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ABSTRACT
Modeling frequency-dependent nonlinear characteristics of com-

plex analog blocks and subsystems is critical for enabling efficient
verification of mixed-signal system designs. Recent progress has

reduction of large linear IC interconnects in the past decade (e.g.
[4]-[7]). The recent research effort in this direction was to extend
projection-based model order reduction techniques for LTI (linear
time invariant) systems to accommodate nonlinear system reduc-
been made for constructing such macromodels, however, their accu-
racy and/or efficiency can break down for certain problems, partic-
ularly those with high-Q filtering. In this paper we explore a novel
hybrid approach for generating accurate analog macromodels for
time-varying weakly nonlinear circuits. The combined benefits of
nonlinear Padé approximations and pruning by exploitation of the
system’s internal structure allows us to construct nonlinear circuit
models that are accurate for wide input frequency ranges, and there-
by capable of modeling systems with sharp frequency selectivity.
Such components are widely encountered in analog signal process-
ing and RF applications. The efficacy of the proposed approach is
demonstrated by the modeling of large time-varying nonlinear cir-
cuits that are commonly found in these application areas.

1. INTRODUCTION
Building compact analog circuit macromodels is a key for

enabling complete system verification and high-level design explo-
ration for mixed-signal system design [3]. Various analog macro-
models can be categorized according to their intended application (a
good taxonomy can be found in [17]). Performance models such as
those in [17] and [18] are mainly employed in synthesis for design
space exploration; While other research work has focused on mod-
els with a primary application of simulation and system verification
[8]-[10][12]-[16]. It should be noted, however, that the latter cate-
gory is not excluded from use in design exploration when appropri-
ate. 

This paper addresses the modeling problems that largely fall into
the second category. To this end, two requirements exist for any
such circuit model: efficiency and accuracy. The latter is often mea-
sured by certain performance metrics such as gain, bandwidth and
linearity, etc. It is worth emphasizing that modeling system distor-
tion is crucial for most analog applications, since circuit linearity is
one of the most important design specifications. This casts the mod-
eling task into a nonlinear model generation or nonlinear model
reduction problem, both of which are substantially more challenging
than their linear time-invariant model counterparts[8]-[10][12]-[16]. 

Several nonlinear model generation approaches have been
recently reported, and can be largely categorized into two major
classes: pruning-based and transformation-based. The first type of
approaches work directly on the original circuit structure, and apply
pruning-based simplification for model generation. In particularly,
symbolic modeling of weakly nonlinear circuits has been used to
build system-level models [14]-[16]. The underlying mathematical
description employed is Volterra series [1]-[2], and the resulting
model is in a block-diagram form suitable for signal-flow type sim-
ulation using tools such as Matlab Simulink [19]. 

The second class of methods, categorized as transformation-
based, have been stimulated by the progress made for model order
†
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tion. The piecewise-linear approximation approach in [12] models
a nonlinear system using a collection of weighted linear models
based upon a state trajectory generated by a training input. Then
each of these linear models are reduced using projection-based
techniques for LTI systems [5]-[7]. This approach has the potential
capability of handling large nonlinearities, but limited by the train-
ing-input dependency. This piecewise-linear approximation was
recently extended to a piecewise-polynomial approach to better
model nonlinear distortion [24]. Another approach that does not
completely fall into either of the above two categories uses model
templates for building system-level simulation models [23].

For a broad class of weakly nonlinear systems in analog signal
processing and RF communication ICs, the low distortion level, as
well as the required modeling accuracy, seemingly makes Volterra
series a more suitable choice for system description. The work of
[8]-[10] extends the projection-based LTI techniques to weakly
nonlinear systems that are described by Volterra series, thereby
facilitating a direct transformation-based macromodeling.
Recently, several improvements to this nonlinear model reduction
framework were proposed in [13]. Based on a careful moment
analysis under a general nonlinear system context, the nonlinear
model order reduction algorithm NORM [13] uses a minimum set
of Krylov subspaces for projection, leading to a significant reduc-
tion of model size.

