
Dynamic Fault-Tolerance and Metrics for Battery Powered,
Failure-Prone Systems

Phillip Stanley-Marbell, Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

{pstanley, dianam}@ece.cmu.edu

ABSTRACT

Emerging VLSI technologies and platforms are giving rise to
systems with inherently high potential for runtime failure.
Such failures range from intermittent electrical and mechanical
failures at the system level, to device failures at the chip level.
Techniques to provide reliable computation in the presence of
failures must do so while maintaining high performance, with
an eye toward energy efficiency. When possible, they should
maximize battery lifetime in the face of battery discharge non-
linearities. This paper introduces the concept of adaptive fault-
tolerance management for failure-prone systems, and a classifica-
tion of local algorithms for achieving system-wide reliability.

In order to judge the efficacy of the proposed algorithms
for dynamic fault-tolerance management, a set of metrics, for
characterizing system behavior in terms of energy efficiency,
reliability, computation performance and battery lifetime, is
presented. For an example platform employed in a realis-
tic evaluation scenario, it is shown that system configurations
with the best performance and lifetime are not necessarily
those with the best combination of performance, reliability,
battery lifetime and average power consumption.

1. INTRODUCTION
New applications of VLSI technology pose many challenges

for existing CAD methodologies. The emergence of power
consumption as a critical system design constraint, particu-
larly in battery powered computing systems, led to the devel-
opment of a slew of techniques for power management. These
efforts have further been bolstered by recent attention to the
effect of application profiles on battery lifetimes. Progress in
device technologies, coupled with reduction in costs, is en-
abling new classes of applications, such as sensor networks,
and large-area surfaces with embedded computation, sens-
ing and actuation capabilities [13]. Such flexible substrates
may contain 100’s or 1000’s of low power microcontrollers em-
bedded per m2, with power distribution and communication
fibers, and actuation capabilities in the form of shape-memory-
alloys embedded in the substrate [14]. These emerging tech-
nologies pose new CAD challenges in much the same way that
the burgeoning portable computing device market caused in-
creased attention to power management techniques and algo-
rithms.

A new dimension in requirements, is that of reliability in the
presence of runtime failures. Runtime failures may be due, for
example, to intermittent electrical failures arising from wear
and tear in a wired sensor network embedded in a flexible
substrate. They may likewise be due to changes in weather
conditions in a networked sensor deployed outdoors. Failures

due to the depletion of energy resources (such as batteries), al-
though often predictable, may also occur.

CAD methodologies and algorithms which address a com-
bination of issues of runtime failure of components and their
induced performance and power consumption overheads, are
therefore essential. Providing fault tolerance usually entails
providing redundancy—in the presence of failures, redundant
devices or spares are employed to provide correct system be-
havior. Invariably, portions of the executing application must
be moved from failing devices to redundantly deployed ones.
In gracefully degrading systems, the redundantly deployed de-
vices are also employed for computation, providing better sys-
tem performance in the absence of failures. In order to judge
the efficacy of proposals in an appropriate design methodol-
ogy framework therefore, metrics which combine energy ef-
ficiency, performance, reliability and battery lifetime (taking
into consideration nonlinearities in battery and DC-DC con-
verter characteristics) are required.

Contributions

This paper introduces the concept of dynamic fault-tolerance
management (DFTM), presented from the viewpoint of failure-
prone battery powered systems with energy constraints.
The proposal is intended to provide for failure-prone sys-
tems, what dynamic power management provides for energy-
constrained systems. Unlike energy resources, adapting to fail-
ure requires the harnessing of fault-free devices as surrogates
for failing ones. In order for such dynamic fault-management
algorithms to be implemented across devices in a system, with-
out requiring global coordination, they must employ purely lo-
cal information and decisions to control the system-wide adap-
tation.

In order to determine the efficacy of different configurations
of DFTM, we employ results from traditional performance-
related reliability measures (generally referred to as performa-
bility measures) as well as introduce new measures that in-
corporate energy efficiency, battery discharge effects, perfor-
mance and reliability, which will henceforth be referred to
as the ebformability measures1. The effectiveness of the pro-
posed DFTM approach, as well as the benefits of employing
ebformability measures in a design methodology framework
for emerging platforms, is verified through a detailed simula-
tion study. The simulation framework employed, models com-
putation (at the instruction level), communication (at the bit
level), runtime failures in both communication and computa-
tion, power consumption, and battery discharge effects.

1The name ebformability was chosen to denote the combination of energy-
efficiency, battery lifetime, performance and reliability measures.

633

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

The remainder of the paper begins with a survey of related
research in Section 2. A description of DFTM is presented in
Section 3, followed by a derivation of the ebformability measures
in Section 4. Section 5 presents an experimental evaluation of
the posited ideas, and the paper concludes with a summary of
the key contributions, in Section 6.

