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ABSTRACT

As the clock frequencies used in industrial applications increase,
the timing requirements imposed on routing problems become
tighter. So, it becomes important to route the nets within tight min-
imum and maximum length bounds. Although the problem of rout-
ing nets to satisfy maximum length constraints is a well-studied
problem, there exists no sophisticated algorithm in the literature
that ensures that minimum length constraints are also satisfied. In
this paper, we propose a novel algorithm that effectively incorpo-
rates the min-max length constraints into the routing problem. Our
approach is to use a Lagrangian relaxation framework to allocate
extra routing resources around nets simultaneously during routing
them. We also propose a graph model that ensures that all the
allocated routing resources can be used effectively for extending
lengths. Our routing algorithm automatically prioritizes resource
allocation for shorter nets, and length minimization for longer nets
so that all nets can satisfy their min-max length constraints. Our
experiments demonstrate that this algorithm is effective even in the
cases where length constraints are tight, and the layout is dense.

1. INTRODUCTION

Routing nets within minimum and maximum length bounds is an
important requirement for high-speed VLSI layouts. There has
been several algorithms proposed for the objective of minimiz-
ing path lengths, or satisfying prespecified maximum length con-
straints, especially in the context of timing-driven routing [14, 6,
3, 15, 4]. However, the problem of routing nets with lower bound
constraints has not been studied explicitly in the literature. The
main reason is that these bounds were loose most of the time, and
non-sophisticated strategies (such as greedy length extension in
post-processing) were sufficient for most applications. However
as circuits start to use clock frequencies in the order of gigahertz
in the current technology, the timing constraints become extremely
tight, and more aggressive methods for achieving length bounds
are needed in the industrial applications.

Timing constraints are commonly imposed on PCB bus struc-
tures, where data is clocked into registers or other circuits. For
example, in the case of a 64-bit data bus, each bit travels over a
different wire, and all 64 bits must arrive destination pins approx-
imately at the same time. To achieve this, all the wires constitut-
ing this bus need to have approximately same lengths. The preci-
sion with which matching must be done is directly related to the

This work was partially supported by the National Science Foundation
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clock frequency [17]. As the clock frequency increases, the skew
requirements on the propagation delays become more strict, and
hence a higher degree of length matching is required.

A typical approach used for this problem is to route the nets
using a conventional routing algorithm to satisfy max length con-
straints, and then perform snaking to extend the routes of the short
nets during postprocessing. The main disadvantage of such an ap-
proach is that after all the nets have already been routed, the avail-
able routing space around short nets might be limited in dense de-
signs. So, it is likely that some nets can not be extended to satisfy
minimum length constraints due to lack of routing space.

In this paper, we propose a novel algorithm that incorporates
the objective of satisfying min-max length constraints effectively
into the original routing problem. For the ease of presentation, we
will first focus on the length matching problem, and then we will
extend our models for the general case where individual nets might
have different lower and upper bound constraints. For this, we start
with redefining the routing problem as follows: Find valid routes
for all nets such that (1) the length of the longest route is kept
small, (2) the shorter routes have available routing space around
themselves such that it is possible to match all lengths by snaking
in the end. We propose effective algorithms in this paper to handle
both objectives simultaneously during routing.

As a motivating example, consider the circuit given in Fig-
ure 1. Here, there are three nets that need to be routed with equal
lengths, and the figure illustrates a typical routing solution1 given
by a conventional router . Here, all nets were routed first, and
then snaking was performed in the end for length matching. Ob-
serve that the top net turned out to be the longest one, with a path
length2 of 17. So, the length of the bottom net was extended by 6
through snaking. However, snaking was not possible for the mid-
dle net, because all routing resources around its route were used
during routing. So, length matching fails in this example.

