
EFFICIENT VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED
ASYNCHRONOUS CIRCUITS

Curtis A. Nelson and Chris J. Myers

University of Utah
Salt Lake City, UT

�nelscu,myers�@vlsigroup.ece.utah.edu

Tomohiro Yoneda

National Institute of Informatics
Tokyo, Japan

yoneda@nii.ac.jp

ABSTRACT

This paper presents an efficient method for verifying hazard free-
dom in timed asynchronous circuits. Timed circuits are a class
of asynchronous circuits that utilize explicit timing information
for optimization throughout the entire design process. In asyn-
chronous circuits, correct operation requires that there are no haz-
ards in the circuit implementation. Therefore, when designing an
asynchronous circuit, each internal node and output of the circuit
must be verified for hazard-freedom to ensure correct operation.
Current verification algorithms for timed asynchronous circuits re-
quire an explicit state exploration often resulting in state explo-
sion for even modest sized examples. The goal of this work is
to abstract the behavior of internal nodes and utilize this informa-
tion to make a conservative determination of hazard-freedom for
each node in the circuit. Experimental results indicate that this
approach is substantially more efficient than existing timing veri-
fication tools. These results also indicate that this method scales
well for large examples. It is capable of analyzing circuits in less
than a second that could not be previously analyzed. While this
method is conservative in that some false hazards may be reported,
our results indicate that the number of false hazards is small.

1. INTRODUCTION

Timed circuits are a class of asynchronous circuits that use explicit
timing information in circuit synthesis. This timing information,
however rough the estimates may be, can potentially reduce the
amount of circuitry that would be needed from a design that ad-
heres to speed-independent constraints. The estimates for the tim-
ing can be verified once the design is mapped to a library and actual
timing values are known. This simplification can lead to significant
gains in circuit performance over asynchronous circuits designed
without timing assumptions. This was demonstrated in the Intel
RAPPID project in which an asynchronous instruction length de-
coder for an x86 processor was designed using timed circuits. It
was found to be three times faster while using half the power of
the comparable synchronous design [17].

While timed asynchronous circuits offer potential advantages
over synchronous circuits such as faster operation and lower power,
these advantages are often offset by the expense of the circuit over-
head needed to eliminate hazards. Hazards are conditions gener-
ated by the structure of the circuit or timing relationships between
inputs and propagation delays that can cause incorrect behavior.

This research is supported by SRC contract 2002-TJ-1024,
an SRC Graduate Fellowship, NSF Japan Program award INT-
0087281, and a JSPS Joint Research grant.

As synthesized hazard-free logic equations are mapped to a given
gate library, new internal nodes are introduced in the circuit netlist.
Each new internal node as well as the outputs of the circuit must
be verified for hazard-freedom to ensure correct operation of the
mapped circuit. This verification must be extremely efficient to
allow for many alternative designs to be considered during tech-
nology mapping. Current timing verification algorithms [13, 3,
14, 10, 9, 18] often suffer from state explosion problems because
each node in the circuit netlist is treated as a new state variable,
potentially doubling the number of states.

There are numerous methods for verifying hazard-freedom in
gate-level speed-independent circuits [5, 6, 2, 8, 7, 15, 16]. In
speed-independent circuits, no timing assumptions are made about
gates or the environment except that wire delays are negligible. An
efficient verification method for determinate speed-independent
circuits is proposed in [2]. Determinate speed-independent cir-
cuits allow input choice (conditionals) but not output choice (ar-
bitration). The work in [2] reduces state explosion by examining
individual behavior at each internal node and approximating this
behavior for each state in the specification. The hazard-freedom of
the circuit is then verified by examining this cube approximation.
When the number of internal signals is high as compared with the
number of primary inputs and outputs (a feature common of many
circuit design styles), this cube approximation technique has the
potential to substantially reduce the complexity of verification as
demonstrated in the results shown in [2].

Abstraction of internal nodes to combat state explosion is also
performed in [20, 19]. This work, however, is not directed at ver-
ification of hazard-freedom and requires the use of Timed Petri
Nets for all design descriptions including the gates to be analyzed.
While it is potentially possible that this work could be used to ver-
ify hazard-freedom, it is not known how successful it would be. It
may be interesting in the future to explore combining this approach
with the one proposed in this paper.

The goal of this paper is to extend the work in [2] to verify timed
circuits. It is often the case that hazard conditions found in speed-
independent circuits do not manifest as glitches in the real circuit
implementation due to the actual timing behavior. The reason for
this is that internal signals, once enabled, certainly do fire in some
finite time. If the time evolution can be tracked in the state space,
then it may be possible to identify the stability of internal signals.
Using this timed cube approximation, a gate-level timed circuit
can be rapidly analyzed for hazards. Experimental results show
that this approach can be substantially faster than existing timing
verifiers. Thus, the method presented in this paper has the potential
to greatly increase the size of circuits that can be verified.

424

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

2. BACKGROUND TERMINOLOGY

The verifier described in this paper takes as inputs a time Petri net
(TPN) defining the circuit and the behavior of the environment,
and a netlist representing the circuit to be verified. The verification
procedure also creates and uses a state graph to represent reach-
able timed states. This section describes each of these formally.