2. RELATED RESEARCH
Particular attention has been paid to average power, peak

power, energy consumption, as well as to metrics that com-
bine the above with performance measures, such as the
energy×delay and energy×(delay2) metrics. These metrics
have enabled the developers of CAD tools to ascertain the
relative benefits of algorithms and implementations of hard-
ware, in terms of both performance and power/energy con-
sumption. There have been previous efforts in providing reli-
able computational substrates out of possibly unreliable com-
ponents, dating back to von Neumann’s seminal work [17].
A significant body of research has addressed combined per-
formance and reliability measures [1], but there hitherto have
been no contributions in the area of measures that combine
performance, power consumption, battery lifetime and system
reliability. Analytic and simulative models for battery life es-
timation [8, 2] provide means of determining which applica-
tion workloads will provide longer battery system lifetime, but
they neither provide a combined measure of battery life and
performance nor a measure that takes into account battery life,
performance and reliability.

Unlike efforts aimed at providing guarantees in system per-
formance, employing a central layer of control [7], the proposal
of this work, is to provide general fault-tolerance management,
using only identical local algorithms at each node in a network.
Without a central point of control, a challenge is to provide re-
silience to faults on the macro scale, from decisions performed
at individual nodes.

The application domains that stand to benefit greatly from
both techniques for reliable computation in the presence of fail-
ures, and metrics for judging the efficacy of such techniques,
are the emerging technologies of sensor networks as well as
wired sensor networks such those embedded into flexible sub-
strates.

3. DYNAMIC FAULT-TOLERANCE MANAGEMENT
In traditional low power and portable computing systems,

dynamic power management [9] exploits variations in applica-
tion requirements, to adjust performance and power consump-
tion of a system to application behavior. By employing sim-
ple rules and predictions (e.g., if the system has been idle
for x minutes, spin down the disk), traditional power man-
agement techniques enable longer lifetime in the presence of
workload variations and energy resource constraints. Dy-
namic fault-tolerance management (DFTM), proposed in this pa-
per, aims to encompass a broader range of constraints besides
power consumption—to take advantage of variations in both
application and environment behavior, enabling maximal appli-
cation lifetime in the presence of both energy and reliability
constraints, with a possible tradeoff for performance. Environ-
ment behaviors may include not just limited energy resources
and battery performance, but also runtime failures, which (al-
though not prevalent in traditional computing systems), will
be a key consideration in emerging technologies. In a battery
powered networked system that may witness a large number

of runtime failures, for example, DFTM must determine ac-
tions to be performed to maximize system lifetime.

Unlike in the case of power constraints where decisions are
based solely on local resources, failures in individual com-
ponents are generally addressed by providing an external
component—redundancy—such that failing components may
be superseded by functional ones. Approaches to manage fault
tolerance as opposed to those that manage power consumption,
must therefore consider reconfiguration of system resources.

A structured approach to these reconfiguration decisions
will be essential for tractability in defining algorithms for fault-
tolerance management. In this work, we propose a structur-
ing of algorithms which provide, in addition to local decisions
(exemplified by traditional power management techniques), a
framework for system reconfiguration algorithms. Prior re-
search in reconfiguring arrays of computing systems in the
presence of faults [4] has shown that the worst case slowdown
due to reconfiguration (e.g., moving from the use of a failing
resource to a redundantly deployed functional one) is linearly
dependent on three factors:

• Load, l: This reflects the increase in resource utilization at
a processing device, as a result of a system reconfigura-
tion.

• Dilation, d: Denotes the increase in communication la-
tency between processing elements, resulting from a sys-
tem reconfiguration.

• Congestion, c: This is a manifestation of the decrease in
system bandwidth resulting from a system reconfigura-
tion.

Algorithms to be enabled at each node2 in the system, must
enable the minimization of the effects of load, congestion and
dilation, minimizing the system slowdown, but without re-
quiring global coordination between devices. Dynamic fault-
tolerance management, as proposed in this work, therefore
consists of three components:

• Local Decision Algorithms (L-Class) : Changing the lo-
cal behavior of a node, such that the node’s behavior with
respect to its neighbors decreases one or all of the con-
gestion, c, load, l or dilation, d. For example, a decision
of whether or not to forward data between links to which
a node in a network is connected, will affect congestion
and dilation.

• Re-mapping Decision Algorithms (M-Class) : Determin-
ing when to adapt the system configuration, employing
fault-free devices as surrogates for failed ones.

• Re-mapping Destination Algorithms (D-Class) : Find-
ing the appropriate alternate system configuration. For ex-
ample, experiencing excessive communication errors at a
node in a network, may necessitate transfer of execution
to an alternative redundantly deployed device, which
provides an alternative error-free communication path.

In this paper, a specific implementation of the aforemen-
tioned classes of algorithms is presented, targeted at battery
powered networked embedded systems, comprised of large
2In the remainder of the paper, the terms “node” and “device” are used inter-
changeably to refer to a processing device. Likewise, “link” and “network seg-
ment” are used interchangeably to refer to the communication interconnect that
may link two or more processing devices.

634

Table 1: A possible set of DFTM Algorithms. Local al-
gorithms (L0–L2), re-mapping decision algorithms (M0–M3)
and migration destination algorithms (D0–D4).