Figure 2 shows the solution given by the router we propose in
this paper. Observe that the lengths of these three nets are matched
exactly through snaking. Here, our approach is to simultaneously
route each net and allocate extra routing resources (i.e. grid cells)
for them. After that, these extra resources are used for snaking.
There are a couple of points worth mentioning here. First of all, the
number of extra grid cells allocated for a net depends on the length

1The underlying grid structure is also shown in this figure. Throughout
the paper, we assume that routing edges go center-to-center of each grid
cell, as illustrated in this figure. Note that each grid cell is regarded as a
routing resource.

2All the path lengths given in this paper are in terms of number of grid
cells spanned.
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Figure 1: A typical routing solution for three nets. Dashed lines
indicate snaking performed.

of its route (i.e. more grid cells are allocated for shorter nets, and
vice versa). Here, it is likely that the actual routes of the nets will
be effected because of this resource allocation. In this example, the
bottom net is detoured so that there are enough resources allocated
for the middle net. An important point here is that it is not the top
net that is detoured for this purpose, because detouring the top net
would increase the length of the longest route. In fact, we can say
that the two objectives for length matching mentioned above are
achieved simultaneously in this example.

The rest of the paper is organized as follows. In Section 2, we
propose a Lagrangian relaxation based algorithm that facilitates al-
locating extra resources during routing. Then, we propose a graph
model in Section 3 to perform resource allocation in accordance
with snaking. Specifically, this model makes sure that if the num-
ber of extra grid cells allocated for net

�
is ��� , it is possible to

extend length of net
�

by an amount equal to � � through snaking.
In other words, resource allocation is done in such a way that every
allocated grid cell can be used for snaking later. After that, we out-
line the low level routing algorithm we use in Section 4. Then in
Section 5, we briefly explain how to extend this method for more
general problems. Finally, we report the results of our experiments
to demonstrate the effectiveness of our algorithm in Section 6.

2. ROUTING RESOURCE ALLOCATION

2.1. Problem Formulation

The original length matching problem can be stated as follows.
Given a circuit, and a set of nets � , find a routing solution for each
net in � such that the maximum path length is minimized, and the
difference between the minimum and maximum path lengths does
not exceed the predefined tolerance value � .

To solve the length matching problem, we introduce two main
objectives for the router: (1) to keep the path lengths of longer
nets small, (2) to allocate extra routing resources around shorter
nets such that their lengths can be extended through snaking. Intu-
itively, we want to minimize the expression: � ���
	���
 �����
����� � ��� ,
where ��� is the length of net

�
’s route, � � is the total number of ex-

tra grid cells allocated for net
�
, and 
 � , � � are weighting terms.

One can argue that 
 � for long nets should be large, giving priority
to path length minimization. On the other hand, � � for short nets
should be large, giving more priority to resource allocation. In this
section, our focus will be on how to set and update these param-
eters dynamically such that the two main objectives are achieved
simultaneously.

For simplicity of the presentation, we assume that routing will
take place on one layer only. Furthermore, our focus will be to
route only one bus, i.e. all the given nets need to be routed with the
same length. However, it is straightforward to extend the models

Figure 2: Routing solution based on resource allocation. Dashed
lines indicate snaking performed.

and algorithms we propose to a multi-layer multi-bus routing prob-
lem, or to the general problem where each net has a different length
constraint, as will be discussed in Section 5. Also, we introduce
some restrictions for the resulting routing solutions. We assume
that there is a global preferred direction, and all the snaking will
be performed perpendicular to this direction. Further, the resulting
routes will not have any detour towards opposite of the preferred
direction. For example, if the preferred direction is RIGHT, then
snaking will be performed UP and DOWN (as in Figure 2); de-
touring towards LEFT will not be allowed. These restrictions are
necessary for the models we propose. However, we believe that
they will not degrade the solution quality, because a typical rout-
ing solution given by a conventional router would also satisfy these
conditions.