As we move towards modeling larger analog circuit building
blocks and subsystems, it becomes increasingly beneficial to
exploit the model order reduction techniques that were so success-
ful for LTI systems. This is particularly the case when various fil-
tering blocks, along with the parasitics, are included as part of the
system model. However, extending LTI based techniques for ana-
log model generation is nontrivial, as the nonlinear aspects of the
problem greatly complicates the situation. For the reduction frame-
work of [8]-[10][13], one difficulty is that the reduced high-order
model matrices are extremely dense, and increasingly more expen-
sive to form as the model size grows. This difficulty makes control
of the model size growth a critical issue for an effective model
reduction [13]. Thus, a full projection-based approach is more
appropriate when a low-order approximation is adequate. 

In this paper, we propose a hybrid approach for generating non-
linear analog macromodels that can efficiently capture weakly
nonlinear effects up to third order. The low-order system nonlinear
responses are captured efficiently using recently developed projec-
tion-based NORM algorithm of [13], while high-order responses
are approximated via direct matrix pruning, in conjunction with
the projection-based reduction of a linear adjoint network. The
pruning technique is similar to what was used in symbolic model-
ing [14]-[16], with the difference being that the pruning is applied
directly to the high-order system matrices for our approach, and
the model order reduction is embedded with the pruning to accel-
erate this relatively slow procedure. The overall model generation
cost is bounded by a time complexity of ,
where  is the number of the nonzeros in the second and third
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order system matrices,  is the problem dimension,  is number
of matrix factorizations for building projection-based reduced
models, and  is total number of frequency samples evaluated dur-
ing the pruning.

By exploiting projection-based model order reduction and the
internal circuit structure simultaneously, this hybrid approach
allows us to model system nonlinear distortion over a wide range
of input frequency of interest, thereby extending the applicability
of nonlinear model generation. We demonstrate the efficacy of our
approach on several large time-varying circuit examples, where
frequency-domain nonlinear characteristics vary dramatically due
to active or high Q filtering. 

2. BACKGROUND

2.1 Nonlinear System Modeling Via Volterra Series
Volterra series has been widely used to characterize weakly non-

linear systems [1]-[2]. It is usually applicable to cases where the in-
put amplitudes to the system are small and nonlinearities are excited
in a weakly nonlinear fashion. For a circuit with input , the re-
sponse (circuit unknowns)  can be expressed using the expan-
sion

, (1)

where  is the nth order response, which is related to the input
via convolution in time domain:

. (2)

In the above equation,  is the nth order Volterra kernel, and
can be thought as an extension to the impulse response function of
a linear system. (2) can also be cast into the frequency domain,
where the Laplace transform of the nth order Volterra kernel

, or the nth order nonlinear transfer function, is
used.

Before using Volterra series for analysis, consider the following
ordinary differential-algebraic equations for a nonlinear circuit

, (3)

where  and  represent resistive and dynamic nonlineari-
ties. To apply Volterra series, first expand circuit nonlinearities
about a dc bias  (this can be extended to a varying operating point
for time-varying systems) into Taylor series. Correspondingly, we
define 

. (4)

It follows that the first through third order nonlinear small-signal re-
sponses, based upon , are computed recursively as

, (5)

where  is the small-signal input to the circuit. 

2.2 Nonlinear Model Order Reduction 
Equation (5) can be immediately interpreted as a set of linear

systems with different inputs. Following the work in [8][10], this
nonlinear system model can be reduced using an extension to pro-

jection-based LTI reduction techniques (e.g. [5]-[7]). The nonlin-
ear model reduction was achieved by successively reducing these
linear systems with increasing number of inputs, for approximating
the first order response , second order response  and third
order response , respectively. However, the efficacy of model
order reduction eventually suffers from the rapid increase in the
number of inputs to the successive linear networks. In [9], a well
structured projection-based moment matching scheme was devel-
oped based on a theoretically interesting bilinear form of weakly
nonlinear systems. However, a bilinear form of a nonlinear system
has significantly more state variables than the original state-equa-
tion representation. Therefore, the use of a bilinear form leads to a
reduction problem with a much larger size.