Algorithm Description
L0 Do not forward packets.
L1 Do not accept migrating applications.
L2 Never cache information.
M0 Battery too low : re-map.
M1 Too many node faults : re-map.
M2 Too many collisions : re-map.
M3 To many carrier sense errors : re-map.
D0 Pick a random redundant node to re-map to.
D1 Migrate to redundant node with lowest

number of collisions.
D2 Migrate to neighbor with lowest number of

carrier-sense errors.
D3 Migrate to neighbor with most energy.
D4 Migrate to redundant node with most direct

links to communication target.

numbers of nodes, with a fraction of the nodes being redun-
dantly deployed. In the presence of failures, execution of com-
ponents of an application may be relocated to these redundant
devices. Since multiple algorithms are defined for each class,
with the possibility that multiple algorithms might be relevant
at the same instant (i.e., algorithms might not necessarily be
orthogonal in some settings), it will be necessary, where appro-
priate, to define priorities for the different algorithms. Such a
priority scheme is not pursued in this work, and is a direction
for future research.

To adapt a system to time-varying failure rates and modes,
in order to provide fault-free macroscopic behavior from a faulty
substrate, it is essential to perform on-line monitoring of fail-
ures. For a networked system consisting of battery powered
devices, with high probabilities of failures in the interconnec-
tion links and devices, the statistics that may be monitored in-
clude: (1) Remaining battery capacity, (2) Link carrier sense errors,
(3) Link collisions and (4) Node faults.

Table 1 provides an example instantiation of simple DFTM
algorithms for a system with the aforementioned failure statis-
tics monitored. Nodes must employ heuristics to ascertain
these properties at their neighbors, based on locally measured
values. For example, in the case of a device connected to mul-
tiple communication links, if one of those links is experienc-
ing a significant number of failures, the device can infer that
nodes attached to that same interface will be experiencing sim-
ilar conditions. Since all the DFTM algorithm classes employ
only information from a device’s immediate neighbors, the re-
quired information could also be queried from these nodes if
necessary.

3.1 L-Class Algorithms
The local decision algorithms or L-class algorithms aim to

adapt the execution of applications to prevailing conditions,
without performing application re-mapping. The L0 algo-
rithm, which determines whether or not nodes forward pack-
ets, has a direct effect on the performance of the system as a
whole, while minimizing work performed locally, and hence
extending the local lifetime. If there exists a node in the sys-
tem whose only communication path is through a node with
the L0 algorithm enabled, for example, due to failures in its
other links, then such a node will be effectively disconnected

from the network. Thus, rather than greedily enabling local
decision algorithms to minimize consumption of local energy
resources, devices must take into consideration the role they
play in the system as a whole. Rather than permanently en-
abling L0 to conserve energy resources, a node in a network
may periodically or randomly enable this algorithm. The L1
algorithm is relevant to redundantly deployed nodes in a sys-
tem. A node with L1 enabled will not permit applications to be
re-mapped onto it. This can be desirable if it is more important
for the node to use its energy, for example, to forward pack-
ets. Finally, the L2 algorithm determines whether or not a node
should cache information. Caching data might reduce the need
to communicate in some applications, but can constrain nodes
from aggressive power management—e.g., going into a deep
sleep mode might lead to loss of such cached data, thus the
requirement to cache data might preclude devices from enter-
ing a deep-sleep state. The particular L-class policies listed
above are only relevant in a system which supports multi-hop
communication, and are not investigated further in this paper.
They are the subject of our current investigations.

3.2 M-Class Algorithms
In systems which contain redundantly deployed nodes, it is

possible to re-map execution of applications from nodes wit-
nessing adverse conditions to those experiencing more favor-
able conditions. The M-class algorithms determine when to per-
form such re-mapping. In the particular instantiations listed
in Table 1, the M0 algorithm specifies to attempt to re-map
an executing application when battery levels fall below a criti-
cal threshold. The threshold associated with an M0 algorithm
must be conservative enough to ensure that the re-mapping
process completes before energy resources are completely ex-
hausted. The M1, M2 and M3 algorithms cause application
re-mapping to occur when a threshold in number of faults that
have occurred in a node, link collisions and link carrier-sense
errors respectively, have exceeded their associated, specified
threshold.

3.3 D-Class algorithms
The re-mapping destination algorithm strives to determine

a node that an application should be re-mapped to. Of the par-
ticular example D-class policies listed in Table 1, D1, D2 and
D4, are well suited to situations in which links in a system fail
and it is desirable that applications adapt around these fail-
ures. The D3 algorithm is relevant to all systems with limited
battery resources, while the D0 algorithm may be enabled in
systems in which it is either impossible or prohibitively expen-
sive to determine the best neighbor to re-map to.

Online versus offline DFTM

The first step in this investigation of DFTM is to employ an
offline approach, in which the best set of algorithms for the
likely prevalent conditions are determined for a system at de-
sign time. An online approach in which the algorithms to
be activated are themselves determined by some higher-level
meta-algorithms, is a challenging area of future research. Be-
fore discussing the experimental evaluation of a system with
a subset of the above algorithms implemented, new measures,
which enable a combined evaluation of performance, power
consumption, reliability and the effect of the application power
consumption profile on battery life, are introduced in the fol-
lowing section.