2.1. Time Petri nets

Our method uses TPN’s [11] to model the possible input behaviors
and the required output behaviors for timed circuits. Let � be a
finite set of wires. The timed behavior of a circuit is modeled as
sequences of rising and falling transitions on � . For any � � � ,
�� is a rising transition and �� is a falling transition on the wire
�. In the following definitions, let �� and �� denote the sets of
non-negative rational and non-negative real numbers, respectively.
A � -labeled one-safe TPN is a directed bipartite graph described
by the tuple TPN � ����� �� ����� ��� �� 	�
� where:

� � � � � � is the set of wires where � is the set of input
wires and � is the set of output wires;

� � is the set of transitions;

� � is the set of places;

� � � �� � � � � �� � � � is the flow relation;

� �� � � is the initial marking;

� �� � � is the set of wires that are initially high;

� � � � � �� is the lower timing bound function;

� 	 � � � �� � 	
� is the upper timing bound function;

�
 � � �� is the labeling function.

The state of a TPN is a pair ���
� where � is the current
marking (i.e., the subset of places that hold tokens) and
 � � �
�� is a clock assignment function assigning nonnegative real val-
ued ages to transitions. With every transition � � � , its associated
preset is �� � 	� � � � ��� �� � ��. The postset of a transition
is defined as �� � 	� � � � ��� �� � ��. Note that the preset and
postset for places are defined similarly. A transition, �, is enabled
in a state if the members of its preset form a subset of the places in
the marking of the state (i.e., �� � �). A transition, �, is fireable
in a state if it has been enabled longer than its lower timing bound
(i.e.,
���
 ����). A transition, �, must fire before it has been
enabled longer than its upper timing bound (i.e.,
��� � 	���).

An example TPN is shown in Figure 1(a). In the initial state,
transitions �� and ��/1 are enabled, and exactly one of these tran-
sitions fires within 2 to 5 time units. The /1 and /2 notations in the
TPN of Figure 1(a) indicate different transitions on the same sig-
nal wire. If �� fires, then the ��/2 transition becomes enabled
and fires within 2 to 5 more time units enabling ��.

2.2. Netlists

The goal of this work is to verify the correctness of a circuit im-
plementation against a given TPN specification. The circuit to be
verified is described using a netlist modeled by a directed graph
NET � ����� where:

� � � � �� �� is the set of vertices in the circuit;

� � � �� � � ���� �� ��� is the set of edges.

a− [2,5]

a+ [2,5] b+/2 [2,5]

c− [2,5]

b− [2,5]

b+/1 [2,5]

c+/1 [2,5]

d+

c+/2 [2,5]

d−

(a)

b
c

e
d

a
[1,2]

[1,2]

(b)

a
c
b

d
e

[1,2]
[1,2]

(c)

Figure 1: (a) TPN for our running example. (b) A netlist that
is hazardous under the speed-independent model. (c) A netlist
that is hazard-free under the speed-independent model.

Each vertex � � � represents a node in the netlist. This set is
composed of both the input wires, � , and output wires, �, from
the TPN description, as well as new nodes internal to the circuit,
� . Each � � � represents a directed connection in the netlist from
one node to another node. The set of fanins to a node is denoted by
�����, and the fanouts are denoted by �����. Each node which
is in � �� has an associated gate output function ������ � � � � ���
where ����� � 	��� � � � � ���. This gate output function also has
an associated minimum, ���� , and maximum, ����, gate delay.

The netlist for a possible circuit implementation of the signal �
in our example is shown in Figure 1(b). The set of vertices, � ,
is 	�� �� �� �� ��, and the set of edges, �, is 	 ��� ��, ��� ��, ��� ��,
��� �� �. The function associated with � is ����� �� � ��
��� ��
which has a delay of 1 to 2 time units. An alternative circuit imple-
mentation for signal � is shown in Figure 1(c). The delays shown
on the gates could just as easily be shown on the wires. As shown
later, the primary concern here is with the maximum delay path
from primary inputs to outputs.

The verification method described in this paper requires that the
primary outputs must cut the circuit. In other words, if all primary
outputs are removed from the netlist, the netlist would become
acyclic. Intuitively, this means there can be no internal cycles in
the netlist. Since the goal of this work is to use this verifier as
a hazard checker during technology mapping and the technology
mapper that has been developed satisfies this restriction, this seems
acceptable. However, in the future, we are interested in generaliz-
ing this work to the case where there is internal feedback.

2.3. State graphs

In order to check correctness, a verification method typically uses
a specification such as a TPN and a representation of the circuit
implementation such as a netlist and finds all possible states rep-
resented using a state graph (SG). This verification method then
checks the SG (often on the fly as the SG is being generated) for
various correctness properties.

A SG is a labeled directed graph whose nodes are states and
edges are state transitions. Formally, a SG is modeled by the tuple
 ! = � , � , Æ � where:

� is the set of states.

� � is the set of transitions from the TPN.

� Æ � � � � is the set of state transitions.

Each individual state � � is modeled as a tuple � � �",#�where

425

� " � � is the set of wires that are high in the state.

� # is a zone representing timing relationships.