In [13], a nonlinear model order reduction algorithm NORM was
proposed to improve the reduced model compactness under the pro-
jection-based framework by carefully examining the problem under
a general nonlinear context. For the expanded MNA formulation of
(5), this was accomplished by first deriving a general matrix-form
nonlinear transfer function  and the associated mo-
ments, and then applying a minimum set of Krylov-subspace pro-
jection vectors to match the moments of nonlinear transfer
functions. A complete description of the NORM algorithm is out-
side of the scope of this paper. To provide sufficient background to
understand the hybrid approach proposed in this paper, we briefly
discuss the algorithm and limit it to single-input multi-output (SI-
MO) time-invariant systems. 

The first order linear transfer function of (5) is given by 
. (6)

Due to the recursive nature of (5), the symmetrized second order
nonlinear transfer function is determined by

, (7)

where ,
. It can be shown that the symmetrized third order trans-

fer function can be computed using

(8)

where ,  is the arith-
metic average of terms over all possible permutations of frequency
variables in the Kronecker product, and 

(9)

To perform a projection-based nonlinear Padé approximation,
moments of the corresponding nonlinear transfer functions are re-
quired. For this purpose, (6)-(8) are expanded into a power series
w.r.t frequency variables at the origin

, (10)

where ,  and  are a kth order moment of ,
 and , respectively. We define a reduced or-

der model as a kth order model in ,  or
 if and only if the respective moments are preserved in

the reduced model up to the kth order. In NORM, to match a specific
number of moments, a set of Krylov subspace vectors with a mini-
mum total dimension is used in projection-based reduction for im-
proving the model compactness. For instance, if we define
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, ,
it can be shown that the following Krylov subspaces are the re-
quired minimum set containing up to the kth order moment direc-
tions of :

, (11)

where 

(12)

A minimum set of Krylov subspace vectors can also be found for
moment matching of the third order transfer function . If we
combine Krylov subspaces for moment matching of the first
through the third order nonlinear transfer functions and compute a
orthonormal basis V for the combined subspaces, the reduced order
model can be computed via a projection of the form: 

 (13)

As seen from (13), the dense third order reduced system matrices
are of dimension , where  is the number of columns for pro-
jection V, which represents the size of the reduced order model.
Thus, controlling model size by a proper selection of projection
vectors is critical, as addressed in NORM:

• The use of a minimum set of Krylov subspace vectors avoids
unnecessary inflation of the model size, thereby leading to a sig-
nificant improvement in model compactness. Furthermore, it is
shown that the order of moment matching for a transfer function
at a higher order cannot exceed that of a transfer function of a
lower order. In NORM, the order of moment matching for the
nonlinear transfer function at each order can be chosen individ-
ually, provided that the above condition is satisfied, and the size
of overall reduced order model is minimized for each of these
choices. 

• Unlike the counterpart of LTI system reduction, adopting a
multi-point method can improve the model compactness under
nonlinear context as recognized in NORM. This stems from the
fact that the total dimension of optimal Krylov subspaces used
in a single-point method actually exceeds the number of
moments matched in the resulting reduced order model. How-
ever, the use of a multi-point method, in particular, a zeroth
order multi-point NORM, where high order nonlinear transfer
function values (zeroth order moments) are matched simulta-
neously at several expansion points, can produce a reduced
order model with a size equal to the number of moments
matched. That means multi-point methods can further increase
the model compactness that is essential for nonlinear system
reduction.

