

Keywords
Feynman Sum over Paths, IC-Interconnect Modeling, Impulse-
Response Moment Extraction, RC Circuit Networks, Stochastic
Algorithms.

1. INTRODUCTION
Understanding and predicting the multi-GHz behavior of IC
interconnects is critical to meeting objectives of the semicon-
ductor design industry for the present decade. Essentially, we
need solve Maxwell’s equations. There are two ways in which
this can be done: (i) one-step, direct solution of the underly-
ing field equations; (ii) two-step, lumped-element parasitic
extraction followed by solution of the resulting circuit equa-
tions. Both methods are viable; however, the second has a cer-
tain appeal, since it conveniently separates the physics of cir-

cuit-element extraction from the mathematics of circuit solu-
tion.

We will presume that two-step Maxwell solution has been se-
lected above. It is the second step, efficient solution of com-
plex RC interconnect-circuit equations, that we consider our
primary motivating factor. We suggest, in fact, direct evalua-
tion of IC-interconnect delay characteristics to support high-
level timing and verification CAD tools encountered in the
typical industrial design flow—thus bypassing time-
consuming circuit simulation.

Our aim here is to create an impulse-response (IR) moment-
extraction algorithm for arbitrary RC interconnect networks.
We take a novel approach, inspired by Feynman’s well-known
path-integral method [2] in theoretical physics. This approach
employs diagrammatic expansion and summation of a pertur-
bation series for solution of the appropriate “field equations”.
It is hoped that we will benefit from the proven advantages of
diagrammatic expansion: computational efficiency, mathe-
matical organization, and intrinsic full parallelism.

We have mentioned lumped-element parasitic extraction in
connection with “two-step” Maxwell solution of IC intercon-
nects. This extraction process traditionally uses the method of
partial-element equivalent circuits (PEEC), developed by
Ruehli [3,9]. In this approach, one segments interconnect con-
ductors into individual lumped-element resistors, capacitors,
and self- and mutual inductors. Electrical-component values
derive, conveniently, from quasi-static solution of the Max-
well equations. Unfortunately, for large numbers of intercon-
nects, the PEEC method can produce a dense circuit matrix
requiring prohibitive amounts of computer memory and exe-
cution time. To use PEEC in realistic, structurally complex
problems, one should first sparsify the circuit equations, as an
approximation, if at all possible. In addition, model-order
reduction algorithms, such as asymptotic waveform evaluation
(AWE) [6,7], can achieve improved circuit-solution efficiency
with little loss of accuracy.

It is important to note, by the way, that AWE, and many other
model-order-reduction schemes, derive an approximate trans-
fer function by matching desired temporal IR moments to
those of the original, complicated “full-order” circuit. In fact,
IR-moment extraction in delay estimation for linear RC  cir-
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cuits has origins with Elmore’s [1] observation that the tempo-
ral unit-step response is, essentially, an integrated probability
density. Elmore proposed to characterize electrical propaga-
tion delay, the so-called  “Elmore Delay”, with the first IR mo-
ment.

Later, Penfield et al. [5,8] devised a deterministic algorithm
involving “tree walks” to extract realistic lower and upper
delay bounds in RC tree networks. Others, like Lin and Mead
[4], have further emphasized the usefulness of Elmore Delay in
RC networks. They generalized its definition to include non-
monotonic step responses. They, as well, proposed a delay-
analysis methodology for arbitrary RC-networks, by decompo-
sition into tree sub-networks. Most recently, Yu and Kuh [10]
derived an Elmore Delay formula for coupled RC trees, along
with a recursive algorithm for general IR-moment computa-
tion.

We will present, here, a novel stochastic algorithm for IR-
moment extraction in arbitrary RC networks. The algorithm
has a unique theoretical basis: a “Sum-over-Paths Postulate”.
Unlike previously developed recursive algorithms, ours is
fully parallel, requiring little inter-processor communication,
even in massively coupled networks.

In Section 2 we present the theory of our new IR moment-
extraction algorithm for RC circuit networks—by example.
Section 3 establishes our general algorithm for the first three
IR moments, using an efficient stochastic evaluation tech-
nique. Section 4 gives numerical verification results for cou-
pled RC-line circuit networks. We conclude with Section 5,
summarizing our achievements and indicating future direc-
tions.