635

4. METRICS
In gracefully degrading fault-tolerant systems [3], failure of

a subset of the system resources leads to a degradation in per-
formance, but it is not catastrophic in nature. The redundantly
deployed devices in such a system can be viewed as providing
additional performance in the absence of failures, and enabling
continued operation in the presence of failures. In such sys-
tems therefore, it is necessary to employ metrics that take into
account both system performance and reliability [1]. For sys-
tems in which performance, power (average and peak power,
and overall energy consumption) and battery lifetime3 may be
traded off for reliability, similar measures are required to as-
certain the effectiveness of system architectures, programming
models, and the like. This section introduces such metrics.

In order to derive the necessary metrics using Markovian
analysis, the following derivations assume that failures in the
system under study are exponentially distributed, i.e., the
probability of failure of a component is independent of its past
histories of failures. The assumption enables the use of Marko-
vian analysis to derive expressions for the failure probabili-
ties over time. For situations where such an assumption will
not hold, alternative means of deriving the expressions must
be employed—the derived measures, their applicability, and
meaning however, will not change.

4.1 Combined Energy, Battery, Performance and Relia-
bility (Ebformability) Metrics

In the following, F is the set of failure states, a subset of the
states in which a system may exist, which are indexed with the
variable i. The initial system state is always denoted by I . The
probability of being in a state i after n times steps is denoted
Pi(n). The behavior of a system (e.g., a particular computa-
tional surface) under study, can be characterized as consisting
of a collection of distinct states in a Markov model, each state
corresponding to a given level of performance. For example,
in a gracefully degrading system with N nodes, 3 or more of
which must be functioning in order for the system to be con-
sidered “alive”, the system may be modeled as a set of N + 1
states, {0..N}, of which three states, 0, 1 and 2 constitute the
set of failing states, F = {0, 1, 2}.

Based on data obtained from observing the system, or from
simulation, the transition probabilities between states of the
system may be used to obtain the transition probabilities be-
tween states after n steps (for a discrete time Markov chain) or
over time (for a continuous time Markov chain). For a discrete
time Markov chain, the steady-state probabilities are given (by
the Chapman-Kolmogorov equation [15]) as:

P (n) = P (l)P (n−l), for 0 < l < n. (1)

where P is the matrix of the one-step transition probabilities,
and P (n) is n-th product of P with itself. The probability of
being in a given state after n steps, can be solved for using ei-
ther direct or iterative methods such as the power method [15],
using the initial conditions for state probabilities, PI(0) = 1
and Pi(0) = 0, for some initial state I 6= i. The variation of
probability of being in a given state as the system evolves, can
now be used to derive further measures that incorporate sys-
tem reliability.

In extending traditional reliability measures4 to include per-
3Battery lifetime is a non-linear function of the variation in power consumption
profile over time.
4A traditional reliability metric, the availability [1], is given by the limit of the

formance in gracefully degrading systems, prior work [1] per-
formed a transformation from the time domain to the compu-
tation domain, to obtain a computation availability, T , as shown
below. To include the effect of power consumption, as pro-
posed herein, a further transformation to the time-power do-
main is necessary, to obtain the computation availability per Watt,
Tpw:

T = α · n (2)

Tpw = αpw · n =
α

Avg. Power Consumption
· n (3)

where α is the computation capacity—the amount of useful com-
putation per unit of time performed in a given state and n is
the number of time steps. Similarly, αpw is the amount of use-
ful computation per Watt of power dissipated in a given state.
The quotient of performance and power is employed in αpw

rather than the product (as in the case of, say, the energy-delay
product), because for congruence with α, it is desired for larger
values of αpw to be better.

4.2 The Capacity Function
Ci(T), the capacity function [1], is the probability that the

system executes a task of length T before its first failure, given
that the state at the start of computation was i:

Ci(T) =
�

j 6∈F

P ∗j (T) (4)

P ∗j (T) (or Pj(n) expressed in terms of T = α · n) is the proba-
bility of being in a given state after T = α · n amount of com-
putation. Larger values of Ci(T) are desirable for a given T .
A new metric, which extends the capacity function to include
considerations of power consumption, the capacity function
per Watt, Cpwi(Tpw) is given as:

Cpwi(Tpw) =
�

j 6∈F

P ∗j (Tpw), (5)

where
P ∗j (Tpw) = Pj(n) with Tpw = αpw · n

Ci(T) and Cpwi(Tpw), however, do not take into account
the limitation on lifetime imposed by an energy source. For
example, Ci(T) for a given system might be non-zero for some
amount, T , of computation performed, even though for that
system, the energy resources cannot sustain the system for T
amount of computation. This discrepancy is the result of the
model as described thus far, only taking into consideration fail-
ures (as modeled by the system states and transition probabili-
ties) and the system performance (as modeled by the computa-
tion capacities α and αpw), but having no model of the restric-
tions imposed by limited energy resources such as batteries.
As presented thus far, it is therefore applicable to systems that
are not battery-powered.