Timing information is described using zones which are typically
represented using difference bound matrices (DBMs) [4]. These
matrices represent time differences between recently fired transi-
tions. Each entry, #�� , in the matrix represents a timing relation-
ship of the form $�� � $�� � #�� where $�� is the time at which
�� fires. In other words, #�� represents the maximum amount of
time in which �� fires after �� . An example zone for the point
right after �� fires is given below which represents the relation-
ship � � $�� � $�� � �.

$�� $��
$�� 0 -2
$�� 5 0

Using a timed state space exploration algorithm such as the ones
in [3, 10], it is possible to derive a SG using a TPN to drive the in-
puts and check the outputs, and a netlist to drive the outputs. How-
ever, the key result of this paper is that our method never explicitly
derives this SG. Instead, a SG for a complex gate equivalent (CGE)
version of the netlist needs to be derived. The CGE circuit for both
netlists in Figures 1(b) and (c) is shown in Figure 2(a). The SG
found using this circuit and the TPN in Figure 1(a) is shown in
Figure 2(c). Each state vector " is labeled in the state diagram to
show the value of all signal wires and the zones are omitted for
clarity. Each edge of the state graph is labeled with a signal tran-
sition � � � . The input wire set is 	�� �� �� and the output wire
set is 	��. There are nine states including ���� and ����, and
ten state transitions including ������ ��� �����. One last thing to
note is that during the state space exploration to derive this SG, our
method checks that the given CGE circuit is equivalent to the de-
sired one. For example, if the CGE circuit given had been the one
in Figure 2(b), after �� fires, the netlist could produce a �� when
one is not expected in the TPN. This complex gate equivalence
failure would then be reported to the user.

a
b
c

d

[1,4]

(a)

a
c

d

[1,4]

(b)

c+/1

abcd

0010
1000

1110

c−

b+/2

d+

0000

1100

1101

1111

0110

0100

b−

d−

a−

a+

State =

c+/2

b+/1

(c)

Figure 2: (a) Correct CGE circuit. (b) Incorrect CGE circuit.
(c) State graph for correct CGE circuit.

3. VERIFICATION ALGORITHM

In [2, 1], the following theorem giving sufficient conditions for
correctness of a speed-independent asynchronous circuit is pre-
sented (reworded to match the notation used in this paper). These
conditions are also sufficient for correctness of timed circuits.

THEOREM 3.1. (Sufficient conditions for correctness).
Let NET � ����� be a circuit implementing the behavior de-
scribed by TPN � � � ,� ,� ,� ,��,��, �,	,
 �. The NET is a
correct implementation of the TPN if (1) it is complex gate equiva-
lent to the TPN, and (2) it satisfies the acknowledgment and mono-
tonicity properties.

Our verification algorithm to check these correctness conditions
is shown in Figure 3. This algorithm takes as input a TPN rep-
resenting the possible input behavior and the required output be-
havior and a netlist, NET, representing the circuit to be checked. It
then determines if the circuit is correct. When the circuit is not cor-
rect, this algorithm reports the locations of the errors that it finds.
This algorithm is described in detail in this section.

verify(TPN,NET) �
SG = check equivalence(TPN,NET)
find stable states(TPN,SG,NET)
check acknowledgment(SG,NET)
check monotonicity(SG,NET)

�

Figure 3: Top-level algorithm for verification.

3.1. Checking equivalence

The check equivalence function forms a CGE netlist, uses
this netlist and the given TPN to derive a SG, and checks if the
CGE netlist provides outputs only at specified times.

The first step is to derive a CGE netlist in which there are no in-
ternal signals. In other words, it derives a netlist that has one gate
per primary output signal. The Boolean function for this gate is
specified only in terms of the primary inputs and outputs. The de-
lay of this gate is set to the minimum and maximum delay from any
input to the primary output. Although false paths through the logic
may exist, our algorithm need not identify them at this point. Their
inclusion results in a higher and thus more conservative maximum
delay. At worst, this may result in a node being falsely determined
to be hazardous.

In our example, the CGE representation for the netlists shown
in Figures 1(b) and (c) is shown in Figure 2(a). The delay for this
gate is set to 	��
�, since in both cases there exists a minimum
delay path of 1 time unit and a maximum delay path of 4.

Using this CGE netlist and the given TPN, a SG is found using a
timed state space exploration algorithm. During the course of this
state space exploration, output firings are checked. If an output
fires prematurely, such as in the example shown in Figure 2(b),
an error is reported to the user. Also, if an output is expected
and the circuit does not provide one, an error is reported. In our
example, if the function �� � ��
��� �� is used, after �� and
��, a �� would be expected, but the circuit would not produce
it. This models a progress condition similar to completeness with
respect to specification [6] and strong conformance [7]. When no
errors are detected, check equivalence returns a SG.

3.2. Finding stable states

After the check equivalence step, our method has shown
that the circuit is correct at a complex gate level. By hiding the
internal signals before finding the state space, the state space is
potentially reduced from ����	� � ��
� � ����� to ����	� � ��
��.
When the number of internal signals is large, as is often the case

426

in real designs, this savings can be quite dramatic. However, haz-
ards on internal nodes can still produce incorrect circuit behav-
ior. Therefore, it is now necessary to check that all internal nodes
are hazard-free. This is accomplished by determining internal sig-
nal behavior implicitly. In particular, our method annotates each
state with stability information about each internal signal. The
goal of the find stable states algorithm is to determine in
which states and for which state transitions in the complex gate
SG that each internal node is stable. This is accomplished by de-
riving a predicate stable(�,�) for each state � � and node
� � � and another predicate stable(�,��,�) for each state tran-
sition ��� �� ��� � Æ. This stability information can then be used to
determine if there are any hazards in the given netlist.