2.2. Lagrangian Relaxation Based Resource Allocation

Lagrangian relaxation is a general technique for solving optimiza-
tion problems with difficult constraints. The main idea is to replace
each complicating constraint with a penalty term in the objective
function. Specifically, each penalty term is multiplied by a con-
stant called Lagrangian Multiplier (LM), and added to the objec-
tive function. The Lagrangian problem is now the optimization of
the new objective function, where difficult constraints have been
relaxed and incorporated into the new objective function. If the
optimization is a minimization problem, then the solution of La-
grangian problem is guaranteed to be a lower bound for the origi-
nal optimization. In fact, Lagrangian relaxation is a two-level ap-
proach: In the low level, Lagrangian problem is solved for fixed
LM values. In the high level, LM values are updated iteratively
such that the optimal value obtained in the low level is as close to
the real optimal value as possible. Typically, a subgradient method
is used to update LM values in the high level. Intuitively, the LM
values corresponding to the constraints that are not satisfied in the
current iteration are increased (hence the weights of these con-
straints in the low level objective function are increased), and vice
versa. The iterations continue until a convergence criterion is sat-
isfied. Further details can be found in various survey or tutorial
papers about Lagrangian relaxation [9, 8, 10].

Length matching problem can be formulated as a constrained
optimization problem. Assume that we somehow determine3 a tar-
get length � ; and our purpose is to route each net

�
in set � with

a path length in the range � � � and � .
Based on the resource allocation idea we have discussed be-

fore, it is possible to give the following formulation:

3Initially, � can be set based on the maximum Manhattan distance of
the terminal positions of the input nets. If no routing solution is found with
target length � , it can be increased gradually throughout the execution.
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minimize ����
	 ���
subject to: � ��� ����� �� ��� ��� � � �"! � � �

(1)

Again, ��� denotes the length of net
�
’s route, and � � denotes

the number of extra grid cells allocated for net
�
. Suppose for now

that it is possible to extend the length of net
�

by an amount up to�#� using snaking (in Section 3, we will propose a model that will
facilitate this). Observe that the first constraint above simply states
that the total length should not exceed the target length. On the
other hand, with the second constraint we make sure that shorter
nets allocate enough routing resources for snaking.

If we apply Lagrangian relaxation on this formulation, our ob-
jective becomes minimization of:

����
	 ����� ����$	
% �'& � ���(� � �)� ����$	

% �+* � ���,� � ��� � � � � (2)

Here, each
% �+& and

% �+* are Lagrangian multipliers corresponding
to length and resource constraints given in the original formula-
tion (1). Intuitively, we would want longer nets to have larger

% �+&
values (so that length minimization is prioritized for them), and
shorter nets to have larger

% �+* values (so that resource allocation
is prioritized for them).

The high level algorithm we propose for length matching dur-
ing routing is given in Figure 3. For the following discussions
in this section, assume that we have a subroutine for finding the
routing solution that minimizes objective function (2), for fixed% �+& ,

% �+* values. Observe in Figure 3 that we iteratively call this
subroutine, and update the Lagrangian multipliers until some con-
vergence criterion is satisfied. We use an update scheme similar
to subgradient method, but we have tailored it specifically for this
problem. Given a routing solution in iteration - , and the current
multiplier values

%#.�+& and
%�.�+* , the multipliers for iteration - �0/

are calculated as follows:
IF ����� � THEN%�.$132�'&547698;: ��< � % .�+& �>= . � � �?���@�@A;�
ELSE% .$132�'& 4 %�.�+& �B= .DC �+& � ����� � � A ;

IF ����� � �"! � � � THEN% .$132�'* 47698;: ��< � % .�+* �?= . � � � � ��� � � � � � A �
ELSE% .$132�'* 4 %�.�+* �E= .FC �'* � � � � �G����� � �H� A �

Note that = . is the step size used in subgradient method, and
it is updated in each iteration such that it slowly converges to 0.
Specifically, we use the convergence condition given by Held, et
al[13], which states that as -JILK , it should be the case that= . I < and � .�+M 2 = �NIOK . The terms C �'& and C �+* denote the
number of iterations the length constraint ( �P�Q� � ) and the re-
source constraint ( ���R� � ��! � � � ) for net

