

Dynamic Data-bit Memory Built-In Self- Repair

M. Nicolaidis, N. Achouri, S. Boutobza
iRoC Technologies

38025 Grenoble, France

Abstract: In modern SoCs, embedded memories occupy
the largest part of the chip area and include an even
larger amount of active devices. As memories are
designed very tightly to the limits of the technology they
are more prone to failures than logic. Thus, they
concentrate the large majority of defects and affect circuit
yield dramatically. Thus, Built-In Self-Repair is gaining
significant importance. This work presents a dynamic
memory built-in self-repair schemer acting on the data-bit
level. It allows reducing the size of the repairable units,
or in other words, it allows using a single spare unit for
repairing faults affecting several regular units. As a
consequence, it repairs multiple faults by means of low
hardware cost.

1. Introduction
Traditionally, memory repair is performed by using
external equipment to test the memory, localize the faults,
and drive a laser beam to perform the repair. Electrical
fuses or anti-fuses can also be used to avoid laser beam,
but again an external test equipment determines the fuses
to be blown. Recent developments replace external
equipment by Built-In Self-Test (BIST) and Built-In Self-
Repair (BISR) schemes in order to maintain a reasonable
test and repair cost for embedded memories. As an
additional advantage BIST and BISR can test and repair
embedded memories at any time during the product life
[1]. This reduces maintenance cost, and increases
reliability and product life. Various BISR approaches
have been developed. Row (or word) BISR replaces
faulty regular rows (or words) by spare rows (or words).
Column BISR replaces faulty regular columns by spare
columns. Data-bit BISR uses a memo ry part generating a
spare data bit to replace a memory part generating a
regular data bit. In this work we consider the data-bit
BISR and the column BISR schemes. Data-bit BISR can
repair faulty cells and faulty columns, as well as faulty
column -MUXes, faulty read and write amplifiers, and
faulty data input/output latches. Repairing read amplifiers
may improve yield significantly, since the sense
amplifiers are very sensitive circuits and can be faulty
more frequently than other parts. Column repair can
repair faulty columns, and also entire faulty bits, if it
disposes sufficient spare columns. Repairing faulty
columns in addition to the faulty cells is important since a
large number of defects may result on a faulty column.
For instance, any defect creating a stuck-on fault on one

of the two access transistors of an SRAM cell will result
on a faulty column, since the cell is permanently
connected to the bit line. On the other hand, row and word
repair cannot repair these important classes of faults.

Row/word repair is the simplest BISR approach. Thus,
the majority of the previous works consider this scheme,
although column repair was the predominant external
repair scheme used for stand-alone memories. Word
repair was early proposed by K. Sawada et al [2]. It uses a
content addressable memory for storing the data and
addresses of the faulty words. The work considered low
numbers of faults. Also, faults in the spare parts are not
considered. Subsequent works on word BISR [3] [4], [5]
use the same basic scheme but improve various
implementation aspects. These works too consider a low
number of faults (e.g. two faults in [4]), and no faults in
the spare units. A more recent work [8] uses nonvolatile
memory cells to fix once forever the repair of
manufacturing faults. Fixing manufacturing faults is also
treated in [1], where a taxonomy of various ways to repair
and fix manufacturing faults and field faults is presented.

Work on column/data BISR is more recent due to the
difficulty for elaborating the reconfiguration functions for
this repair. Kim et al [6] present the first column repair
scheme. In this scheme the reconfiguration information is
generated by a controller and stored in a memory. To
master the complexity of the reconfiguration process, the
scheme repairs a single fault per test session. That is, the
memory is tested until a first fault is found and repaired.
Then, the memory is tested again until a second fault is
found and repaired, and so on. This process simplifies the
work of the BISR control unit, but the test and repair time
will become very high when the number of faults
increases. The paper considers a small number of faults
(e.g. 2 faulty columns out-of 128 regular columns), and
uses a large number of storage cells for storing the
reconfiguration information.

Another paper [7] considers the combination of
column and row repair. It proposes an algorithm that
allocates efficiently the spare rows and columns to repair
multiple faults that may affect some columns and rows.
However, it does not propose BISR circuitry for
performing the memory reconfiguration.