In a battery powered system, the variation of Ci(T) will
be affected by the battery state of charge profile, and will be
bounded by the battery life. The battery-aware capacity function,
Cbatti(T), is defined as:

Cbatti(T) =
�

j 6∈F

P ∗j (T) · ζbatt(T) (6)

where ζbatt(T) is the normalized variation of the state of
charge of the battery with the amount of computation. It is
sum of the steady state probabilities of being in a non-fail state. The Mean Time
To Failure (MTTF), is equivalent to the availability with absorbing failure states.

636

obtained by transforming the variation of the battery state of
charge versus time curve, (which can be derived from the data-
sheet for a particular battery cell), into the computation do-
main. In addition to the battery-aware capacity function, it
might be important in a battery-powered system to also con-
sider a battery-aware capacity per Watt, Cbattpw(Tpw):

Cbattpwi(Tpw) =
�

j 6∈F

P ∗j (Tpw) · ζbatt(Tpw) (7)

Ci(T), Cbatti(T), Cpwi(Tpw) and Cbattpwi(Tpw) are used
to calculate the Mean Computation Before Failure (MCBF) [1],
and new related measures which incorporate both power con-
sumption and the effects of the power consumption profile
on battery lifetime—Mean Computation Before Battery Failure
(MCBBF), Mean Computation per Watt Before Failure (MCPWBF)
and Mean Computation per Watt Before Battery Failure (MCP-
WBBF) respectively:

MCBF =
∞�

0

CI(T), (8)

MCBBF =
∞�

0

CbattI(T) (9)

MCPWBF =
∞�

0

CpwI(Tpw), (10)

MCPWBBF =
∞�

0

CbattpwI(Tpw) (11)

where I is the initial state, at n = 0 (and T = 0 or Tpw = 0).

4.3 Computation Reliability
The computation reliability [1], R∗(n, T) is the probability the

system executes a task of length T , given that the system state
is i at time-step n. It is extended here to the computation relia-
bility per Watt is Rpw∗(n, Tpw):

R∗(n, T) =
�

i6∈F

Ci(T)Pi(n) (12)

Rpw∗(n, Tpw) =
�

i6∈F

Cpwi(Tpw)Pi(n) (13)

Similar definitions can be given for computation reliability before
battery failure and computation reliability per Watt before battery
failure. They are omitted here for brevity, since they will not be
employed in subsequent evaluations in Section 5. It is desir-
able for a system to have both its R∗(n, T) and Rpw∗(n, Tpw)
decline slowly with increasing n, T and Tpw. In other words,
a higher expected reliability with increasing task size (amount
of computation) is desirable. Similarly, for a fixed amount of
computation, a larger expected reliability with increasing task
completion time (for example, due to slower computation) is
desirable.

The above measures can be used to determine the efficacy
of a system in providing fault-tolerant operation with the best
combination of power consumption, performance, reliability
and longest battery lifetime. Such an evaluation would pro-
ceed by first defining the system states, and determining the
transition probabilities between states. The probability of be-
ing in a given state, i, after a number of time steps, Pi(n), can
then be obtained by any of the methods described in the litera-
ture. The derivation of Pi(n) in this section assumed a system
that obeys the Markovian property. Regardless of the method

used to determine Pi(n), it can then be transformed to P ∗i (T),
by expressing the probability of being in a given state, in terms
of amount of computation performed, rather than time steps.
This requires an appropriate definition for the particular sys-
tem under study, of the computation availability, α. The met-
rics taking into account performance, reliability, battery life
and power consumption can then be determined as detailed
in equations 5–13 above.

5. EXPERIMENTAL EVALUATION
DFTM enables individual nodes to adapt to faults, using re-

dundant computing resources, by re-mapping executing appli-
cations from failing systems to redundantly deployed ones. In
this work, the re-mapping is achieved by lightweight code migra-
tion, although other techniques such as remote execution may be
substituted—the ideas of DFTM are not tied to any particular
re-mapping approach.

In what we term lightweight code migration [12, 13], in con-
trast to traditional process migration [6], applications are im-
plemented in a manner in which they can be asynchronously
restarted while maintaining persistence for important state. By
placing information that must be persistent across restarts in
the initialized and uninitialized data segments of the applica-
tion, it is possible to maintain state across migration while only
transferring the program code, initialized data and uninitial-
ized data segments.

5.1 Driver Application
The driver application used in the subsequent analysis of the

efficacy of DFTM is beamforming [16]. The goal in beamforming
is to detect the location of a signal source, and “focus” a set of
sensors (e.g., microphones) on this source. In a traditional im-
plementation, sampled signals from spatially distributed sen-
sors are sent to a central processor, which processes them to
determine the location of the signal source and reconstruct a
desired signal. Each sample is processed (filtered), and this pro-
cessing is largely independent of the processing of other sam-
ples.

In a system with multiple spatially distributed processing
devices, the beamforming application may be partitioned such
that each filter operation for a given sensor is mapped to
one processing device (henceforth referred to as a slave node),
and the filtered samples may be communicated to one device
(henceforth, master node) to perform a final collation step. Fig-
ure 1 illustrates the logical and a possible physical organiza-
tion for an integrated computational, sensing and actuation
surface [14] used to perform beamforming.