The algorithm to find the stability information is shown in Fig-
ure 4. The algorithm begins by first determining the predicate
eval(�,�) by finding the Boolean evaluation in each state in the
SG for each node in the netlist. This can be accomplished by sim-
ply fixing the values for each primary input and output in the netlist
to the values given in the state and propagating this information
through the netlist. From the SG in Figure 2(c) and netlist in Fig-
ure 1(b), eval(����,�) and eval(����,�) are determined to both
be 1. For node �, the states in the set 	����, ����, ����, �����
evaluate to 1 while the remaining states evaluate to 0.

find stable states(TPN,SG,NET) �
foreach � � � and � � � find eval(�,�)
foreach � � �, � � �, and ��� �� ��� � Æ,
stable(�,�) � stable(�,��,�) � FALSE

stabilize timed(TPN,SG,NET)
do
distribute(SG)
modified = stabilize untimed(SG,NET)

while modified
�

Figure 4: Algorithm for finding stable states.

The algorithm next initializes the stability predicates to FALSE
to initially indicate that it is not known whether the internal sig-
nals are stable or changing. The goal of the rest of the algorithm
is to determine stability of the internal signals, whenever possible.
In the next subsection, a brief review of untimed stabilization is
given which comes from the work in [2]. In the following subsec-
tion, we discuss our new contribution which is timed stabilization.
The timed stabilization routine does not need to be iterated, so it is
executed first. The untimed stabilization routine may require iter-
ation since stabilizations on one node of the network can influence
stabilizations on other nodes.

3.2.1. Untimed stabilization

The objective of stabilization is to show that at some points in the
SG, the evaluations of some internal node, �, are certain to be sta-
ble. The algorithm to determine untimed stability is shown in Fig-
ure 5. An internal node is considered untimed stable if a change
in evaluation on an internal node is acknowledged on a primary
output. In other words, for a state transition ��� �� ���, if the tran-
sition � could only have occurred if the internal node � is stable at
its Boolean evaluation, then it can be said that the transition � has
acknowledged that the node � is stable.

To determine if an internal node � is acknowledged to be stable
by a state transition ��� �� ���, it must first be determined if a path
exists from � to the output transition under consideration. It must

stabilize untimed(SG,NET) �
modified = FALSE
foreach � � �

foreach (�,�,��) � Æ
if ((exists path(NET,�,����)) and

(must prop(NET,�,�,����)) and
(not stable(�,��,�))) then

stable(�,��,�) = TRUE
modified = TRUE

return modified
�

Figure 5: Untimed stabilization algorithm.

then be determined using the function must prop if the value at
� must propagate through any possible path to the output. This is
done by ensuring that all functions in the path from � to the output
have non-controlling values on the side inputs. Consider the exam-
ple netlist in Figure 1(b) and the state transition (����,��,����).
There exists a path between node � and the output �. In state ����,
node � evaluates to 1. This value at � must propagate to the output
because � cannot go high until � has gone high. More succinctly,
output � switched from low to high as a direct consequence of
node � going high and the side input, � being at 0. Therefore,
stable(����,����,�) is set to TRUE.

Next, the distribute function is used to copy this stabi-
lization forward in the state graph until a change in evaluation
is encountered. In particular, stable(����, ����, �) implies
the following stability conditions are TRUE: stable(����,�),
stable(����,����,�), stable(����,�), stable(����,����,
�), stable(����,�), and stable(����,����,�). This distribu-
tion of stability information halts when it reaches state ���� since
the Boolean evaluation of � in this state changes from 1 to 0.

The other transition in the SG that could possibly indicate an
untimed stabilization for node � is the state transition (����, ��,
����). In this case, however, the input � is 1 (a controlling value),
prohibiting the propagation of node � to the output �. Thus, no
stabilization can be assumed for the falling transition of �. As
explained later, this lack of stabilization on the falling transition of
� indicates a hazard on node �.

A similar analysis done on the circuit in Figure 1(c) shows that
the rising transition on node � is acknowledged by �� and the
falling transition is acknowledged by �� since � is high (a non-
controlling value) when � goes low. As a result, this circuit can be
shown to be hazard-free under the speed-independent model.

3.2.2. Timed stabilization

When timing information is taken into account, the hazard found
for the netlist shown in Figure 1(b) may not actually manifest. If
this is the case, then node � is hazard-free. This subsection de-
scribes our new method to determine stabilization using timing in-
formation. Timed stabilization attempts to show further stability in
the state graph by calculating the maximum possible time through
the network to the node of interest, �, and comparing this against
the minimum time spent traversing the state graph. When it can
be shown that in the worst-case a sufficient amount of time has
elapsed, node � can be stabilized.