Finally a more recent paper [9] presents optimal
reconfiguration functions for data-bit repair. The derived
functions perform repair for multiple faults affecting both
the regular and spare elements, minimize the hardware

588

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

cost for implementing the repair control and for storing
the reconfiguration information, and perform the repair by
means of a single test pass. This optimises the BISR cost
and the repair efficiency. In addition, the scheme does not
require modifying the memory structure, since the repair
circuitry is placed around the memory. Thus, the repair is
compatible with standard memory compilers.

In the present paper we present a dynamic repair
scheme that increases the repair efficiency of the scheme
presented in [9]. This is done by using a single spare unit
for repairing faults affecting several regular units. In
addition the dynamic scheme is enhanced to allow using
spare units of a size smaller than the regular units (the
memory parts generating a data-bit). This is important for
achieving low repair cost in memories having words of
medium or small size. For such memories, adding even a
single spare bit, as required by the basic dynamic repair
approach, leads in a significant area cost. The enhanced
scheme shows a dramatic decrease of the area cost.

2. Static data-bit BISR

Data-bit BISR is a repair approach that determines
the data-bit positions in which the memory generates
erroneous data, and replaces the defected parts connected
to these bit positions by spare parts. Thus, a replaceable
part is the set of memory columns connected through the
column multiplexer to a data input/output of the memory.
For simplicity, we will call the regular replaceable parts
as regular units and the spare replaceable parts as spare
units. We can use k spare units in order to be able to
replace up to k faulty regular units. This scheme is very
flexible, since we do not need to modify the memory
structure for implementing it. Instead, we can use a
standard memory compiler to generate a memory having a
word length of n+k bits. In addition, we generate a BISR
circuitry external to the memory, able to capture the
locations of the faulty data-bits and replace them by fault-
free data-bits. Such a scheme has been presented in [9].

.

. . .

BIST Compara to r

Error Ind icat ion

X 0 X n Xn+k-1 X n-1

F B I
 0

F B I
 n -1

F B I
n+k -2

F B I
n+k -1

. . .

Reset

Figure 1: Generation of the state of the FBI latches by
means of the BIST comparator

Figure 1 shows the circuit used for locating the faulty-bit
positions. It consists on n+k latches (faulty-bit indication -
FBI- latches) and n+k OR gates. The input of each latch is
generated by an OR gate that receives as inputs the output
the latch and the output of one XOR gate of the BIST

comparator. During the test phase, the whole memory
(regular and spare bits) is tested and the latch
corresponding to any of these bits is set to 1 when an error
is detected on this bit by the corresponding XOR gate of
the BIST comparator. In this scheme we used n+k faulty-
bit indication latches. This way, we can locate both the
regular and spare faulty bits, and use only fault-free
spares to replace the faulty regular bits.

We number the functional units (regular bits) from 0
to n-1 (U0, U1, …, Un-1) and the spare units (spare bits)
from n through to n+k-1 (Un, Un+1, …, Un+k-1). To
perform repair, a set of MUXes is used to replace the
faulty bits by spare ones. The reconfiguration can be done
in a local manner. In this case, a faulty unit is replaced by
its left-side closest fault-free unit, as illustrated in figure
2, with n=4, and k=3, where the MUX of position i is
connected to the memory output of position i, and to the
memory outputs of positions i+1, i+2, …, i+k. A distant
repair is also possible as illustrated in figure 3.