2. THEORY
Let us now consider the problem of solving linear RC circuit
networks. The voltages throughout such a network satisfy a
system of coupled ordinary differential equations. For sim-
plicity, we confine ourselves to problems with a single impul-
sive input voltage source, for which we seek a single nodal
voltage output. The associated transfer function H(s) and tem-
poral moments of impulse response h(t) are

† 

H (s) =
(-1)n

n!
n=0

•

Â mn sn,   (1)

and

† 

mn = dt t n h(t),
0–

•

Ú (2)

respectively. The above equations establish the important,
well-known mathematical connection between transfer-
function expansion coefficients and IR moments.

We now propose a Sum-over-Paths Postulate. This Postulate
will define our new IR moment-extraction algorithm; it will
provide an efficient means of carrying out expansion (1) to
find the IR moments mn:

“The order-sn term in an RC-circuit transfer-
function expansion is a sum of weight-factor prod-
ucts over     all        possible     unique paths within the asso-
ciated network transition diagram. The product of
weight-factors, constructed over each path, is simi-
larly of order sn.”

Note, transition-diagram weight factors, for order sn, derive
from order-sn (Laplace-transformed) circuit-equation coupling
coefficients between network voltage nodes. If, for example, a
given voltage node “0” has an s-domain circuit equation

† 

v0 = (a0 + a1s + a2s
2 )v1 + (b0 + b1s + b2s

2 )v 2 , which couples to
nodes “1” and “2”; then, for example, the order-s2 weight factor
for a transition from node “0” to node “2” is simply 

† 

b2.

 To further clarify matters, let us apply our Postulate to a three-
stage RC line IR-moment extraction problem for m2. Figure 1 i s
an order-s2 transition diagram for a three-stage RC line. Shown,
also, is the associated full RC-circuit network. Large black dots
are voltage nodes. Arcs with direction arrows represent order
s0, s1, and s2 coupling coefficients between adjacent nodes.
Note, also, here and hereafter, the quantity t = RC, where R and
C  are respective constant-component resistance and capaci-
tance.

The leftmost node in Fig. 1, is the input source; the rightmost,
the output. We define a so-called “path” as any series of virtual
“jumps” following transition arcs that connect adjacent nodes.
All paths, by definition, start at the output node, propagate to
adjacent nodes along arrow directions, and terminate at the
source node. Note, importantly, a path may create cyclical
loops, where, for example, repeated traversals of the same tran-
sition arc may occur. Moreover, some paths may not differ by
the number of repeated transition-arc traversals, but, instead,
by the sequence in which these repetitions occur. Paths with a

Figure 1. An order-s2 transition diagram for a three-stage
RC line, and the associated RC-circuit network. Here, and in
all subsequent illustrations, black-dot circuit nodes corre-
spond to transition-diagram nodes; the leftmost node i s
voltage input, the rightmost, voltage output. Arcs with di-
rection arrows represent order s0, s1, and s2 coupling coeffi-
cients between adjacent nodes.
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different number or sequence of cyclical loops we all consider
unique—they all need be included, in principle, as a possible
path-sum contribution.

Our Postulate states that we need sum over all possible unique
paths within the transition diagram of Fig. 1. In constructing
this sum, we multiply all weight factors encountered across
each arc in the path. We then sum this product of weight fac-
tors with other products so constructed, for each unique path.
When establishing a path, for any desired order of s, we must
be careful to include only weight factors that multiply to the
desired order. For example, an order-s2 path may include any
number of s0 arcs; in addition, two s1 arcs, or, instead, one s2

arc.

The diagram of Fig. 1 is order s2. We could, in principle, use
the Postulate, along with the diagram of Fig. 1, to evaluate IR
moments m0, m1, and m2. We simply need sum weight-function
products over paths of corresponding order s0, s1, and s2; con-
sistent with Eq. (1).

Now, refer to Fig. 2. Taken together, the black, dashed, and
dotted arcs compose a portion of the original second-order
transition diagram of Fig. 1. They arise only from the dark-
gray resistors and capacitors. Light-gray solid arcs, and corre-
sponding light-gray capacitors, are only shown for reference to
Fig. 1 here (and in all subsequent similar diagrams hereafter).
Two additional independent diagrams also exist, involving
distinct pairs of dark gray capacitors and associated dia-
grams (though not shown here). Black, dashed, and dotted s
and s2 arcs, emanating from any particular transition-diagram
node, arise from a single dark-gray capacitor connected to the
associated electrical-circuit node.