The algorithm to determine timed stabilization is shown in Fig-
ure 6. For each node �, the algorithm first measures the longest
path delay from any primary input or output to the node �. This
must be done because the actual signal that causes � to change

427

evaluation may not be known due to differences in path lengths.
For our example netlist in Figure 1(b), this delay is determined
to be 2. Next, the algorithm initializes the visit array which is
used to let the recursion know when a state has been visited along
multiple paths when determining stabilization of node �. At this
point, the algorithm finds state transitions, ��� ��� ���, where the
Boolean evaluation of � changes. This indicates locations in the
state graph where the node � becomes unstable. The algorithm
then takes the zone # associated with state � and updates it to in-
clude the transition ��. The reason this is done rather than taking
the zone associated with �� is that �� may have been pruned from
this zone. It is important that �� is in the zone that is used for timed
stabilization as �� serves as a reference transition as the algorithm
moves forward in the state graph. Finally, the algorithm initializes
a path array which is used to terminate cycles during the analysis
of a path in the SG.

stabilize timed(TPN,SG,NET) �
foreach � � �

d = find max delay(NET,�)
foreach � � �
visit(�) � FALSE

foreach (�,��,��) � Æ where �=��,	�
if (eval(�,�) �� eval(��,�)) then
	� = update zone(TPN,NET,	,��)
foreach ��� � �
path(���)=FALSE

do timed(TPN,SG,NET,�,��,	�,��,
d,visit,path)

�

Figure 6: Timed stabilization algorithm.

The update zone algorithm shown in Figure 7 adds a new
transition to a given zone. The first step is to extend the zone to
include a new row and column for the new transition, ��. Next, it
searches the zone starting with the transitions that have been added
most recently for transitions that enable �� (i.e., �� � � � ��). The
first such transition that it finds is the causal transition for ��. The
upper bound of the firing time for �� should be set in reference to
this transition. The upper bound is either taken from the TPN when
�� is a transition on an input wire or it is taken as the maximum de-
lay in the netlist generating �� when it is a transition on an output
wire. For all transitions that enable ��, a lower bound must be set
between �� and ��. For all transitions that do not enable ��, the tim-
ing relationships are initially set to be unbounded. At this point,
the zone is recanonicalized using Floyd’s all-pairs shortest path
algorithm to tighten any loose inequalities. This recanonicaliza-
tion step is necessary because tightened bounds increase accuracy.
In addition, there are often cases where no timing relationship is
known between a newly entered transition and the other entries in
the zone. Recanonicalization creates these entries in the zone. As
an example, the zone found for the state 1110 in our example is
shown in Figure 8(a). The new zone after adding the transition ��
is shown in Figure 8(b).

The do timed algorithm shown in Figure 9 is used to recur-
sively explore the SG, attempting to accumulate sufficient time
to stabilize a given node � before reaching a termination condi-
tion. This algorithm first marks the current state � as visited in
the visit and path arrays described earlier. Next, it considers
each state transition ��� ��� �

��. First, it adds the transition, ��, to
the zone. Next, it checks the zone to determine if enough time has

update zone(TPN,NET,	,��) �
	� = extend(,��)
found causal = FALSE
foreach �� � 	� in reverse order

if (�� � � � ��) then
if (!found causal) then
found causal = TRUE
if (����� �
) then
	��� � �����

else
	��� = find max delay(NET,�����)

if (����� �
) then
	��� � ���� � �����

else
	��� � ����� find min delay(NET,�����)

else
	��� � 	

	��� � 	

recanonicalize(�)
�

Figure 7: Algorithm to update the zone.

$��
$�� 0

$�� $��
$�� 0 -2
$�� 5 0

(a) (b)
$�� $�� $
�

$�� 0 -2

$�� 5 0 -2
$
�
 5 0

$�� $�� $
�
$�� 0 -2 -4
$�� 5 0 -2
$
� 10 5 0

(c) (d)
$�� $�� $
� $��

$�� 0 -2 -4

$�� 5 0 -2

$
� 10 5 0 -2
$��

 5 0

$�� $�� $
� $��
$�� 0 -2 -4 -6
$�� 5 0 -2 -4
$
� 10 5 0 -2
$�� 15 10 5 0

(e) (f)

Figure 8: Zone creation and evolution.

accumulated from the reference transition �� to the new transition
�� such that the node of interest � has certainly stabilized. If it
has, it must also check that the state �� has not been visited along
a different path. It must be the case that the minimum time upon
reaching a state along all paths to that state has exceeded the max-
imum logic delay �. Therefore, if this state is encountered along a
different path and did not stabilize, then this state transition cannot
stabilize the node �. If the amount of accumulated delay does not
exceed the delay �, then the algorithm must determine if it is go-
ing to recurse down this state transition. If this state has been seen
previously upon this path, the algorithm has encountered a cycle
of states and must not recurse. If the Boolean evaluation of the
node � has changed, then again the algorithm must not recurse. If
this is a new state on this path and the Boolean evaluation is main-
tained, then the algorithm recursively visits the state ��. Note that
this edge may have been found to be stable along a different path,
but it is not stable along the path the algorithm is currently work-
ing on. Therefore, the algorithm must say this edge is not stable
before recursing. Upon returning from recursion, the path variable
is set to false to allow other potential paths to visit the state �.