To generate the control signals of the MUXes in
figures 2 and 3, we need to implement the reconfiguration
functions that generate these signals in response to the
states of the faulty-bit indication latches of figure 1. To
implement a dynamic scheme, multiple copies of these
functions have to be used, as we will see later. Thus, it is
important to dispose low cost reconfiguration functions,
to make the dynamic scheme practical. [9] proposes
compact implementations for these functions. For the
local repair, these functions are described by the recursive
equations (1) and (2), where FBIi is the state of the faulty-
bit indication latch of position i, and Mj

i is the control
signal of input j, of the MUX of position i, and the
MUXes are implemented without internal decoders (the
signals M j

i are already decoded).
 (1) M0

0 = ¬FBI0, M1
0 = ¬FBI1⋅ FBI0, …, Mk

0 = ¬FBIk⋅…
FBI1⋅ FBI0.
 (2) Mj

i+1 = ¬FBIi+j+1 (Mj
i + Mj-1

i⋅FBIi+j + Mj-2
i⋅FBIi+j-

1⋅FBIi+j + …+ M0
i⋅FBIi+1⋅FBIi+2… ⋅FBIi+j), 0 ≤ j ≤ k.

The reconfiguration functions for the distant repair, are
described by the recursive equations (3), (4), (5), and (6).
In this case we the regular units are numbered RU0, RU1,
…RUn-1, the spare units are numbered SU1, SU2, …,
SUk. The states of the corresponding fault location latches
are noted RF0, RF1, …, RFn-1 and SF1, SF2, …, SFk. The
variables Fj are intermediate variables used for
convenience.
(3) M0

0 = ¬RF0, M1
0 = ¬SF1⋅ RF0, …, Mk

0 = ¬SFk⋅Fk-1…
SF1⋅ RF0.
(4) Fj

0 = M j
0, ∀ j ∈ {0, 1, …, k}.

(5) Fj
i+1 = Fj

i ⋅¬RFi+1 + M j
i+1⋅RFi+1, 0≤ i ≤ n -2, 0≤ j ≤ k.

(6) M0
i+1=¬RFi+1, Mj+1

i+1=¬SFj+1RFi+1(Fj
i+Fj-1

i⋅SFj+Fj-

2
i
⋅SFj-1⋅SFj + … + F0

i⋅SF1⋅SF2…SFj), 0≤j ≤k-1, 0≤ i≤ k-2.

589

M
3
0

M
3
1

M
3
2

M
3
3

d3

U3

MUX

d1

U1

MUX

d0

U0

MUX
M

0
0

M
0
1

M
0
2

M
0
3

U4

U5

U6

d2

U2

MUX

Spare Units : k =3 Functional Units : n = 4

Figure 2: The local repair scheme.

M 3 0
M 3 1
M 3 2
M 3 3

d3

RU3

MUX

d1

MUX

d0

RU0

MUX
M 0 0
M 0 1
M 0 2
M 0 3

SU1 SU2 SU3

d2

RU2

MUX

Spare Units : k =3 Functional Units : n = 4

RU1

Figure 3: The distant repair scheme.

3. Dynamic data-bit BISR
A major attribute of a repair scheme is the size of the
replaceable units. This size impacts the extra area
required for repairing a fault. If the replaceable unit is too
small, then, we will have a large number of such units,
and the area occupied by the reconfiguration logic and the
interconnections added for localizing and replacing the
faulty units will be very large. For instance, if the
replaceable unit is the cell, then the number of possible
faulty locations is very high, requiring a large amount of
memory for storing this information, and a large amount
of routing area together with a very complex
reconfiguration logic. On the other hand, if the size of the
replaceable unit is very large, then, to repair a single
faulty-cell within a replaceable unit will require to use a
spare unit of large size, making high the repair cost per
faulty-cell. Therefore, there is an optimal size of the
replaceable unit for each memory size and for the target
number of repairable faults. However, once this optimal
size is determined, it is not always easy to implement the
repair scheme using this replaceable unit size, due to
topological constraints of a memory design. In fact,
memories have a very regular and compact layout.
Inserting within this layout extra routing and extra logic
for performing the repair may break this regularity and

increase the memory size considerably. In addition, this
approach requires a considerable effort to modify the
memory compilers. Thus, it is suitable to repair the
memory by using access only to the memory inputs and
outputs. The static data-bit repair scheme presented [9]
has this advantage, but it uses a large spare unit to repair a
single fault (a spare block includes a number of cells
equal to the number of memory words). To reduce the
size of repairable units, while performing the
reconfiguration by accessing only the external
inputs/outputs of the memory, we propose a dynamic
repair. It modifies dynamically the control signals of the
MUXes, so that they use a spare bit to replace a faulty
regular bit only for a subset of the memory addresses and
other faulty regular bits for other subsets of the memory
addresses. To explain this scheme let us first consider the
static scheme of figure 4.

