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Abstract: In modern SoCs, embedded memories occupy 
the largest part of the chip area and include an even 
larger amount of active devices. As memories are 
designed very tightly to the limits of the technology they 
are more prone to failures than logic. Thus, they 
concentrate the large majority of defects and affect circuit 
yield dramatically. Thus, Built-In Self-Repair is gaining 
significant importance. This work presents a dynamic 
memory built-in self-repair schemer acting on the data-bit 
level. It allows reducing the size of the repairable units, 
or in other words, it allows using a single spare unit for 
repairing faults affecting several regular units. As a 
consequence, it repairs multiple faults by means of low 
hardware cost.  
 
1. Introduction 
Traditionally, memory repair is performed by using 
external equipment to test the memory, localize the faults, 
and drive a laser beam to perform the repair. Electrical 
fuses or anti-fuses can also be used to avoid laser beam, 
but again an external test equipment determines the fuses 
to be blown. Recent developments replace external 
equipment by Built-In Self-Test (BIST) and Built-In Self-
Repair (BISR) schemes in order to maintain a reasonable 
test and repair cost for embedded memories. As an 
additional advantage BIST and BISR can test and repair 
embedded memories at any time during the product life 
[1]. This reduces maintenance cost, and increases 
reliability and product life. Various BISR approaches 
have been developed. Row (or word) BISR replaces 
faulty regular rows (or words) by spare rows (or words). 
Column BISR replaces faulty regular columns by spare 
columns. Data-bit BISR uses a memo ry part generating a 
spare data bit to replace a memory part generating a 
regular data bit. In this work we consider the data-bit 
BISR and the column BISR schemes. Data-bit BISR can 
repair faulty cells and faulty columns, as well as faulty 
column -MUXes, faulty read and write amplifiers, and 
faulty data input/output latches. Repairing read amplifiers 
may improve yield significantly, since the sense 
amplifiers are very sensitive circuits and can be faulty 
more frequently than other parts. Column repair can 
repair faulty columns, and also entire faulty bits, if it 
disposes sufficient spare columns. Repairing faulty 
columns in addition to the faulty cells is important since a 
large number of defects may result on a faulty column. 
For instance, any defect creating a stuck-on fault on one 

of the two access transistors of an SRAM cell will result 
on a faulty column, since the cell is permanently 
connected to the bit line. On the other hand, row and word 
repair cannot repair these important classes of faults.  

Row/word repair is the simplest BISR approach. Thus, 
the majority of the previous works consider this scheme, 
although column repair was the predominant external 
repair scheme used for stand-alone memories. Word 
repair was early proposed by K. Sawada et al [2]. It uses a 
content addressable memory for storing the data and 
addresses of the faulty words. The work considered low 
numbers of faults. Also, faults in the spare parts are not 
considered. Subsequent works on word BISR [3] [4], [5] 
use the same basic scheme but improve various 
implementation aspects. These works too consider a low 
number of faults (e.g. two faults in [4]), and no faults in 
the spare units. A more recent work [8] uses nonvolatile 
memory cells to fix once forever the repair of 
manufacturing faults. Fixing manufacturing faults is also 
treated in [1], where a taxonomy of various ways to repair 
and fix manufacturing faults and field faults is presented. 

Work on column/data BISR is more recent due to the 
difficulty for elaborating the reconfiguration functions for 
this repair. Kim et al [6] present the first column repair 
scheme. In this scheme the reconfiguration information is 
generated by a controller and stored in a memory. To 
master the complexity of the reconfiguration process, the 
scheme repairs a single fault per test session. That is, the 
memory is tested until a first fault is found and repaired. 
Then, the memory is tested again until a second fault is 
found and repaired, and so on. This process simplifies the 
work of the BISR control unit, but the test and repair time 
will become very high when the number of faults 
increases. The paper considers a small number of faults 
(e.g. 2 faulty columns out-of 128 regular columns), and 
uses a large number of storage cells for storing the 
reconfiguration information. 

Another paper [7] considers the combination of 
column and row repair. It proposes an algorithm that 
allocates efficiently the spare rows and columns to repair 
multiple faults that may affect some columns and rows. 
However, it does not propose BISR circuitry for 
performing the memory reconfiguration.  