Figure 2 also shows some order-s2 transition-diagram paths for
m2—identical to some of those in the full-circuit diagram of
Fig. 1. Only paths with any combination of black, dashed, and
dotted arcs that traverse, in any given path—either two order-

s1 weight-factor arcs or o n e  order-s2 weight-factor
arc—contribute to the sum for m2. Note, incidentally, the two
paths, made either solely of dashed arcs or solely of dotted
arcs, are, in fact, the simplest possible ones in the sum for m2.
Of course, as noted before, more complicated, possibly cycli-
cal, paths involving combinations of black, dashed, and dot-
ted arcs exist in the sum, as well.

Figure 2 shows, in addition, a corresponding reduced circuit
for any combination of black, dashed, and dotted arcs. The
reduced circuit contains only dark-gray resistors, with two
dark-gray capacitors. In summary, the black, dashed, and dot-
ted arcs in the Fig. 2 diagram are identical to those of the cor-
responding reduced-circuit transition diagram, to order s2.

Observe, importantly, we could attempt to conveniently sum
all the second-order paths for m2 in Fig. 1 analytically, simply
by adding weight-factor products for m2 paths over the re-
duced-circuit transition diagram of Fig. 2. We need add also
path contributions from two other independent, related re-
duced circuits. Each such related, reduced circuit has simply a
different pair of dark-gray capacitors (see italics, in the Fig. 2
introductory paragraph). In other words, one might guess that
the full-circuit transition diagram of Fig. 1, and the collection
of Fig. 2 and two other related reduced-circuit diagrams, yield
the same result, to order s2, when summing over paths for m2.
Unfortunately, this approach incorrectly double counts certain
s2-path contributions.

Figures 3(a) and 3(b) illustrate double-counted path contribu-
tions when using the procedure suggested above. The order-s2

paths for m2 here we call “self interactions”, since they involve
traversals, in any given path, of either one order-s2 weight-
factor arc; or of two order-s1 weight-factor arcs, each emanating
from the same node (by cyclical path loops) . All self-
interactions are associated with a single dark-gray-capacitor
circuit node.

Figure 3(a). One of three order-s2 “self-interaction” tran-
sition diagrams for a three-stage RC line. Each involves a
single dark-gray capacitor. The other two diagrams arise
from networks with either a single left, or right, capacitor.

Figure 2. One of three independent order-s2 transition dia-
grams for a three-stage RC line. The corresponding reduced
circuit, with dark-gray RC components is shown as well. The
other two diagrams arise from networks with either left-
and-center, or left-and-right, dark-gray capacitors.
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Observe, importantly, one can construct all the self-
interactions for the Fig. 2 reduced circuit as a sum of self-
interactions for the pair of Fig. 3(a) and Fig. 3(b) reduced cir-
cuits. The pair, taken together, has identically placed dark-gray
capacitors vis-a-vis the Fig. 2 reduced circuit.

Observe, importantly, a portion of the transition diagram of
Fig. 1, and the entire diagram of Fig. 2 are equivalent, to order
s2, in summing over paths for m2—as long as one corrects for
double counting of self-interaction paths in Fig. 2. This re-
quirement is fundamentally based on our Sum-over-Paths Pos-
tulate. We correct by subtracting, once, the sum of Fig. 3(a) and
3(b) order-s2 self-interactions from all the “interactions” (self-
and otherwise) in Fig. 2. This properly generates the algorithm
we desire for a portion of m2 associated with the circuit of Fig.
1.

The remaining portion of m2 for Fig. 1 can be found similarly,
starting with each of the two other dark-gray capacitor reduced
diagrams (like Fig. 2, except a different capacitor pair), and
subtracting appropriate self-interactions using the diagrams of
Fig. 3(a), 3(b), or a third similar one (like Figs. 3, except con-
taining a sole leftmost dark-gray capacitor).

It is relatively easy to evaluate reduced-circuit IR moments
analytically, since they contain only one or two capacitors.
Carrying out the m2 evaluation of Fig. 2, and adding the re-
maining m2 of the other two independent, related two-capacitor
reduced circuits; and, appropriately, subtracting self-
interactions using m2 of Fig. 3(a), Fig. 3(b), or, the other inde-
pendent one-capacitor reduced circuit; we find

† 

m2 = 62t 2 . (3)

A check of (3) by analytically expanding H(s) about s = 0 for
the full circuit of Fig. 1 confirms our result.