Memory

[words of (n+k) bits]

Reconfiguration
Logic

n+k FBI Latches

MUXes

n+k

n

Data Bus
Figure 4. Static data-bit repair scheme

 In this figure, the memory includes n+k blocks of cells,
each corresponding to one functional or one spare data
bit. The reconfiguration circuitry includes n+k latches
storing the fault location information (n+k FBI latches), n
MUXes allowing to connect the n bits of the data BUS to
the fault-free regular and spare data bits of the memory,
and a reconfiguration logic that generates the control
signals of the MUXes. The repairable unit is the block of
cells connected to a data-bit input/output. Thus, its size is
equal to Nmw cells , Nmw is the number of memory words.
To divide the size of the repairable units by a factor R, the
new scheme uses R blocks of n+k FBI latches as shown in
figure 5. In this figure, during the test phase, we use r
address bits (A1 through to Ar) to select a different set of
latches for each value of these address bits. Thus, for each
of the R = 2r values of these bits, a different set of FBI
latches stores the fault-location information.

n+k FBI
Latches 0

MUX
A1÷Ar

BIST Comparator

n+k FBI
Latches 1

n+k FBI
Latches R-1

n
n n

n

Figure 5: Selecting a block of FBI latches during the test
phase

590

During the regular operation of the system, the address
bits A1, A2, …, Ar, are monitored to determine which
block of FBI latches will be selected to drive the
reconfiguration of the memory during each memory
access cycle, as shown in the figure 6.

Memory

[words of (n+k) bits]

Reconfiguration
Logic

MUX

MUXes

n+k

n

Data Bus

A1÷Ar

m

n+k FBI
Latches 0

n+k FBI
Latches 1

n+k FBI
Latches R-1

Figure 6: Selecting a block of FBI latches during normal
operation

In figure 4, we note that during the normal operation, the
outputs of the reconfiguration functions are constant,
since the inputs of these functions are fixed at constant
values during the repair phase. Thus, there is no delay
added to the memory operation due to the computation of
the output values of these functions. On the other hand, in
figure 6, the inputs of the reconfiguration function are not
fixed, introducing extra delay in the memory operation.
To avoid this delay, we replicate the reconfiguration
functions R times (blocks RFL0, RFL1, … RFLR-1), and
place the multiplexers controlled by the address bits A1,
A2, …, Ar on the outputs of these blocks (see figure 7).

Memory

[words of (n+k) bits]

MUX

MUXes

n+k

n

In/Out

A1÷Ar
m

RFL 0 RFL 1 RFL R-1

n+k FBI
Latches 0

n+k FBI
Latches 1

n+k FBI
Latches R-1

Figure 7: A faster scheme for dynamic repair

In this case, the hardware cost is higher, since we use R
reconfiguration logic blocks instead of 1, but the

reconfiguration speed is higher, since the inputs and the
outputs of the reconfiguration functions are fixed during
the repair phase. Thus, the longest path of the
reconfiguration circuit includes the two MUXes, while in
figure 7 it includes the two MUXes, and the
reconfiguration functions.