Finally a more recent paper [9] presents optimal 
reconfiguration functions for data-bit repair. The derived 
functions perform repair for multiple faults affecting both 
the regular and spare elements, minimize the hardware 
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cost for implementing the repair control and for storing 
the reconfiguration information, and perform the repair by 
means of a single test pass. This optimises the BISR cost 
and the repair efficiency. In addition, the scheme does not 
require modifying the memory structure, since the repair 
circuitry is placed around the memory. Thus, the repair is 
compatible with standard memory compilers.  

In the present paper we present a dynamic repair 
scheme that increases the repair efficiency of the scheme 
presented in [9]. This is done by using a single spare unit 
for repairing faults affecting several regular units. In 
addition the dynamic scheme is enhanced to allow using 
spare units of a size smaller than the regular units (the 
memory parts generating a data-bit). This is important for 
achieving low repair cost in memories having words of 
medium or small size. For such memories, adding even a 
single spare bit, as required by the basic dynamic repair 
approach, leads in a significant area cost. The enhanced 
scheme shows a dramatic decrease of the area cost. 
 
2. Static data-bit BISR 

Data-bit BISR is a repair approach that determines 
the data-bit positions in which the memory generates 
erroneous data, and replaces the defected parts connected 
to these bit positions by spare parts. Thus, a replaceable 
part is the set of memory columns connected through the 
column multiplexer to a data input/output of the memory. 
For simplicity, we will call the regular replaceable parts 
as regular units and the spare replaceable parts as spare 
units. We can use k spare units in order to be able to 
replace up to k faulty regular units. This scheme is very 
flexible, since we do not need to modify the memory 
structure for implementing it. Instead, we can use a 
standard memory compiler to generate a memory having a 
word length of n+k bits. In addition, we generate a BISR 
circuitry external to the memory, able to capture the 
locations of the faulty data-bits and replace them by fault-
free data-bits. Such a scheme has been presented in [9].  

.  .  . .  .  . 
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Figure 1: Generation of the state of the FBI latches by 
means of the BIST comparator 

 

Figure 1 shows the circuit used for locating the faulty-bit 
positions. It consists on n+k latches (faulty-bit indication - 
FBI- latches) and n+k OR gates. The input of each latch is 
generated by an OR gate that receives as inputs the output 
the latch and the output of one XOR gate of the BIST 

comparator. During the test phase, the whole memory 
(regular and spare bits) is tested and the latch 
corresponding to any of these bits is set to 1 when an error 
is detected on this bit by the corresponding XOR gate of 
the BIST comparator. In this scheme we used n+k faulty-
bit indication latches. This way, we can locate both the 
regular and spare faulty bits, and use only fault-free 
spares to replace the faulty regular bits. 

We number the functional units (regular bits) from 0 
to n-1 (U0, U1, …, Un-1) and the spare units (spare bits) 
from n through to n+k-1 (Un, Un+1, …, Un+k-1). To 
perform repair, a set of MUXes is used to replace the 
faulty bits by spare ones. The reconfiguration can be done 
in a local manner. In this case, a faulty unit is replaced by 
its left-side closest fault-free unit, as illustrated in figure 
2, with n=4, and k=3, where the MUX of position i is 
connected to the memory output of position i, and to the 
memory outputs of positions i+1, i+2, …, i+k. A distant 
repair is also possible as illustrated in figure 3.  

To generate the control signals of the MUXes in 
figures 2 and 3, we need to implement the reconfiguration 
functions that generate these signals in response to the 
states of the faulty-bit indication latches of figure 1. To 
implement a dynamic scheme, multiple copies of these 
functions have to be used, as we will see later. Thus, it is 
important to dispose low cost reconfiguration functions, 
to make the dynamic scheme practical. [9] proposes 
compact implementations for these functions. For the 
local repair, these functions are described by the recursive 
equations (1) and (2), where FBIi is the state of the faulty-
bit indication latch of position i, and Mj

i is the control 
signal of input j, of the MUX of position i, and the 
MUXes are implemented without internal decoders (the 
signals M j

i  are already decoded). 
 (1) M0

0 = ¬FBI0, M1
0 = ¬FBI1⋅ FBI0, …, Mk

0 = ¬FBIk⋅… 
FBI1⋅ FBI0.  
 (2) Mj

i+1 = ¬FBIi+j+1 (Mj
i + Mj-1

i⋅FBIi+j + Mj-2
i⋅FBIi+j-

1⋅FBIi+j + …+ M0
i⋅FBIi+1⋅FBIi+2… ⋅FBIi+j ), 0 ≤ j ≤ k. 