To compare different methods, we define the size of a reduced or-
der model as the number of state variables that it contains. The
worst-case model sizes for the system in (5) are compared in
Table 1, where reduced order models match the moment of  or

 and  up to certain order. NORM-SP is the single-point ver-
sion of NORM, and NORM-MP is the “equivalent” zeroth order
multi-point NORM in which the same number of transfer function
moments are matched. It is evident that the use of NORM, especial-

ly multi-point NORM, dramatically reduces the model size.

2.3 Modeling of Time-Varying Weakly Nonlinear
Systems

A large class of networks, such as clocked switching networks
and RF current switching mixers, can be characterized as time-
varying weakly nonlinear systems with respect to the small input
signal being processed. This would require us to treat the large ex-
citations to the system, such as clock and LO, as part of the system
under modeling, and analyze the small-signal input upon the time-
varying operating point caused by the large excitations. One special
case of practical interest is that the system has a periodically time-
varying operating point introduced by a periodic clock or LO. 

Assume that the large-signal periodic excitation to the system has
a period , then the weakly nonlinear system re-
sponse to the small-signal input can be characterized using period-
ically time-varying Volterra series. Now the nonlinear transfer
function  becomes a periodic function of time with
the same period , and can be expanded into Fourier series

. (14)

Using (14), the nth order response is in the form

(15)

It can be seen from the above equation that the kth harmonic 
of specifies the nth order nonlinear effect that is frequency
translated by  due to the time variation of the system.

By extending the formulation for linear periodically time-vary-
ing systems in [20][11][8] via either frequency-domain collocation
or time-domain backward difference, the periodically time-varying
nonlinear transfer functions can be formulated in a matrix form sim-
ilar to that of (6)-(8). In this paper, a time-domain backward Euler
is employed to discretize  over  sample points

within a period of
. Analogous to the use of  in (6)-(8), a

set of matrices  can be formulated based
on discretization of the system nonlinear characteristics over a pe-
riod of  for time-varying systems. Based on these matrices, (6)-
(8) can be reformulated in terms of . Each of these equa-
tions now has  unknowns, where  is the number of physical
circuit unknowns of the system. To accurately capture the time-
varying operating point due to the large-signal excitation, many
sample points are often required, leading to a set of large time-vary-
ing system equations. These equations must be reduced to be used
efficiently in simulation. In the remainder of this paper we focus on
the time-varying systems as the results for time-invariant systems
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NORM-SP:H2 24 40 62 91 128 174

NORM-SP:H2-H3 66 118 194 301 446 636
NORM-MP:H2 16 23 30 39 48 59

NORM-MP:H2-H3 37 56 78 108 141 182

Table 1. Worst-case reduced order model size

T0 2π( ) ω0⁄=

Hn t s1 …sn, ,( )
T0

Hn t ω1 …ωn, ,( ) Hn k, ω1 …ωn,( ) e
jkω0t

⋅
k ∞–=

∞

∑=

xn t( ) 1
2π
------ 
  n

… Hn t ω, 1 …ωn,( ) U ω1( ) … U ωn( )⋅ ⋅⋅
∞–

∞

∫
∞–

∞

∫=

e⋅
j ω1 … ωn+ +( )t

ω1…d ωnd

1
2π
------ 
  n

e
jkω0 t

… Hn k, ω1 …ωn,( )
∞–

∞

∫
∞–

∞

∫⋅
k ∞–=

∞

∑⋅=

U ω1( ) … U ωn( ) e
j ω1 … ωn+ +( )t

ω1…d ωnd⋅ ⋅⋅ ⋅⋅
Hn k,

Hn t ·,( )
kω0

Hn t ·,( ) M
Hn Hn t1 ·,( )T Hn t2 ·,( )T … Hn tM ·,( )T, , ,[ ] T=
T0 G1 C1 b1 G2 C2 G3 C3, , , , , ,

G1 C1 b1 G2 C2 G3 C3, , , , , ,

T0
H1 H2 H3, ,

M N× N
456



can be easily deduced from this more general description. 