3.1 Trade-offs in repair parameters, and experiments
Using the dynamic reconfiguration scheme described
above, we can increase the repair efficiency since the size
of the repairable unit is divided by R = 2r. Thus, the size
of the repairable units can become arbitrarily small. For
instance, by using all the address bits of the memory to
drive the MUX used in the dynamic reconfiguration, the
size of the repairable unit is reduced to a single cell. From
this point of view, the repair becomes optimal, but the
cost of the reconfiguration circuitry becomes excessive
since it increases linearly with R. There is an optimal R
that gives the best cost trade-offs. Consider for instance
that we need to repair up to 8 faults in a 1 Mbit memory
having a 32-bit word size. The block of cells connected to
each data input/output includes 32K cells. This is the size
of the repairable unit used by the static reconfiguration
scheme. Thus, to repair 8 faults we need 8 spare
repairable units corresponding to 256K spare cells. By
selecting r = 1, we divide by 2 the size of the spare units ,
so we will need 128 K spare cells (a gain of 128 K spare
cells,) but we will need 2x40 FBI latches instead of 40
FBI latches (an increase of 40 FBI latches) for the scheme
of figure 6 (and also a second block of reconfiguration
logic for the scheme of figure 7). The improvement is
significant since we have a gain of 128 K memory cells
by paying 40 extra latches and a block of reconfiguration
logic. If we use r = 2, then, with respect to the case of r =
1 we gain 64 K memory cells and we pay 80 extra latches
(and also two extra blocks of reconfiguration logic for the
scheme of figure 7). The gain is still important, but it is
divided by 2, while the cost of the extra circuitry is
multiplied by 2. This happens each time we increment r.
So, at some point the gain becomes less important than
the extra cost. This point corresponds to the optimal
implementation of the scheme. Determining this point
will enable an optimal repair. This analysis is pertinent for
memory technologies affected by very high defect
densities, as expected for nano-technologies [10] [11],
where we will need to repair huge numbers of faults.
However, for the moderate numbers of faults affecting
CMOS ICs, the optimal point will correspond to k=1 and
R=Nf (Nf being the maximum target fault multiplicity).
Table 1, shows the area overhead required for applying
the dynamic scheme for various values of k and r, as well
as for the static scheme (r=0) for various values of k. The
considered memory is a 64K X 32 SRAM. The area
overhead is estimated for a commercial 0.18 micron
CMOS technology. The area cost of the reconfiguration
functions and of the routing is estimated using the

591

AMBIT tool. The maximum number of repairable faults
is equal to k2r. Thus, we can use k=1, r=3, to repair a
memory including up to 8 faults, at an extra area of 3.4%,
while using k=2, r=2, will repair the same number of
faults at a much higher area cost (6.1%). We also observe
that the static scheme for r=0, k =6, can repair only 6
faults at a drastically higher area cost (17.44%).

Table 1. Area overhead of various BISR implementations
for a 64K X 32 SRAM

r k = 6 k = 5 k = 4 k = 3 k = 2 k = 1
3 18.63 15.6 12.58 9.33 6.46 3.4
2 17.97 14.98 12.02 8.91 6.1 3.11
1 17.63 14.67 11.72 8.7 5.87 2.97
0 17.44 14.51 11.57 8.6 5.77 2.89

Table 2. Area overhead of various BISR implementations
for a 256K x 8 SRAM

Table 2 shows the area cost for a memory using 8-bit
words. We observe that in this case, the minimum cost,
required for repairing a single fault (k=1, r=0) is 12.27%.
This cost is much higher, than the cost required for the
32-bit word width memory, even when we use the later to
target a much higher fault multiplicity. When using the
dynamic repair approach, this cost increases very slightly
for repairing a much higher number of faults (e.g. 12.55%
for repairing 8 faults, when k=1, r=3).

4. Dynamic repair using spares of reduced
size
In the previous data-bit repair schemes, a spare unit
includes a number of cells equal to the number of memory
words Nmw. Thus, the minimum area overhead (use of a
single spare unit) is equal to (#spare unit cells)/(#regular
memory cells) %= Nmw /(Nmw x Nwc) % = 1/ Nwc %,
where Nwc is the number of regular cells per memory
word. Thus, the minimum area overhead can be
significant for memories with medium or small word size.
To reduce this cost, we need to reduce the size of the
spare units. This section describes an extension of the
dynamic repair scheme that allows achieving this goal.
The scheme is illustrated in figures 8 and 9. We use n
regular units and k spare ones. As for figures 6 and 7, we
use r address bits to perform dynamic repair, but we use
spare units with size equal to the 1/2r of the size of the
regular units. We illustrate this scheme by considering
that each spare unit is composed of one memory column.
In this case we select r to be equal to the number of the

address bits of the column decoder (bits A1÷Ar), but the
scheme is valid for any other value of r. From this
choice, each regular unit includes R= 2r columns. We use
R sets of FBI latches for the regular positions, but only
one set of FBI latches for the spare positions (since each
spare position is composed of a single column). The
scheme is described for local repair. A similar approach
can be used for distant repair.