 

The reconfiguration functions for the distant repair, are 
described by the recursive equations (3), (4), (5), and (6). 
In this case we the regular units are numbered RU0, RU1, 
…RUn-1, the spare units are numbered SU1, SU2, …, 
SUk. The states of the corresponding fault location latches 
are noted RF0, RF1, …, RFn-1 and SF1, SF2, …, SFk. The 
variables Fj are intermediate variables used for 
convenience. 
(3) M0

0 = ¬RF0, M1
0 = ¬SF1⋅ RF0, …, Mk

0 = ¬SFk⋅Fk-1… 
SF1⋅ RF0.  
(4) Fj

0 = M j
0, ∀ j ∈ {0, 1, …, k}.  

(5) Fj
i+1 = Fj

i ⋅¬RFi+1 + M j
i+1⋅RFi+1, 0≤ i ≤ n -2, 0≤ j ≤ k. 

(6) M0
i+1=¬RFi+1, Mj+1

i+1=¬SFj+1RFi+1(Fj
i+Fj-1

i⋅SFj+Fj-

2
i
⋅SFj-1⋅SFj + … + F0

i⋅SF1⋅SF2…SFj), 0≤j ≤k-1, 0≤ i≤ k-2. 
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Figure 2: The local repair scheme. 
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Figure 3: The distant repair scheme. 
 
3. Dynamic data-bit BISR 
A major attribute of a repair scheme is the size of the 
replaceable units. This size impacts the extra area 
required for repairing a fault.  If the replaceable unit is too 
small, then, we will have a large number of such units, 
and the area occupied by the reconfiguration logic and the 
interconnections added for localizing and replacing the 
faulty units will be very large.  For instance, if the 
replaceable unit is the cell, then the number of possible 
faulty locations is very high, requiring a large amount of 
memory for storing this information, and a large amount 
of routing area together with a very complex 
reconfiguration logic. On the other hand, if the size of the 
replaceable unit is very large, then, to repair a single 
faulty-cell within a replaceable unit will require to use a 
spare unit of large size, making high the repair cost per 
faulty-cell. Therefore, there is an optimal size of the 
replaceable unit for each memory size and for the target 
number of repairable faults. However, once this optimal 
size is determined, it is not always easy to implement the 
repair scheme using this replaceable unit size, due to 
topological constraints of a memory design.  In fact, 
memories have a very regular and compact layout. 
Inserting within this layout extra routing and extra logic 
for performing the repair may break this regularity and 

increase the memory size considerably. In addition, this 
approach requires a considerable effort to modify the 
memory compilers. Thus, it is suitable to repair the 
memory by using access only to the memory inputs and 
outputs. The static data-bit repair scheme presented [9] 
has this advantage, but it uses a large spare unit to repair a 
single fault (a spare block includes a number of cells 
equal to the number of memory words). To reduce the 
size of repairable units, while performing the 
reconfiguration by accessing only the external 
inputs/outputs of the memory, we propose a dynamic 
repair. It modifies dynamically the control signals of the 
MUXes, so that they use a spare bit to replace a faulty 
regular bit only for a subset of the memory addresses and 
other faulty regular bits for other subsets of the memory 
addresses. To explain this scheme let us first consider the 
static scheme of figure 4. 

 
Memory 

[words of (n+k) bits] 

Reconfiguration  
Logic 

n+k FBI Latches 

MUXes 

n+k 

n 

Data Bus  
Figure 4. Static data-bit repair scheme 
 

 In this figure, the memory includes n+k  blocks of cells, 
each corresponding to one functional or one spare data 
bit. The reconfiguration circuitry includes n+k latches 
storing the fault location information (n+k FBI latches), n 
MUXes allowing to connect the n bits of the data BUS to 
the fault-free regular and spare data bits of the memory, 
and a reconfiguration logic that generates the control 
signals of the MUXes. The repairable unit is the block of 
cells connected to a data-bit input/output. Thus, its size is 
equal to Nmw cells , Nmw is the number of memory words. 
To divide the size of the repairable units by a factor R, the 
new scheme uses R blocks of n+k FBI latches as shown in 
figure 5. In this figure, during the test phase, we use r 
address bits (A1 through to Ar) to select a different set of 
latches for each value of these address bits. Thus, for each 
of the R = 2r values of these bits, a different set of FBI 
latches stores the fault-location information.  