428

do timed(TPN,SG,NET,�,�,	,��,d,visit,path) �
visit(�) � path(�) � TRUE
foreach (�,��,��) in Æ
	� = update zone(TPN,NET,	,��)
if (-1*	�

��
> d) then

if (not visit(��)) then
stable(�,��,�) = TRUE

else if (not path(��) and
eval(�,�) == eval(��,�)) then

stable(�,��,�) = FALSE
do timed(TPN,SG,NET,�,��,	�,��,

d,visit,path)
path(�) = FALSE

�

Figure 9: Timed stabilization recursion.

Our algorithm has the potential for requiring the exploration of
a large number of paths, although experimental results have not
shown this to happen. The further the algorithm recurses through
the state graph, the more potential side paths there are to explore.
Typically, the length of the paths explored is very short as the re-
cursion terminates quickly. If in the future, examples are found
where this is not the case, the algorithm can be changed to limit
the path length. This can improve efficiency at the potential cost
of more false negative results.

Let us consider again the example netlist in Figure 1(b). A
change in evaluation on node � occurs between states 1110 and
0110. As mentioned previously, the do timed function is called
with the zone shown in Figure 8(b). As the SG is traversed, the
next transition encountered is ��. Since �� fires 2 to 5 time units
after ��, these entries are entered into the appropriate rows and
columns as shown in Figure 8(c). The timing of the other non-
diagonal entries are set to
. The zone is then recanonicalized
and the resulting zone is shown in Figure 8(d). The parameter of
interest is the minimum elapsed time between the last transition
entered, ��, and the initial transition �� which is � in this case.
Note that lower bounds appear as negative values in a DBM. Since
two time units is insufficient time to say with certainty that node
� has stabilized, the algorithm considers recursing on state 0010.
Since this state has not yet been explored on this path, and since
node � still evaluates to 0 in this state, the algorithm recurses to
state 0010. Upon recursion, the algorithm adds transition �� to
the zone as shown in Figure 8(e) and recanonicalizes to obtain the
zone shown in Figure 8(f). The new minimum time elapsed from
�� till �� is 4 time units. Since this number is larger than the
maximum delay of the AND gate (2 time units), the algorithm
can mark this edge as stabilized. The distribute function
then copies this stabilization onto states 0000, 0100, and 1000 and
edges ������ ��/1� �����, ������ ��/1� �����, ������ ��� �����,
and ������ ��/2� �����. This is significant in that the hazard con-
dition that existed after untimed stabilization cannot manifest be-
cause of the timing relationships between the circuit and the SG.

3.3. Checking for hazard-freedom

Hazards can manifest in asynchronous circuits due to violations in
the acknowledgment or monotonicity properties [2]. This section
gives an explanation of how our method checks for violations in
acknowledgment and monotonicity. This explanation though is
brief since it is essentially the same as that in [2].

An acknowledgment violation occurs when an internal node be-

comes excited to change to a new value, but its excitation changes
value before it can be shown to have stabilized. The algorithm
shown in Figure 10 uses the stability information found earlier
to check for acknowledgment on all excited nodes. The algo-
rithm examines each node � and each state transition ��� �� ��� in
which � changes Boolean evaluation. If � is not stable before it
changes Boolean evaluation, then an acknowledgment hazard is
reported. For the netlist shown in Figure 1(b) using only untimed
stabilization, a hazard is found on node � for the state transition
������ ��/2� �����. However, since timed stabilization detects
that this edge is stable for node �, this circuit is hazard-free when
timing is considered.

check acknowledgment(SG,NET) �
foreach (� � �)

foreach ��� �� ��� � Æ
if ((eval(�,�) �� eval(��,�)) and
not stable(�,��,�)) then
report hazard for (�,��,�)

�

Figure 10: Algorithm to check acknowledgment.

A monotonicity violation occurs when an internal or output node
is supposed to remain stable but it becomes momentarily excited or
when it is supposed to make a transition but it makes the transition
non-monotonically. This occurs when a gate has a potential hazard
while there is no stable, forcing side-input. For example, a poten-
tial hazard exists when the output of an AND gate is supposed to
remain stable low or fall, but one input is rising. If a side-input
cannot be found that is stable low while the other input is rising,
it is possible that the AND gate may momentarily evaluate to 1
causing a glitch on the output of the AND gate. The algorithm to
check for monotonicity violations is given in Figure 11. The defi-
nitions of potential hazard and forcing are a bit involved
and can be found in [2].

check monotonicity(SG,NET) �
foreach (� � �)

foreach (� � �)
foreach � � FI(�)

if (potential hazard(�,�,�)) then
if (
�
 �� s.t. forcing(�,�,
)
and stable(�,
)) then
report hazard on � for (�,�)

�

Figure 11: Algorithm to check monotonicity.