Figure 8 illustrates the operation during the test phase.
Similarly to the dynamic scheme of figure 5, during this
phase, the current value of the address signals A1÷Ar
connects one set of FBI to the outputs of the XOR gates
of the BIST comparator. This is done by means of a MUX
controlled by the signals A1÷Ar. This arrangement is
used only for the regular positions. On the other hand, no
MUX is employed for the k spare positions, since we use
only one set of FBI latches for these positions.

n FBI
Latches 0

MUX
A1÷Ar

BIST Comparator

n FBI
Latches 1

n FBI
Latches R-1

k FBI
Latches

k

n
n n

n

Figure 8: Selection of the FBI latches during test

Memory

[words of (n+k) bits]

MUX

MUXes

n+k

n

In/Out

A1÷Ar
m

RFL 0 RFL 1 RFL R-1

n FBI
Latches R-1

k FBI
Latches

n FBI
Latches 1

n FBI
Latches 0

Figure 9: Interactions of reconfiguration functions in
dynamic repair using single-column spares

Figure 9 illustrates how the repair is performed during the
circuit operation. This operation is similar as for the
dynamic scheme of figure 7. However, in figure 7, any
two different blocks of reconfiguration logic (blocks LFL
i) have inputs coming from two different sets of FBI
latches. On the other hand, in figure 9, the different
blocks of reconfiguration logic share some inputs (i.e. the
outputs of the k FBI latches of the spare positions). Also,
in figure 7, the blocks of the reconfiguration logic do not

r k = 6 k = 5 k = 4 k = 3 k = 2 k = 1
0 74.27 61.93 49.55 37.13 24.72 12.27
1 74.37 62.01 49.63 37.19 24.77 12.31
2 74.56 62.17 49.78 37.3 24.87 12.39
3 74.96 62.49 50.08 37.52 25.07 12.55

592

exchange any information (they implement mutually
independent functions. On the other hand, in figure 9, the
blocks of reconfiguration logic implement interdependent
functions. Thus, they exchange some information.

Let us now determine the interdependent
reconfiguration functions used in figure 9. Due to the
interdependencies, deriving these functions becomes quite
complex. To simplify this task we introduce some
intermediate variables. Thanks to these variables we are
able to use the reconfiguration functions described in the
section 2. Let FBi be the state of the FBI latch of the spare
position i (n≤i≤n+k-1). Let FBiq be the state of the FBI
latch used for the column q of the regular position i
(0≤i≤n-1). Let Mjy,x be the control variable of the MUX
of position y that indicates if the column x of the position
y has to be shifted by j positions. Mjy,x is computed by
the reconfiguration logic RFLy.

We introduce the intermediate variables FBib,q. This
variable is used only by the reconfiguration logic RFLq.
For positions that dispose the complete set of columns
(i.e. for the regular positions), we have FBib,q = Fbiq (7).

For positions that dispose only one column (i.e. the
spare positions) FBib,q is defined as follows. FBib,q takes
the value 1 to indicate that the position i is not available
for a possible shift of the column q of position b, due to
one of the following reasons:

- the position i is faulty,
- the position i is already occupied by a faulty column

of any position lower than b, excepting the columns
of rank q, or by a column of the position b, having
rank lower than q.