 
n+k FBI 
Latches 0 

MUX  
A1÷Ar 

BIST Comparator  

n+k FBI 
Latches 1 

n+k FBI 
Latches R-1 

n 
n n 

n 

 
Figure 5: Selecting a block of FBI latches during the test 
phase 
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During the regular operation of the system, the address 
bits A1,  A2, …, Ar, are monitored to determine which 
block of FBI latches will be selected to drive the 
reconfiguration of the memory during each memory 
access cycle, as shown in the figure 6. 
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n+k  

n 
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m 

n+k FBI 
Latches 0 

n+k FBI 
Latches 1 

n+k FBI 
Latches R-1

Figure 6: Selecting a block of FBI latches during normal 
operation  
 

In figure 4, we note that during the normal operation, the 
outputs of the reconfiguration functions are constant, 
since the inputs of these functions are fixed at constant 
values during the repair phase. Thus, there is no delay 
added to the memory operation due to the computation of 
the output values of these functions. On the other hand, in 
figure 6, the inputs of the reconfiguration function are not 
fixed, introducing extra delay in the memory operation. 
To avoid this delay, we replicate the reconfiguration 
functions R times (blocks RFL0, RFL1, … RFLR-1), and 
place the multiplexers controlled by the address bits A1, 
A2, …, Ar on the outputs of these blocks (see figure 7).  
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Figure 7: A faster scheme for dynamic repair 
 

In this case, the hardware cost is higher, since we use R 
reconfiguration logic blocks instead of 1, but the 

reconfiguration speed is higher, since the inputs and the 
outputs of the reconfiguration functions are fixed during 
the repair phase. Thus, the longest path of the 
reconfiguration circuit includes the two MUXes, while in 
figure 7 it includes the two MUXes, and the 
reconfiguration functions. 
 
3.1 Trade-offs in repair parameters, and experiments 
Using the dynamic reconfiguration scheme described 
above, we can increase the repair efficiency since the size 
of the repairable unit is divided by R = 2r. Thus, the size 
of the repairable units can become arbitrarily small. For 
instance, by using all the address bits of the memory to 
drive the MUX used in the dynamic reconfiguration, the 
size of the repairable unit is reduced to a single cell. From 
this point of view, the repair becomes optimal, but the 
cost of the reconfiguration circuitry becomes excessive 
since it increases linearly with R. There is an optimal R 
that gives the best cost trade-offs. Consider for instance 
that we need to repair up to 8 faults in a 1 Mbit memory 
having a 32-bit word size. The block of cells connected to 
each data input/output includes 32K cells. This is the size 
of the repairable unit used by the static reconfiguration 
scheme. Thus, to repair 8 faults we need 8 spare 
repairable units corresponding to 256K spare cells. By 
selecting r = 1, we divide by 2 the size of the spare units , 
so we will need 128 K spare cells (a gain of 128 K spare 
cells,) but we will need 2x40 FBI latches instead of 40 
FBI latches (an increase of 40 FBI latches) for the scheme 
of figure 6 (and also a second block of reconfiguration 
logic for the scheme of figure 7). The improvement is 
significant since we have a gain of 128 K memory cells 
by paying 40 extra latches and a block of reconfiguration 
logic. If we use r = 2, then, with respect to the case of r = 
1 we gain 64 K memory cells and we pay 80 extra latches 
(and also two extra blocks of reconfiguration logic for the 
scheme of figure 7). The gain is still important, but it is 
divided by 2, while the cost of the extra circuitry is 
multiplied by 2. This happens each time we increment r. 
So, at some point the gain becomes less important than 
the extra cost. This point corresponds to the optimal 
implementation of the scheme. Determining this point 
will enable an optimal repair. This analysis is pertinent for 
memory technologies affected by very high defect 
densities, as expected for nano-technologies [10] [11], 
where we will need to repair huge numbers of faults. 
However, for the moderate numbers of faults affecting 
CMOS ICs, the optimal point will correspond to k=1 and 
R=Nf (Nf being the maximum target fault multiplicity). 
Table 1, shows the area overhead required for applying 
the dynamic scheme for various values of k and r, as well 
as for the static scheme (r=0) for various values of k. The 
considered memory is a 64K X 32 SRAM. The area 
overhead is estimated for a commercial 0.18 micron 
CMOS technology. The area cost of the reconfiguration 
functions and of the routing is estimated using the 
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AMBIT tool. The maximum number of repairable faults 
is equal to k2r. Thus, we can use k=1, r=3, to repair a 
memory including up to 8 faults, at an extra area of 3.4%, 
while using k=2, r=2, will repair the same number of 
faults at a much higher area cost (6.1%). We also observe 
that the static scheme for r=0, k =6, can repair only 6 
faults at a drastically higher area cost (17.44%).   
 