4. EXPERIMENTAL RESULTS

The gate-level timing verification method described in this paper
has been implemented and tested on numerous examples. Ta-
ble 1 compares our new gate-level timing verification method us-
ing standard benchmarks against results for the timed automata
tool KRONOS [9], a conservative approximation method described
in [14], and the ATACS explicit state timing verifier [12]. For
KRONOS runtimes, an entry with a question mark indicates the
amount of time after which the verification ran out of memory. The
runtimes for KRONOS and Pena’s methods are taken from their pa-
pers while the runtimes for ATACS and our new method are from a
900 MHz Pentium 4 with 256MB of memory. For our new method,

429

Table 1: Comparison of standard benchmarks against other timing verification tools.
KRONOS PENA ATACS New Method

Example Gates CPU Time(s) CPU Time(s) CPU Time(s) Mem(MB) CPU Time(s) Mem(MB) Hazards

alloc-outbound 11 0.09 3 0.33 5.6 0.09 2.9 0/0
chu133 9 0.63 1 0.16 3.0 0.11 2.2 1/1
converta 12 0.19 12 0.24 3.8 0.11 1.8 2/2
dff 6 0.19 3 0.12 2.5 n/a n/a 3/?
ebergen 9 0.14 1 0.15 3.0 0.13 1.8 3/3
half 7 0.41 1 0.13 2.2 0.08 1.5 1/1
mp-forward-pkt 10 0.24 5 0.17 3.5 0.10 2.5 0/0
nowick 10 0.05 3 0.20 3.8 0.10 2.0 0/0
rcv-setup 6 0.22 1 0.16 3.2 0.08 1.8 0/0
rpdft 8 2.93 2 0.30 4.0 0.10 1.9 1/2
sbuf-ram-write 17 31.77 415 0.32 5.8 0.20 3.7 1/2
sbuf-read-ctl 10 0.13 2 0.14 3.3 0.10 2.5 0/0
sbuf-send-ctl 13 54 0.49 0.65 6.1 0.10 2.8 1/1
sbuf-send-pkt2 13 0.07 103 0.42 6.6 0.10 3.1 0/1
vme 12 0.39 30 0.39 4.9 n/a n/a 1/?
mr1 16 607.43 317 0.30 5.1 n/a n/a 0/?
tsend-bm 12 589.56 46 5.32 8.6 n/a n/a 1/?
mmu 22 595.09? 480 0.53 7.1 n/a n/a 0/?
mr0 20 593.24? 48 0.55 7.1 n/a n/a 0/?
ram-read-sbuf 17 678.48? 550 0.34 6.0 0.18 3.4 0/0
trimos-send 24 580.33? 127 10.7 25.0 4.87 3.6 5/5

an entry of n/a indicates that this example has an internal cycle and
cannot be analyzed using our new method. For the smaller exam-
ples, our method has comparable and usually better runtimes than
the other methods. However, for larger examples with more con-
currency such as trimos-send, our method is more than two orders
of magnitude faster than KRONOS, twenty-five times faster than
Pena’s tool, and twice as fast as the explicit state method in AT-
ACS. In addition, our new method shows some reduction in mem-
ory usage as compared to the ATACS explicit state timing verifier.
This reduction in run-time and memory usage is directly related to
the reduced complexity of the SG as stated earlier.

Since our goal is to determine which gates have hazards on their
outputs, the explicit method in ATACS is configured to continue
after finding one hazard and identify all hazards. It should be
noted that KRONOS did not check for hazards, but instead was
only checking conformance while Pena’s tool halts after a haz-
ard is found. The last column of the table indicates the number
of gates that have hazards found by the explicit state method and
our new method. Despite being a conservative approximation, our
method found the exact number of hazards in most cases. How-
ever, in three examples, rpdft, sbuf-ram-write, and sbuf-send-pkt2,
our new method found one additional false hazard.

The key advantage of our new method is its ability to be able
to efficiently verify circuits with a large number of internal sig-
nals. In order to demonstrate this, a few of our benchmark circuits
derived from a variety of sources were selected, and gate-level cir-
cuits were derived for them that use only 2-input NAND gates and
inverters. Our results are shown in Table 2. In all the examples, our
method is still able to check for hazards in 1.2 seconds or less while
for the largest examples the explicit state method cannot complete.

5. CONCLUSIONS

This paper presents a new method for efficiently checking hazard-
freedom in gate-level timed circuits. This method uses a cube ap-
proximation of the internal signal behavior in order to avoid gen-
erating an explicit state graph representing the switching behavior
of the internal signals. Our experimental results show that this new
method can be substantially faster than previous gate-level timing
verification tools. While this method is conservative and thus can
report some incorrect hazards, the number of such false negative
results appears to be small. This method has been shown to scale
very well in that it can verify examples with more than 150 gates
in less than a second while previous methods fail to complete.

In the future, we plan to develop techniques to evaluate if a haz-
ard is false or not. When an acknowledgment hazard is found on
a node �, the state transition, (�,�,��), where the hazard occurs is
reported. For monotonicity hazards, the state � and input � that
cause the monotonicity violation are reported. In either case, this
information can be used to create an error trace from the initial
state. This error trace can then be used to perform a guided simu-
lation of the circuit to detect if the hazard can occur or not. While
in theory, this simulation could result in a full state space explo-
ration, it is likely only to require exploration of a small subset of
the state space to determine if it is false or not.

In the future, we also plan to utilize this hazard analyzer to im-
plement a technology mapper for timed circuits. In asynchronous
circuits, hazards must be avoided and care must be taken during
technology mapping to not introduce hazards in the design. There-
fore, an asynchronous technology mapper requires a method to
rapidly determine when a transformation of the netlist has intro-
duced a hazard. The hazard analyzer described in this paper ad-
dresses this need making efficient technology mapping of timed
circuits possible.