5.2 Platform
The framework used in the evaluation of DFTM is a cycle ac-

curate simulator of computation, communication, power con-
sumption, battery discharge characteristics and node/link fail-
ures [10]. The modeling of the battery and DC-DC converter
subsystem employ a discrete-time battery model based on [2].
The simulation of instruction execution and associated power
consumption is based on [11].

For example, to model the topology shown in Figure 1, 25
processing nodes and 12 communication links are instantiated
in the simulator. The operating frequencies and voltages of
the processing nodes may be specified, affecting both the per-
formance (time scale) and power consumption during simu-
lation. The instantiated communication links are configured
with specific link speeds, link maximum frame sizes, transmit

637

0

211

23

4 2419

18

15 20

16

9

8

6

5

3

0 1 3 4 52

6

7

8

9

10

11

(Hardware Topology)
Mapping

Application Partition M

1772

13

14

11

10

12 22

Figure 1: Nodes in the logical organization (top) represent units
of concurrency in the application. In the hardware topology
(bottom), heavy lines represent shared communication links
and circles represent computation nodes. Connections to the
communication links are shown with light lines.

Table 2: Relevant parameters employed in experimental
evaluation.

Attribute Value
Operating Frequency 60 MHz @ 3.3V

Idle Mode 15MHz @ 0.85V
Battery Capacity 0.5 mAh

Battery Parameters Panasonic CGR18 family
DC-DC Conv. Efficiency Maxim MAX1653
Communication Power 250mW (RX/TX)

Link Speed 200 Kb/s
Link Maximum Frame Size 1024 bits

and receive power consumption and other parameters. Each
instantiated processor, e.g., node 0 in the lower half of Figure 1,
is configured to have 4 network interfaces, and these interfaces
are attached to specific network communication links, links 6,
1, 7 and 0 (lower half of Figure 1) in the case of node 0. Both
the nodes and the links may be configured with failure prob-
abilities for intermittent failure, as well as maximum failure
durations. In the case of Figure 1, the links are used as mul-
tiple access communication links, however, they may also be
used as direct (point-to-point) links between nodes. The sim-
ulation of processing clock cycles is synchronized with that of
the data transmission, thus the modeling of communication
and computation are cycle accurate with respect to each other.
A few simulation parameters of relevance are listed in Table 2.
When not actively performing computation, nodes in the sys-
tem place themselves into an idle mode, to conserve battery re-
sources.

The experiments conducted can be categorized into three
groups. The first group (Exp. 0–Exp. 2 in Table 3) of exper-
iments serves as a baseline, and illustrates the performance of
the system in the absence of DFTM. The second group (Exp.
3–Exp. 6 in Table 3) investigates the efficacy of the differ-
ent DFTM D-class algorithms (i.e., migration destination deci-
sions), for a system with a localized failing link5 and migration

5Without loss of generality, an arbitrary choice was made to induce failures in
link #9.

Table 3: Experiments used to investigate the efficacy of a
subset of the proposed DFTM algorithms. The topology on
which the beamforming application executes is that from
Figure 1.

Exp. Config. Description
0 No DFTM No intermittent faults, only low batt.

Migrate to a pre-assigned redundant
node, when battery levels run low.

1 No DFTM Intermittent faults in links, rate 1E-8.
Migrate to a pre-assigned redundant
node, when battery levels run low.

2 No DFTM Intermittent faults in link #9, rate 1E-6.
Migrate to a pre-assigned redundant
node, when battery levels run low.

3 (M0, D0) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on low battery
to a random redundant node.

4 (M0, D1) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on low battery
to redundant node with fewest
collisions.

5 (M0, D3) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on low battery
to redundant node with most energy.

6 (M0, D4) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on low battery
to redundant node with most links
to master node.

7 (M2, D1) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on too many
collisions, to the redundant neighbor
with fewest number of collisions.

8 (M3, D2) Intermittent faults in link #9, rate 1E-6.
DFTM algorithm: re-map on too many
carrier sense errors, to the redundant
neighbor with fewest number of
carrier-sense errors.

initiated only on low battery levels (i.e., M0 from the M-class of
algorithms). The last grouping (Exp. 7–Exp. 8 in Table 3) inves-
tigates the performance of the system with the logical group-
ing of DFTM M-class and D-class algorithms, that relate to fail-
ing links. The instantiations of the L-class algorithms are not
evaluated for this application, and are a topic of our current
investigations.

The failure rates specified in Table 3 are the failure proba-
bilities per simulation time step of 16ns (corresponding to the
duration of one CPU clock cycle at 60MHz). In choosing fail-
ure rates to provide appreciably adverse conditions for DFTM,
a failure rate of 1E-6 for the configured faulty link was em-
ployed in all experiments with DFTM. In previous investiga-
tions of the application and simulated hardware, it was ob-
served that a failure rate of 1E-7 was the breakpoint at which
the system was not able to hide the additional cost imposed
by the failures, under the available slack. Failure rates in the
range 1E-6 to 1E-8 per 16ns are similar to those of first genera-
tion networking and computer hardware [5], and seem reason-
able choices therefore, for emerging hardware technologies in
failure-prone environments.