Table 1. Area overhead of various BISR implementations 
for a 64K X 32 SRAM 

r k = 6 k = 5 k = 4 k = 3 k = 2 k = 1 
3 18.63 15.6 12.58 9.33 6.46 3.4 
2 17.97 14.98 12.02 8.91 6.1 3.11 
1 17.63 14.67 11.72 8.7 5.87 2.97 
0 17.44 14.51 11.57 8.6 5.77 2.89 

 

Table 2. Area overhead of various BISR implementations 
for a 256K x 8 SRAM 

 

Table 2 shows the area cost for a memory using 8-bit 
words. We observe that in this case, the minimum cost, 
required for repairing a single fault (k=1, r=0) is 12.27%. 
This cost is much higher, than the cost required for the 
32-bit word width memory, even when we use the later to 
target a much higher fault multiplicity. When using the 
dynamic repair approach, this cost increases very slightly 
for repairing a much higher number of faults (e.g. 12.55% 
for repairing 8 faults, when k=1, r=3). 
 

4. Dynamic repair using spares of reduced 
size 
In the previous data-bit repair schemes, a spare unit 
includes a number of cells equal to the number of memory 
words Nmw. Thus, the minimum area overhead (use of a 
single spare unit) is equal to (#spare unit cells)/(#regular 
memory cells) %= Nmw /( Nmw x Nwc) % = 1/ Nwc %, 
where Nwc is the number of regular cells per memory 
word. Thus, the minimum area overhead can be 
significant for memories with medium or small word size. 
To reduce this cost, we need to reduce the size of the 
spare units. This section describes an extension of the 
dynamic repair scheme that allows achieving this goal. 
The scheme is illustrated in figures 8 and 9. We use n 
regular units and k spare ones. As for figures 6 and 7, we 
use r address bits to perform dynamic repair, but we use 
spare units with size equal to the 1/2r of the size of the 
regular units. We illustrate this scheme by considering 
that each spare unit is composed of one memory column. 
In this case we select r to be equal to the number of the 

address bits of the column decoder (bits A1÷Ar), but the 
scheme is valid for any other value of  r.  From this 
choice, each regular unit includes R= 2r  columns. We use 
R sets of FBI latches for the regular positions, but only 
one set of FBI latches for the spare positions (since each 
spare position is composed of a single column). The 
scheme is described for local repair. A similar approach 
can be used for distant repair. 

Figure 8 illustrates the operation during the test phase. 
Similarly to the dynamic scheme of figure 5, during this 
phase, the current value of the address signals A1÷Ar 
connects one set of FBI to the outputs of the XOR gates 
of the BIST comparator. This is done by means of a MUX 
controlled by the signals A1÷Ar. This arrangement is 
used only for the regular positions. On the other hand, no 
MUX is employed for the k spare positions, since we use 
only one set of FBI latches for these positions.  
 

n FBI 
Latches 0 

MUX  
A1÷Ar 

BIST Comparator 

n FBI 
Latches 1 

n FBI 
Latches R-1 

k FBI 
Latches 

k 

n 
n n 

n 

Figure 8: Selection of the FBI latches during test 
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Figure 9: Interactions of reconfiguration functions in 
dynamic repair using single-column spares 
 