3. HYBRID APPROACH

3.1 An Illustrative Example
To motivate the need for a hybrid approach, consider the simple

nonlinear circuit shown in Fig. 1(a). This circuit has only two non-
linearities, resistors  and . Each of them is modeled as a third
order polynomial .The small-signal current
source drives a high Q resonator (tuned at 1GHz), which is followed
by 500 RC segments. A cross-section of the third order nonlinear
transfer function at the output is plotted in Fig. 1(b). It is evident
from Fig. 1(b) that when coupled with high Q resonator (part of lin-
ear network), the two nonlinearities create a sharp transition for the
third order nonlinear transfer function within a neighborhood of the
resonant frequency. To capture accurately the third-order nonlinear
effects around the resonant frequency using a projection-based im-
plicit moment-matching, many projection vectors may be required.
In the reduced model, although the number of states can be signifi-
cantly reduced, a large and dense reduced third order matrix 
may result(  nonzeros,  is the number of states in the reduced
model). This is in contrast to the original third order matrix  that
is of much higher dimension but only has 2 nonzeros.

Projection-based nonlinear model reduction is very effective if a
low-order approximation is sufficiently accurate. In such cases, the
reduced order model can also be constructed rather efficiently (the
dominate cost is no more than a few matrix factorizations). Howev-
er, for the cases where either a good accuracy is required over a
wide range of frequency or the nonlinear frequency-domain charac-
teristics varies dramatically within a band of interest, a complete
projection-based approach might be difficult to apply. For practical
examples, the primary reason for this difficulty is that projecting
high order system matrices (e.g. ) becomes less and less efficient
as the dimension of the Krylov subspaces increases. 

3.2 Hybrid Approach
As clearly seen from Table 1, if we use multi-point NORM to

only approximate the first and second order nonlinear transfer
functions, the size of the reduced order model is much less con-
strained. More specifically, as the third order nonlinear transfer
functions are not considered in the projection-based reduction, the
reduced model size now grows much slower as the order of
moment-matching increases. For the same reason, forming the
reduced third order system matrices is not an issue any more, nei-

ther is it a limiting factor for the model size. Moreover, the adop-
tion of the projection-based approach allows us to efficiently
model the first and second order system properties, especially for
large circuits with detailed parasitics. From a pruning-based mod-
eling perspective, although numerous nonlinearities can exist in a
circuit, there is often a natural tendency for only a few of them to
be dominant due to the specific circuit structure. Thus, identifying
these dominant nonlinearities under the original circuit structure
can be a very useful component of model generation. In the pro-
posed hybrid approach, the low-order (first and second) responses
are matched using projection while high-order (third) response are
approximated by exploiting both the circuit internal structure and
projection-based reduction. 

3.2.1 Approximation of low-order responses
We begin with application of multi-point NORM to approximate

the first and second nonlinear transfer functions. We denote the cor-
responding projection matrix as , where  is the num-
ber of physical circuit unknowns,  is number of time-
domain samples to discretize the time-varying nonlinear transfer
functions (assume an odd number of samples for simplicity), and 
is the size of reduced order model. We further denote the reduced
first and second order matrices produced by NORM as

. (16)

Substituting (16) into (6)-(7), the first and second order transfer
functions  and  of the reduced model can be computed. The
time-sampled first and second order transfer functions of the origi-
nal system can be approximated as

. (17)

As the reduced model of (16)-(17) represents a time-invariant sys-
tem, the approximation of the first and second order responses of
the original time-varying system involves the use of discrete Fouri-
er transform. It can be shown that the following th order system
is a time-domain realization of the corresponding reduced model

, (18)

where ,  is the DFT matrix converting  time sam-
ples to the corresponding Fourier coefficients,

,  is the 

identity matrix.The first and second order responses of the original

system can be approximated in time-domain by .