5.3 Effect of DFTM Algorithms on Performance
The CPU occupancy is indicative of the possibility of map-

ping multiple applications to a single processing element,
given the requisite system software support. The product
of the idleness (1 / (CPU occupancy)), and the application

638

Figure 2: Variation of α (product of CPU idle-time fraction
and application average sample throughput) across experi-
ments.

throughput (average number of samples per round in beam-
forming application) is therefore used as the computation ca-
pacity, α, defined in Section 4. Larger values of α indicate bet-
ter combined performance and efficiency in using computation
resources.

Figure 2 shows the variation in α across experiments. The
DFTM algorithms that exhibit the best computation capacity,
α, are the (M0, D3), (M2, D1) and (M3, D2) algorithms, in
order of increasing performance. From Table 3, these three
algorithms aim to maximize available energy resources and
minimize communication errors. Thus, the result is to be
expected—in the presence of limited energy resources and
faulty communication links, they provide the most efficient so-
lutions.

Figure 3: Increase in system lifetime over baseline without
DFTM.

The percentage increase in system lifetime, over the baseline
without DFTM, is shown in Figure 3. The algorithm group-
ing which witnesses the longest lifetime is Exp. 5, the (M0,
D3) algorithm tuple (which aims to maximize available energy
resources), with a 13.7% improvement over the baseline. Com-
paring the lifetime trends to those for computation capacity
in Figure 2, it is apparent that the system configuration with
the longest lifetime is not the most computationally efficient.
These results however, neither provide a measure of which
set of algorithms provides better reliability in the limit, nor do
they provide a measure of the combined reliability, power con-
sumption and battery life.

10000 20000 30000 40000 50000 60000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) C(T) (b) R*(n, T)

0

20000

40000

60000

T

500

1000

1500
2000

n

0
0.2
0.4
0.6
0.8

1

0

20000

40000

60000

T

Figure 4: Variation of (a) capacity Ci(T) and (b) reliability
R∗(n, T) for baseline system without DFTM (Exp. 2).

10000 20000 30000 40000 50000 60000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) C(T) (b) R*(n, T)

0

20000

40000

60000

T

500

1000

1500
2000

n

0
0.2
0.4
0.6
0.8

1

0

20000

40000

60000

T

Figure 5: Variation of (a) capacity Ci(T) and (b) reliability
R∗(n, T) for DFTM algorithm (M0, D3) which aims to maxi-
mize battery life.

5.4 Reliability and Mean Computation
The previous set of results evaluated the performance of the

various DFTM algorithm tuples in terms of traditional mea-
sures of performance. The algorithm tuple leading to the
longest system lifetime (M0, D3) may not indeed provide the
best performance (from Figure 2, this was attained by Exp. 8,
the (M3, D2) algorithm). However, neither of these pieces of
information provide any insight into which system is more re-
liable during its lifetime, and which system has the best com-
bination of performance, battery lifetime and reliability. The
measures derived in Section 4 however make it possible to
reach such conclusions with a combination of constraints.

Figure 4(a) shows the variation of the capacity function, the
probability that the system executes a task of a given length,
starting from its initial conditions, for the baseline system
without DFTM. The probability of the system executing a task
of a given length approaches zero as the task length (T), ap-
proaches 4000 units. The reliability of the baseline system, the
probability that the system executes a task of a specified length
T , given that the system is in a non-failed state at time step n,
is shown in Figure 4(b). The front-left face of the cube is equiv-
alent to the plot of the capacity function, since the system starts
of, in that case, with n = 0. The rear-left face of the cube like-
wise gives the amount of computation than can be performed
with increasing time steps, for a task of minimal length.

Equivalent trends for the algorithm setting which achieves
the longest lifetime (Exp. 5, See Figure 3) are shown in Fig-
ure 5. Compared to the baseline system without DFTM, this
configuration exhibits a much slower decline in the probabil-
ity of the system being in a non-failure state—thus, it provides
a better reliability of executing a task of a given length for in-
creasing task lengths, and for increasing durations of time in
which to do so. The system maintains a non-zero probability
of being in a non-failed state past T = 50, 000. The best reli-
ability is however provided by the algorithm groupings that
explicitly address the issue of failures (as opposed to lifetime).
The capacity function and reliability plots for the (M3, D2) al-
gorithm grouping is shown in Figure 6.

639

10000 20000 30000 40000 50000 60000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) C(T) (c) R*(n, T)

0

20000

40000

60000

T

500

1000

1500
2000

n

0.99985

0.9999

0.99995

1

0

20000

40000

60000

T

0.99985

0.9999

0.99995

1

Figure 6: Variation of (a) capacity Ci(T) and (b) reliability
R∗(n, T) for DFTM algorithm (M3, D2).

Figure 7: Percentage increase in MCBBF and MCPWBBF for
experiments with DFTM. System lifetime is limited by a sin-
gle re-mapping step.

The above results might suggest that, for a given goal in
computation to be performed in the presence of failures, the
configuration (M3, D2) has a clear advantage, since it provides
both the best performance (largest α, Figure 2) and the great-
est reliability (Figure 6). The above measures however, do not
include the effects of the associated power dissipation, and its
effects on battery lifetime.