430

Table 2: Comparison for decomposed netlists.
ATACS New Method

Example Gates CPU Time(s) Mem(MB) CPU Time(s) Mem(MB) Hazards

scsiSV 18 1.35 7.9 0.13 1.3 0/0
slatch 29 33.5 53.4 0.15 1.8 0/0
lapbsv 37 20.0 41.5 0.17 1.3 0/0
elatch 38 183 229 0.28 1.8 0/0
cnt3 80 �1000 �256 0.24 1.7 ?/15
srgate 85 �1000 �256 0.29 2.3 ?/0
selopt 164 �2000 �256 0.90 3.3 ?/46
cnt11 213 �2000 �256 1.20 4.8 ?/78

6. REFERENCES

[1] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng. Checking com-
binational equivalence of speed-independent circuits. Formal
Methods in System Design, Mar. 1998.

[2] P. A. Beerel, T. H.-Y. Meng, and J. Burch. Efficient verifi-
cation of determinate speed-independent circuits. In Proc.
International Conf. Computer-Aided Design (ICCAD), pages
261–267. IEEE Computer Society Press, Nov. 1993.

[3] W. Belluomini and C. J. Myers. Timed state space explo-
ration using posets. IEEE Transactions on Computer-Aided
Design, 19(5):501–520, May 2000.

[4] D. L. Dill. Timing assumptions and verification of finite-
state concurrent systems. In Proceedings of the Workshop
on Automatic Verification Methods for Finite-State Systems,
1989.

[5] D. L. Dill. Trace Theory for Automatic Hierarchical Verifi-
cation of Speed-Independent Circuits. ACM Distinguished
Dissertations. MIT Press, 1989.

[6] J. Ebergen and S. Gingras. A verifier for network decom-
positions of command-based specifications. In Proc. Hawaii
International Conf. System Sciences, volume I. IEEE Com-
puter Society Press, Jan. 1993.

[7] G. Gopalakrishnan, E. Brunvand, N. Michell, and S. Now-
ick. A correctness criterion for asynchronous circuit vali-
dation and optimization. IEEE Transactions on Computer-
Aided Design, 13(11):1309–1318, Nov. 1994.

[8] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Var-
shavsky. Analysis and identification of speed-independent
circuits on an event model. Formal Methods in System De-
sign, 4(1):33–75, 1994.

[9] O. M. M. Bozga, H. Jianmin and S. Yovine. Verification
of asynchronous circuits using timed automata. In O. M.
Eugene Asarin and S. Yovine, editors, Electronic Notes in
Theoretical Computer Science, volume 65. Elsevier Science
Publishers, 2002.

[10] E. Mercer, C. Myers, and T. Yoneda. Improved poset tim-
ing analysis in timed petri nets. In The Tenth Workshop
on Synthesis and System Integration of MIxed Technologies
(SASIMI 2001), October 2001.

[11] P. Merlin and D. J. Faber. Recoverability of communi-
cation protocols. IEEE Trans. on Communication, COM-
24(9):1036–1043, 1976.

[12] C. J. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Pe-
skin, and H. Zheng. Timed circuits: A new paradigm for
high-speed design. In Proc. of Asia and South Pacific Design
Automation Conference, pages 335–340, Feb. 2001.

[13] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. POSET tim-
ing and its application to the synthesis and verification of
gate-level timed circuits. IEEE Transactions on Computer-
Aided Design, 18(6):769–786, June 1999.

[14] M. A. Peña, J. Cortadella, A. Kondratyev, and E. Pastor. For-
mal verification of safety properties in timed circuits. In
Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 2–11. IEEE Com-
puter Society Press, Apr. 2000.

[15] O. Roig, J. Cortadella, and E. Pastor. Hierarchical gate-level
verification of speed-independent circuits. In Asynchronous
Design Methodologies, pages 129–137. IEEE Computer So-
ciety Press, May 1995.

[16] O. Roig, J. Cortadella, and E. Pastor. Verification of asyn-
chronous circuits by BDD-based model checking of Petri
nets. In 16th International Conference on the Application
and Theory of Petri Nets, volume 815 of Lecture Notes in
Computer Science, pages 374–391, June 1995.

[17] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. My-
ers, K. Y. Yun, R. Koi, C. Dike, and M. Roncken. An asyn-
chronous instruction length decoder. IEEE Journal of Solid-
State Circuits, 36(2):217–228, Feb. 2001.

[18] T. Yoneda and H. Ryu. Timed trace theoretic verification us-
ing partial order reduction. Proc. of Fifth International Sym-
posium on Advanced Research in Asynchronous Circuits and
Systems, pages 108–121, 1999.

[19] H. Zheng, E. Mercer, and C. Myers. Modular verification of
timed circuits using automatic abstraction. IEEE Transac-
tions on Computer-Aided Design, 22(9), Sept. 2003.

[20] H. Zheng, C. J. Myers, D. Walter, S. Little, and T. Yoneda.
Verification of timed circuits with failure directed abstrac-
tions. In Proc. International Conf. Computer Design (ICCD).
IEEE Computer Society Press, Oct. 2003.

431

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