3.2.2 Approximation of the third order response
To approximate the third order transfer function based on the re-

duced model of (16)-(17) or (18), substitute (16) into (8) 

, (19)
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(20)
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fer function, one needs to solve a linear system in terms of  and
, and form the input to the linear system in terms of  that is a

function of high-order system matrices  and low-or-
der transfer functions . As  are approximated using
(17), to further reduce (19) requires reduction of the dimension of
the linear problem in (19) as well as the high-order system matrices

.This goal is accomplished by a combination of pro-
jection-based reduction of an adjoint network and direct matrix
pruning. 

In analog signal processing and RF applications, a circuit block
usually has only one or at most a few output nodes. For time-vary-
ing systems, typically only a small number of sidebands (w.r.t.
clock or LO) for the outputs are of interest. Thus, (19) can be
viewed as a system with potentially many inputs but few outputs,
and can be reduced as an adjoint network. Without loss of general-
ity, let us assume only the ith sideband of the voltage response at
node p is of interest (e.g, ). Define 
as a  vector that has a 1 at the p-th location and zeros at all
other locations, and 

. (21)

The ith sideband of the third order transfer function at node p, ,
(corresponding to the ith harmonic of the third order transfer func-
tion for node p) can be obtained from the adjoint network

. (22)

We can apply Krylov subspace projection (such as [7]) to reduce the
linear adjoint network of (22)

, (23)

where  is a orthonormal basis of the Krylov subspace
 with .

As the DFT vector  is absorbed into , to perform a real projec-
tion,  can be split into real and imaginary parts before reduction
[21]. Based on (22)-(23), we can approximate  as 

(24)

To speed up the computation of the third order transfer function
or response, high order system matrices  need to be
reduced. To avoid forming dense reduced matrices (particularly for
the third order ones) in a projection-based approach, here we ex-
ploit the internal structure of the problem by applying a direct ma-
trix pruning technique, where nonzero elements of 
are pruned according to their contributions to the third order trans-
fer function at the output node of interest. Although a nonlinear cir-
cuit may contain many nonlinearities, a few of them tend to be
dominant. Therefore, retaining the original circuit structural infor-
mation by avoiding using projection and pruning these high-order
matrices in the original coordinates can be very effective. This same
idea has been used in symbolic modeling of nonlinear circuits,
where dominant circuit nonlinearities are identified and kept for
building system-level models [14]-[16]. 

The pruning process proceeds as follows: A set of sampled fre-
quency points  are first selected within the frequency band of in-
terest. Then for each of these frequency samples, the third order
transfer function are computed, as well as the individual contribu-
tions of nonzeros in . These contributions are sorted
by magnitude, and non-dominant ones are discarded provided that
a user-specified error tolerance on  is not exceeded. The end
products of the process are a set of pruned matrices

 that satisfy the error tolerance for all the sam-
pled frequency points in . As the computation of  and individ-

ual contributions may take place on many sample points, matrix
pruning can be a slow process. However, to speed up this process,
we embed the projection-based model reduction step directly into
the pruning procedure. 

To compute  at a frequency point,  and  need to be com-
puted at related points. As in (20), to form vector  we can use the
reduced order model in (16)-(17) to compute approximate first and
second order transfer functions. Then, instead of solving a poten-
tially large linear problem in (19), the reduced adjoint network of
(24) can be used to find an approximate vector . Computation of
each individual contribution term is straightforward, based on (20)
and (24). For instance, the contribution of the nonzero at  lo-
cation of  can be simply computed as

, (25)

where  is the value of the nonzero,  is the nth element
of , and  is the mth element of . Since reduced order models
are used, factorizing the original large system matrices at many
sampled points are avoided. The cost for constructing projection-
based reduced order models of (16) and (24) is dominated by the
cost of a few matrix factorizations, therefore it is bounded by

, where  is the number of matrix factorizations,  is
the number of sampled points used to discretize the time-varying
transfer functions, and  is the number of physical circuit un-
knowns. The cost of the pruning process is dominated by evaluation
and sorting of the different contributions, assuming that the use of
reduced order models makes other cost much less. The overall cost
for model generation is, therefore, bounded by

, where  is the number frequency samples
evaluated in the pruning, and  is the number of nonzeros in the
high order matrices being pruned. 