- In all other cases the value of FBib,q is 0. In this
definition of FBib,q we have not considered the
occupation of the position i by a columns of rank q,
because this occupation is treated by the functions
Mjy,x as defined in section 2. From this definition of
FBib,q for the spare positions, we obtain:

 R b-1 q-1
(8) FBib,q = FBi + � �Mi-yy,x + � Mi-bb,x
 x=1 y=i-k x=1
 x�q

Then, by replacing the variables FBib by the variables
FBib,q in the equations (1),(2) of the variables Mjy for the
static reconfiguration scheme described in section 2, we
obtain the equations of the variables Mjy,q, generated by
the reconfiguration functions of figure 9. These equations
are:
(9) M0

1,q = ¬FB1
1,q, M1

1,q = FB1
1,q¬FB2

1,q,
M2

1,q = FB1
1,qFB2

1,q¬FB3
1,q……

Mk
1,q = FB1

1,qFB2
1,q … FBk-1

1,q ¬FBk
1,q

Mj
i+1,q = Mj

i,q ¬FBi+j+1
i+1,q + Mj-1

i,q FBi+j
i+1,q

¬FBi+j+1
i+1,q + Mj-2

i,q FBi+j-1
i+1,qFBi+j

i+1,q¬FBi+j+1
i+1,q

+ …+ M0
i,q FBi+1

i+1,qFBi+2
i+1,q… FBi+j

i+1,q¬FBi+j+1
i+1,q

The equations 7, 8, and 9, define the reconfiguration
functions used in figure 9. A last problem concerns the
fact that the spare columns are not using any column
decoder. Thus, they are not isolated from the write
amplifiers and will be accessed during each read and
write cycle. While the access during a read cycle may not
be a problem, this access may destroy the contents of the
cells of the spare columns during the write cycles. To
cope with we can use one of the following two solutions:
- Use the signals Mjy,x enabling the connection of a

spare column to the data input/outputs to activate the
write amplifier. In this case the write amplifier is
activated only when the spare column is connected to
some data input/output,

- Place a write amplifier to each branch of a MUX
connecting a data input to the spare columns, but
before the transistors of the MUX that create this
connection. Thus, each spare column will be driven by
a write amplifier only when one of these transistors is
on (for activating the connection of the spare column).
This is illustrated in figure 10, where the data input d3
is connected through a MUX controlled by M3

0, M3
1,

M3
2, and M3

3, to the regular unit U3 and the spare
units U4, U5, and U6.

The first solution is preferable since it uses a lower
number of write amplifiers and avoids an increase of
power dissipation. The read amplifiers of the spare
columns can also be activated selectively in a similar
manner, but this is not necessary as said above.

M3
3

M3
2

M3
1

M3
0

d3

U3

ampli

U4 U5 U6

Figure 10. Write amplifier for the spare units

The scheme presented in figures 8, 9, allows using a
single column as spare unit. However, with this scheme,
each spare column can be used to repair a fault affecting a
single column. To enable using a single spare column for
repairing faults affecting several columns, we can add a
second level of dynamic repair, as illustrated in figure 11.
For doing so, we use Q=2q copies of the k FBI latches
used in figures 8, 9 for the k spare units, and Q copies of
the R sets of n FBI latches used in these figures for the n
regular units. We also use Q copies of the R blocks of the
reconfiguration functions shown in figure 9 and described
by equations 7,8,9. Each of these copies is fed by the
outputs of one of the Q copies of the sets of FBI latches,
and provide Q copies of Rxm output signals. A MUX

593

controlled by the address bits A1÷Ar reduces these
signals into Q copies of m signals . A second MUX
controlled by the address bits Ar+1÷Ar+q, reduce these
Qxm signals into the m signals that control the
multiplexers used to reconfigure the n+k regular and spare
units. Note that the two MUXes controlled by the address
bits A1÷Ar and Ar+1÷Ar+q, can be combined into a
single MUX controlled by the address bits A1÷Ar+q.

MUX

MUXes

n

In/Out
A1÷Ar

m

Q RFL 0 Q RFL 1 RFL R-1

Qxn FBI
Latches R-1

Qxk
FBI

Qxn FBI
Latches 1

Qxn FBI
Latches 0

MUX
Ar+1÷Ar+q

m m m

Memory

[words of (n+k) bits]

n+k

Figure 11. Dynamic repair with a second-level
multiplexing

Table 3 shows the area overhead for a memory using
8-bit words. This scheme repairs k2r2q faults. We observe
a dramatic reduction of the area cost with respect to the
dynamic scheme of section 3 (table 2). For instance, for
repairing up to 64 faults, this scheme requires an area
overhead of 5.13% (k=1, r=3, q=3), while for the same
memory the dynamic scheme of section 3 requires an area
overhead of 12.27% for repairing only one fault (k=1,
r=0).