The mean computation before battery failure (MCBBF), rep-
resents the limiting amount of computation that can be ob-
tained from a particular battery (i.e., for a given batteries varia-
tion in state of charge with discharge, captured by ζ defined in
Section 4). The percentage increase in MCBBF for the different
DFTM algorithm groupings are shown in Figure 7.

Despite having the best performance and reliability, the (M3,
D2) algorithm grouping provides neither the greatest MCBBF
nor the best MCPWBBF (the MCBBF per Watt of power dissi-
pated on average). This is due to its associated energy costs,
which lead in increased power consumption and a reduced
battery lifetime, offsetting the benefits of increased reliability.
Furthermore, the trends in the figure indicate that the algo-
rithm groupings which provide the best combination of met-
rics, do so at a cost in average power consumption—the in-
crease in MCPWBBF (MCBBF per Watt) over the baseline in
the three best cases is consistently worse than the increase in
the MCBBF, but not so for the other algorithm groupings.

6. SUMMARY AND CONCLUSION
This paper introduced the concept of dynamic fault-tolerance

management (DFTM), and classifications for DFTM algorithms.
New metrics for characterizing ebformability, a combination of
system energy-efficiency, battery lifetime, performance and re-
liability were presented. The proposed metrics can be used to
assess the quality of various design methodologies and tools
for emerging platforms characterized by joint energy, reliabil-
ity and performance constraints.

Using the proposed techniques, it was shown that tech-
niques providing best performance do not necessarily provide
the best combined performance, reliability, power consump-
tion and battery life. For battery powered devices, inclusion
of battery discharge characteristics into the model enables bet-
ter judgment as to the potential computation that may be per-
formed by a system in the presence of runtime failures, before
it reaches an absorbing failure state.

Acknowledgments
This research was supported in part by DARPA Information
Processing Technology Office under contract F33615-02-1-4004
and Semiconductor Research Corporation under grant 2002-
RJ-1052G.

7. REFERENCES
[1] M. D. Beaudry. Performance-related reliability measures for

computing systems. IEEE Transactions on Computers,
c-27(6):540–547, June 1978.

[2] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. A discrete-time battery model for high-level power
estimation. In Proceedings of the conference on Design, automation
and test in Europe, DATE’00, pages 35–39, January 2000.

[3] B. R. Borgerson and R. F. Freitas. A reliability model for
gracefully degrading and standby-sparing systems. IEEE
Transactions on Computers, c-24:517–525, May 1975.

[4] R. J. Cole, B. M. Maggs, and R. K. Sitaraman. Reconfiguring
arrays with faults part I: worst-case faults. SIAM Journal on
Computing, 26(6):1581–1611, December 1997.

[5] F. E. Heart, S. M. Ornstein, W. R. Crowther, and W. B. Barker. A
New Minicomputer/Multiprocessor for the ARPA Network. In
Proceedings of the 1973 NCC, AFIPS Conference Proceedings, pages
529–537, 1973.

[6] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
Process Migration. ACM Computing Surveys, 32(3):241–299,
September 2000.

[7] M. Perillo and W. Heinzelman. Optimal Sensor Management
Under Energy and Reliability Constraints. In Proc. of the IEEE
Wireless Communications and Networking Conference, March 2003.

[8] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery Lifetime
Prediction for Energy-Aware Computing. In International
Symposium on Low Power Electronics and Design, ISLPED’02, pages
154–159, August 2002.

[9] T. Simunic, L. Benini, P. W. Glynn, and G. De Micheli. Dynamic
power management for portable systems. In Mobile Computing
and Networking, pages 11–19, 2000.

[10] P. Stanley-Marbell. Myrmigki Simulator Reference Manual.
Technical report, CSSI, Dept. of ECE, Carnegie Mellon, 2003.

[11] P. Stanley-Marbell and M. Hsiao. Fast, flexible, cycle-accurate
energy estimation. In Proceedings of the International Symposium
on Low Power Electronics and Design, pages 141–146, August 2001.

[12] P. Stanley-Marbell and D. Marculescu. Exploiting Redundancy
through Code Migration in Networked Embedded Systems.
Technical Report 02-14, CSSI, Carnegie Mellon, April 2002.

[13] P. Stanley-Marbell, D. Marculescu, R. Marculescu, and P. K.
Khosla. Modeling, Analysis, and Self-Management of Electronic
Textiles. IEEE Trans. on Computers, 52(8):996–1010, August 2003.

[14] P. Stanley-Marbell, D. Marculescu, R. Marculescu, and P. K.
Khosla. Modeling Computational, Sensing and Actuation
Surfaces. In C. Piguet, editor, Low-Power Electronics Design. CRC
Press, 2003.

[15] W. J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.

[16] B. D. Van Veen and K. M. Buckley. Beamforming: a versatile
approach to spatial filtering. IEEE ASSP Magazine, 5(2):4–24,
April 1988.

[17] J. von Neumann. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Automata Studies, pages
43–98, 1956.

640

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