3. MOMENT-EXTRACTION ALGORITHM
The algorithm we describe is, in fact, completely general. Ex-
tension to arbitrary RC electrical networks is straightforward.
In realistic applications, such as analysis of complex IC inter-
connects, one must sum over a relatively large number of
paths. Unfortunately, this procedure can require an excessive
amount of computation. To facilitate path summing in large
RC networks, we suggest, therefore, stochastic evaluation of
the path sums. In this way, we preserve full parallelism, and
allow efficient IR-moment extraction by means of statistical
sampling.

What follows are extraction algorithms for the first three IR
moments. The first two originate from simpler arguments than
the one for m2 presented in this work:

—Zeroth IR Moment m0—

Step 1:  Remove all capacitors from the full circuit, es-
tablishing a reduced circuit.

Step 2:  Evaluate m0 for the reduced circuit and equate
to that of the full circuit.

—First IR Moment m1—

Step 1:  Set a running sum to zero.

Step 2:  With an equal probability, select any particular
capacitor in the full circuit.

Step 3:  Remove all other capacitors from the full cir-
cuit, establishing a reduced circuit.

Step 4:  Evaluate m1 for the reduced circuit and add to
the running sum.

Step 1:  Repeat Steps 2–4 a given number of times (sam-
ples), based on desired statistical accuracy.

Step 5:  Divide the running sum by the number of times
Steps 2–4 have been executed, evaluating m1 for the full
circuit.

—Second IR Moment m2—

Step 2:  Set a running sum to zero.

Step 3:  With an equal probability, select any capacitor
in the full circuit.

Step 4:  Repeat Step 2.

Step 5:  Remove all other capacitors, not selected in Step
2–3, from the full circuit, establishing a reduced circuit.

Step 6:  If the capacitors selected in Steps 2–3 are the
same ones, evaluate m2 for the reduced circuit, double the
result, and add to the running sum.

Step 7:  If the capacitors selected in Steps 2–3 are dif-
ferent ones, construct two additional single-capacitor
reduced circuits: one for each capacitor in Steps 2–3.
Evaluate m2 for the reduced circuit of Step 4 and subtract
m2 for each of the additional single-capacitor reduced
circuits. Add the resulting m2 to the running sum.

Step 8:  Repeat Steps 2–6 a given number of times (sam-
ples), based on desired statistical accuracy.

Figure 3(b). Another of three order-s2 self-interaction tran-
sition diagrams for a three-stage RC-line.
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4. COMPUTATIONAL RESULTS
To verify our proposed stochastic sum-over-paths algorithm,
we present computational results for coupled RC lines. All
calculations were performed with an IBM T20 PC Laptop™,
which uses a 700MHz Pentium III™ microprocessor. Our com-
piler of choice for numerical programming was Metrowerks
Codewarrior C/C++ Professional™, Release 5. We selected
compiler settings to achieve a nominal floating-point multi-
plication rate execution rate of approximately 66.66M/s. All
circuits in our study have common respective resistor and
capacitor component values, with t = RC = 1ns.

Figure 4 depicts a multi-stage coupled RC line. We define a p-
stage line as a succession of p–1 RC stages. The last pth termi-
nation stage is a split-resistor coupling-capacitor network, as
indicated in the figure.

Figures 5(a) and 5(b) show coupled-line results for m1 and m2.
Respective m1 and m2 execution times for 10M samples, the
rightmost data points, were on the order of 4s and 9s for all
circuits. Excellent agreement with analytical values was

achieved in the high sample-number limit. We, in fact, estimate
a 1-s statistical error of order 5% for m1 and 15% for m2, even
after a relatively few 100 samples.

5. CONCLUSION
In summary, we have created a new IR moment-extraction algo-
rithm for RC circuit networks. Our approach employs a Feyn-
man Sum-over-Paths Postulate, diagrammatic expansion of the
circuit transfer function, and stochastic evaluation of the path
sum. In developing the algorithm, we have maintained compu-
tational efficiency and full parallelism. Initial verification
studies of coupled RC lines furnished promising results: rapid
initial convergence and excellent agreement with exact, ana-
lytical moment values.

Though the initial verification study presented in this work
was confined to RC lines, our stated Sum-over-Paths Postulate
implies generality for arbitrary RC-interconnect networks. The
algorithm, of note, is well suited to future application in mas-
sively coupled systems, like those encountered in high-end
digital-IC interconnects.
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