Figure 9 illustrates how the repair is performed during the 
circuit operation. This operation is similar as for the 
dynamic scheme of figure 7. However, in figure 7, any 
two different blocks of reconfiguration logic (blocks LFL 
i) have inputs coming from two different sets of FBI 
latches. On the other hand, in figure 9, the different 
blocks of reconfiguration logic share some inputs (i.e. the 
outputs of the k FBI latches of the spare positions). Also, 
in figure 7, the blocks of the reconfiguration logic do not 

r k = 6 k = 5 k = 4 k = 3 k = 2 k = 1 
0 74.27 61.93 49.55 37.13 24.72 12.27 
1 74.37 62.01 49.63 37.19 24.77 12.31 
2 74.56 62.17 49.78 37.3 24.87 12.39 
3 74.96 62.49 50.08 37.52 25.07 12.55 
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exchange any information (they implement mutually 
independent functions. On the other hand, in figure 9, the 
blocks of reconfiguration logic implement interdependent 
functions. Thus, they exchange some information.  

Let us now determine the interdependent 
reconfiguration functions used in figure 9. Due to the 
interdependencies, deriving these functions becomes quite 
complex. To simplify this task we introduce some 
intermediate variables. Thanks to these variables we are 
able to use the reconfiguration functions described in the 
section 2. Let FBi be the state of the FBI latch of the spare 
position i (n≤i≤n+k-1). Let FBiq be the state of the FBI 
latch used for the column q of the regular position i 
(0≤i≤n-1). Let Mjy,x be the control variable of the MUX 
of position y that indicates if the column x of the position 
y has to be shifted by j positions.  Mjy,x is computed by 
the reconfiguration logic RFLy.  

We introduce the intermediate variables FBib,q. This 
variable is used only by the reconfiguration logic RFLq. 
For positions that dispose the complete set of columns 
(i.e. for the regular positions), we have FBib,q = Fbiq (7).  

For positions that dispose only one column (i.e. the 
spare positions) FBib,q is defined as follows. FBib,q takes 
the value 1 to indicate that the position i is not available 
for a possible shift of the column q of position b, due to 
one of the following reasons:  

- the position i is faulty,  
- the  position i is already occupied by a faulty column 

of any position lower than b, excepting the columns 
of rank q, or by a column of the position b, having 
rank lower than q.  

- In all other cases the value of FBib,q is 0. In this 
definition of FBib,q we have not considered the 
occupation of the position i by a columns of rank q, 
because this occupation is treated by the functions 
Mjy,x as defined in section 2. From this definition of 
FBib,q for the spare positions, we obtain:  

            R   b-1                 q-1 
(8) FBib,q  = FBi + �  �Mi-yy,x   +   � Mi-bb,x      
 x=1 y=i-k              x=1 
   x�q 
 

Then, by replacing the variables FBib by the variables 
FBib,q in the equations (1),(2) of the variables Mjy for the 
static reconfiguration scheme described in section 2, we 
obtain the equations of the variables Mjy,q, generated by 
the reconfiguration functions of figure 9. These equations 
are: 
(9) M0

1,q = ¬FB1
1,q, M1

1,q = FB1
1,q¬FB2

1,q,  
M2

1,q = FB1
1,qFB2

1,q¬FB3
1,q…… 

Mk
1,q = FB1

1,qFB2
1,q …     FBk-1

1,q ¬FBk
1,q 

Mj
i+1,q = Mj

i,q ¬FBi+j+1
i+1,q + Mj-1

i,q FBi+j
i+1,q 

¬FBi+j+1
i+1,q + Mj-2

i,q FBi+j-1
i+1,qFBi+j

i+1,q¬FBi+j+1
i+1,q 

+ …+  M0
i,q FBi+1

i+1,qFBi+2
i+1,q… FBi+j

i+1,q¬FBi+j+1
i+1,q      

 

The equations 7, 8, and 9, define the reconfiguration 
functions used in figure 9. A last problem concerns the 
fact that the spare columns are not using any column 
decoder. Thus, they are not isolated from the write 
amplifiers and will be accessed during each read and 
write cycle. While the access during a read cycle may not 
be a problem, this access may destroy the contents of the 
cells of the spare columns during the write cycles. To 
cope with we can use one of the following two solutions:  
- Use the signals Mjy,x enabling the connection of a 

spare column to the data input/outputs to activate the 
write amplifier. In this case the write amplifier is 
activated only when the spare column is connected to 
some data input/output,  

- Place a write amplifier to each branch of a MUX 
connecting a data input to the spare columns, but 
before the transistors of the MUX that create this 
connection. Thus, each spare column will be driven by 
a write amplifier only when one of these transistors is 
on (for activating the connection of the spare column). 
This is illustrated in figure 10, where the data input d3 
is connected through a MUX controlled by M3

0, M3
1, 

M3
2, and M3

3, to the regular unit U3 and the spare 
units U4, U5, and U6.  