Using pruned matrices , (20) can be further ap-
proximated as 

(26)

To derive a time-domain model for generating the desired third or-
der response, we substitute (26) into (24) and transpose both sides
of the equation

. (27)

Defining

, (28)

it is not hard to show that the corresponding time-domain model is

, (29)

where  are given in (18),  is the desired time-domain
third order response. Note that since only the ith harmonics of the
third order transfer functions are considered at the output, 
in the above equation is complex. To recover the corresponding real
signal, we can simply add the conjugate component that corre-
sponds to the -ith harmonic. The first and second order responses at
node p, and , can be obtained from (18) by selecting
the proper entries from . Also note that when more than one out-
put or set of side bands are of interest, multiple reduced adjoint net-
works can be incorporated into the model in a straightforward way.

3.2.3 Flow of Hybrid Model Generation
We summarize the model generation flow in Fig. 2. It should be
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noted that the hybrid model can be either realized in the time-do-
main based on (18) and (29), or the reduced, pruned matrices and
associated projections , , , , , , , , , ,

, ,  and  can be directly used in a frequency-domain
Volterra-based analysis. The corresponding model structure is de-
picted in Fig. 3.

4. RESULTS
4.1 A switch-capacitor filter

Switch-capacitor filters are often found in RF receivers as chan-
nel-select filters [22]. If the input signal is small, then these circuits
can be characterized by time-varying Volterra series. A Butter-
worth lowpass switch-capacitor biquad is shown in Fig. 4. The
two-phase clock is at 20MHz, and the 3-dB frequency of the filter
is about 700KHz. Each circuit nonlinearity in the filter is modeled
as a third order polynomial about the periodically varying operat-
ing point generated by the clock. The resulting full model has 8142
time-sampled circuit unknowns. To view the third order nonlinear
effects within and close to the signal band, we plot the dc compo-
nent of the time-varying third order nonlinear transfer function

, where ,
, in Fig. 5(a). It is clearly observable that the third order

nonlinear characteristics vary dramatically between passband and
stopband. To capture not only the nonlinear distortions due to the

1. Apply multi-point NORM to compute a projection  
for approximating the first and second order transfer 
functions:

.

2. Form the adjoint network as in (22) and reduce it using a 
projection-based reduction:

.

3. For each frequency point (pre-selected):

3.1. Compute , , , , 

,  using (6)-(7) based on 

reduced matrices .

3.2. Approximate the first and second order transfer 
functions of the original system using (17).

3.3. Compute the desired sideband of  at 

the output node, and individual contributions of 

nonzeros in  based on reduced order 

models using (20), (24) and (25). 

3.4. Prune by sorting all the per-nonzero 

contributions and retaining dominant ones to satisfy 
an error tolerance .

4. Form the time-domain reduced models using (18) and 
(29) if needed.
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signals within the passband, but also the third order mixing of the
large out of channel interferers into the passband, the nonlinear fre-
quency-domain characteristics of the filter must be modeled accu-
rately over a frequency range of 7 decades. As such, a complete
projection-based approach becomes inefficient, since a sufficient
number of moments have to be matched for accuracy, while the
resulting model size leads to expensive dense projected third order
matrices. 

To apply our hybrid approach, we first used the multi-point
NORM algorithm to accurately capture the first and second trans-
fer functions using a reduced order model with 27 states (SVD was
used to deflate the Krylov subspaces), where 6 moments of  and
24 moments of  were matched. The adjoint network describing
the propagation of third order nonlinear effects from various non-
linearities to the output was reduced to an 11th order model. Based
on these reduced models,  were significantly pruned
in the original coordinates on a set of sampled frequencies points.
The final hybrid model has a maximum relative modeling error of
6% (or about 0.5dB) for , as shown in Fig. 5(b). 