Table 3. Area overhead of various BISR implementations
using spares of reduced size, for a 256K x 8 SRAM

k r q = 1 q = 2 q = 3
1 1 6.47 6.69 7.13
1 2 3.56 4.01 4.90
1 3 2.45 3.34 5.13
2 1 12.78 13.06 13.62
2 2 6.81 7.37 8.49
2 3 4.24 5.36 7.6
3 1 19.05 19.35 19.97
3 2 9.98 10.59 11.82
3 3 5.91 7.14 9.6
4 1 25.42 25.84 26.68
4 2 13.34 14.18 15.86
4 3 7.93 9.61 12.97

5 1 31.69 32.13 33.01
5 2 16.51 17.4 19.2
5 3 9.6 11.39 14.97

5. Conclusions
This paper presents a data input/output dynamic Built-In
Self-Repair scheme able to repair memories at the data
input-output level. The dynamic approach allows to use
each spare unit for repairing faults affecting multiple
regular units, thus, increasing drastically the repair
efficiency. A drawback of the scheme is that the size of
each spare unit is equal to (#memory cells)/(#word cells).
It results in a significant area overhead for memories with
small and medium word width. Therefore, an extension of
the dynamic BISR scheme is also presented. It allows
using spare units of any desired size. It reduces
dramatically the area overhead for any word width, and
more particularly for small and medium word widths.

References
[1] Zorian Y., “Embedded Memory Test & Repair:
Infrastructure IP for SOC Yield“, 2002 IEEE International Test
Conference.
[2] Sawada K., Sakurai T., Uchino Y., Yamada K., “Built-In self
repair circuit for High Density ASMIC”, IEEE 1999 Custom
Integrated Circuits Conference.
[3] Tanabe A. et al “ A 30-ns 64-Mb DRAM with Built-in Self-
test and Self-Repair Function”, IEEE Journal Solid State
Circuits, pp. 1525-1533, Vol 27, No 11, Nov. 1992.
[4] Bhavsar D. K., Edmodson J. H., “Testability Strategy of the
Alpha AXP 21164 Microprocassor”, I994 IEEE International
Test Conference.
[5] Benso A. et al “A Family of Self-Repair SRAM Cores”,
2000 IEEE International Test Conference. 2000 In Proc. IEEE
International On -Line Testing Workshop, July 3-5, 2000.
[6] Kim I., Zorian Y., Komoriya G., Pham H., Higgins F. P.,
Newandowski J.L. "Built-In self repair for embedded high-
density SRAM" Proc. Int. Test Conference, 1998, pp1112-1119
[7] Kim H. C., Yi D.S., Park J.Y., Cho C.H., “A BISR (Buil-In
Self-Repair) circuit for embedded memory with mu ltiple
redundancies”, 1999 IEEE International Conference on VLSI
and CAD, Oct. 26-27, 1999, Seoul, Korea, pp 602-605
[8] V. Schober, S. Paul, O. Picot, “Memory Built-In Self-Repair
using redundant words”, 2001 IEEE Intl Test Conference.
[9] M. Nicolaidis, N. Achouri, S. Boutobza, ”Optimal
Reconfiguration Functions for Column or Data-bit Built-In Self-
Repair”, 2003 Design Automation and Test in Europe
(DATE’03), March 3-7, 2003, Munich, Germany.
[10] Heath J.R., Kuekes P.J., Snider G.S., Stanley Williams R.,
“A Defect-Tolerant Computer Architecture: Opportunities for
Nanotechnology”, SCIENCE, Vol. 280, June 12, 1998
[11] M. Nicolaidis, N. Achouri L. Anghel, “Memory Built-In
Self-Repair for Nanotechnologies”, 2003 IEEE International
On-Line Testing Symposium.

594

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