 

The first solution is preferable since it uses a lower 
number of write amplifiers and avoids an increase of 
power dissipation. The read amplifiers of the spare 
columns can also be activated selectively in a similar 
manner, but this is not necessary as said above. 

M3
3  

M3
2 

M3
1 

M3
0 

 

d3 

U3 

ampli 

U4 U5 U6 

 
Figure 10. Write amplifier for the spare units 
 

The scheme presented in figures 8, 9, allows using a 
single column as spare unit. However, with this scheme, 
each spare column can be used to repair a fault affecting a 
single column. To enable using a single spare column for 
repairing faults affecting several columns, we can add a 
second level of dynamic repair, as illustrated in figure 11. 
For doing so, we use Q=2q copies of the k FBI latches 
used in figures 8, 9 for the k spare units, and Q copies of 
the R sets of n FBI latches used in these figures for the n 
regular units. We also use Q copies of the R blocks of the 
reconfiguration functions shown in figure 9 and described 
by equations 7,8,9. Each of these copies is fed by the 
outputs of one of the Q copies of the sets of FBI latches, 
and provide Q copies of Rxm output signals. A MUX 
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controlled by the address bits A1÷Ar reduces these 
signals into Q copies of m signals . A second MUX 
controlled by the address bits Ar+1÷Ar+q, reduce these 
Qxm signals into the m signals that control the 
multiplexers used to reconfigure the n+k regular and spare 
units. Note that the two MUXes controlled by the address 
bits A1÷Ar and Ar+1÷Ar+q, can be combined into a 
single MUX controlled by the address bits A1÷Ar+q. 
 

 

MUX  

MUXes  

n 

In/Out 
A1÷Ar 

m 

Q RFL 0 Q RFL 1 RFL  R-1 

Qxn FBI 
Latches R-1 

Qxk 
FBI 

Qxn FBI 
Latches 1 

Qxn FBI 
Latches 0 

MUX  
Ar+1÷Ar+q 

m m m 

Memory 

[words of (n+k) bits] 

n+k 

Figure 11. Dynamic repair with a second-level 
multiplexing 
 

Table 3 shows the area overhead for a memory using 
8-bit words. This scheme repairs k2r2q faults. We observe 
a dramatic reduction of the area cost with respect to the 
dynamic scheme of section 3 (table 2). For instance, for 
repairing up to 64 faults, this scheme requires an area 
overhead of 5.13% (k=1, r=3, q=3), while for the same 
memory the dynamic scheme of section 3 requires an area 
overhead of 12.27% for repairing only one fault (k=1, 
r=0). 
 

Table 3. Area overhead of various BISR implementations 
using spares of reduced size, for a 256K x 8 SRAM 
 

k r q = 1 q = 2 q = 3 
1 1 6.47 6.69 7.13 
1 2 3.56 4.01 4.90 
1 3 2.45 3.34 5.13 
2 1 12.78 13.06 13.62 
2 2 6.81 7.37 8.49 
2 3 4.24 5.36 7.6 
3 1 19.05 19.35 19.97 
3 2 9.98 10.59 11.82 
3 3 5.91 7.14 9.6 
4 1 25.42 25.84 26.68 
4 2 13.34 14.18 15.86 
4 3 7.93 9.61 12.97 

5 1 31.69 32.13 33.01 
5 2 16.51 17.4 19.2 
5 3 9.6 11.39 14.97 
 
5. Conclusions  
This paper presents a data input/output dynamic Built-In 
Self-Repair scheme able to repair memories at the data 
input-output level. The dynamic approach allows to use 
each spare unit for repairing faults affecting multiple 
regular units, thus, increasing drastically the repair 
efficiency. A drawback of the scheme is that the size of  
each spare unit is equal to (#memory cells)/(#word cells). 
It results in a significant area overhead for memories with 
small and medium word width. Therefore, an extension of 
the dynamic BISR scheme is also presented. It allows 
using spare units of any desired size. It reduces 
dramatically the area overhead for any word width, and 
more particularly for small and medium word widths.  
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