This hybrid model was also validated in a frequency-domain
Volterra-like analysis, where 6 sinusoidals with various phases
were selected from passband, transition band and stopband as input
signals. The simulation result was compared against that of the full
model, as shown in Fig. 6. As can be seen from the figure, the
hybrid model captures the frequency-domain nonlinear character-
istics of the filter over a wide range of input band very accurately.
In additional to excellent accuracy, for this example, a runtime
speed up of 64x over the full model was achieved by using the
hybrid model in simulation. 

4.2 A 900MHz Receiver Front-End 

Next consider the 900MHz receiver frond-end depicted in
Fig. 7. It is composed of a LNA, a mixer and an IF amp as well as
high-Q bandpass and lowpass filters. To model the weakly nonlin-
ear behavior of the receiver with respect to the RF input, we
extracted a time-varying third order polynomial nonlinear model

of the system upon the varying operating point due to the 880MHz
LO. The extracted full model has 8496 unknowns. To see the third
order intermodulation effects of the system, we plot the first har-
monic of the time-varying third order nonlinear transfer function

 of the output about the RF center fre-
quency in Fig. 8(a). This harmonic specifies the amount of down-
converted (by one LO frequency) third order intermodulation
(IM3) at the output. In the figure, ,

. 
As high-Q filterings are included as part of the system, due to

their high frequency selectivity,  varies dramatically about the
center frequency. To account fully for the receiver distortion per-
formance under the presence of large out-of-band interferers (e.g.
large blocking signals), the receiver third order intermodulation
must be characterized accurately not only in the channel, but also
at frequencies tens or hundreds of MHz away from the center fre-
quency. This requirement makes it very difficult to directly apply a
projection-based reduction to the complete receiver, and may
necessitate modeling each nonlinear block individually in order to
isolate the high-Q filtering blocks.

To apply the proposed hybrid approach to the complete receiver,
multi-point NORM was first applied to approximate  and 
using a reduced order system with 52 states, where 16 moments of

 and 44 moments of  are matched (the Krylov subspaces

were compacted using SVD). The adjoint network for propagating
third-order nonlinear effects to the first harmonic of time-varying

 at the output was reduced to a 40th order system. The second

and the third order system matrices were again pruned on a set of
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sampled frequency points for meeting the accuracy requirement
for  based on these reduced models. The corresponding relative

modeling error on  of the hybrid model is less than 8% (0.7dB)

as plotted in Fig. 8(b). Since  varies as much as 230dB in the

frequency band shown in Fig. 8, the relative modeling error was

computed as , where  is a small positive num-

ber that is added to avoid overestimation of the error for an

extremely small value of .

To further verify the accuracy of the receiver model, we per-
formed a frequency-domain Volterra-based analysis where the RF
input consisted of 12 sinusoidals over a frequency span of
100MHz. To test the receiver performance under the interference
of large blocking signals, the largest amplitude difference between
the in-band and out-of-band signals was as high as 60dB. The
complete output spectrum consisted of 147 frequencies, and the
frequency components close to the IF band are plotted in Fig. 9. As
clearly seen from the plot, the hybrid model accurately captures the
receiver linearity performance over a wide range of input fre-
quency. In addition, the use of the hybrid model brought more than
20x simulation efficiency improvement over the full model. We
shall also note that model accuracy can be easily traded off with
simulation efficiency for specific cases. For instance, as the accu-
racy requirement permits, simpler hybrid models can be con-
structed by adopting lower order projection-based approximations,
as well as less stringent error tolerance for pruning.

5. CONCLUSIONS
We have shown that generating fully-encompassing nonlinear

models for complex analog circuit blocks or subsystems presents
challenging modeling problems. For these cases, the requirements
on model accuracy and applicability can often render existing
methods ineffective. To address these challenges, a combination of
different techniques are required. Our proposed hybrid model gen-
eration approach combines the benefits of both pruning-based and
transformation-based methodologies into a unifying model. The
utility of this approach is demonstrated for modeling circuits in
analog signal processing and RF applications.
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