�
have been violated,

respectively. If a constraint is not satisfied repeatedly for several
iterations, then its multiplier is increased more rapidly. Finally,S �T/ is a constant we have introduced for this problem, and it
is used to smoothen the effect of the amount of length or resource

ROUTE-AND-LENGTH-MATCH(Inputs: � , T)
Initialize

% �+& ,
% �+* to zero for each

�"U �
while termination condition not occurred do

simultaneously route all nets for fixed
% �+& ,

% �+* values
for each

��U � do
check constraints for current route
update

% �+& and
% �'* values accordingly

perform snaking using the extra grid cells allocated

Figure 3: High level algorithm description

constraint violation, which can have large values. Our experiments
have shown that setting it to a value as small as <RV / gives decent
results.

2.3. Handling Oscillation Problems

It is known that solution oscillation is a serious and inherent prob-
lem for Lagrangian relaxation based methods [11, 16]. Note that
even if the Lagrangian multipliers converge to their optimal val-
ues in the subgradient method, the solution to the original problem
might oscillate between two extremes with a slight change of the
multipliers. Guan, et al. [12] identify one cause of such a behavior
as the existence of homogeneous subproblems. A similar problem
also exists in the formulation we have given in the previous sub-
section.

Figure 4 illustrates this problem with an example of two par-
allel routing segments. Assume that both net 6 and net W need to
allocate extra routing resources (i.e. grid cells) around their routes
to satisfy their resource constraints. Observe that to minimize ob-
jective function (2), the intermediate grid cells should be allocated
by net 6 , or net W , depending on the values of

%�X * and
% Y * .

Specifically, if
% X *[Z % Y * , then function (2) will be minimized if� X has its maximum value. Hence, all the intermediate grid cells

will be allocated by net 6 (Figure 4(a)). On the other hand, if% Y *?Z % X * , then � Y will be set to its maximum value as in Fig-
ure 4(b) to minimize the objective function. Note that even if the
difference between two Lagrangian multipliers is infinitely small,
the solution will be one of these extreme cases4; so the solution
will always oscillate between these two. The desirable behavior
would be like as shown in Figure 4 (c) when

% X * and
% Y * are

close to each other.
A typical remedy for this kind of a problem is to use aug-

mented Lagrangian relaxation [16, 18], where a penalty term is
added to the Lagrangian function to avoid oscillations. Using a
similar idea, we can modify objective function (2) such that our
new objective becomes the minimization of:

����$	 � �����
% �+&#����� % �+* � �H��� ����
	 �\ �^]`_`a �Hb

\ ��c (3)

where d � denotes the path of net
�
, e denotes a unit edge (between

two neighboring grid cells) in d3� , and b \ denotes the number of
extra grid cells allocated around edge e , i.e. � \ �f]`_ b \ 4 � � .

Here, we first simplified the original function (2) by
eliminating the constant terms. Then, we have added the term

4The case g X *Qh g Y * would give an arbitrary outcome, so we ignore
this case in our discussions.
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Figure 4: Parallel routing segments of net 6 and net W , together
with allocated routing resources (indicated by dashed lines). (a)
Resource allocation if

% X * Z % Y * , (b) Resource allocation if% Y *iZ % X * , (c) Desirable resource allocation if
% Y * is only

slightly larger than
% X * .

� ���
	 � \ �f]`_ a �Hb
\ � c as a penalty term for resource allocation.

Note that, a is expected to be a small constant compared to the
initial step size =�j used to update Lagrangian multipliers. Intu-
itively, we want the penalty term to be ineffective in earlier itera-
tions, but as the multiplier values start to converge to their optimal
values, we want it to effectively dampen the oscillations. Note
that the resulting behavior will be similar to the one illustrated in
Figure 4(c). Also as a side effect, we had to eliminate the term� � ���$	 % �'*k��� from function (2). The reason can be explained
by using the example given in Figure 4. Assume that both net 6
and W have small

% & , but large
% * values, and assume that

%�Y *
is slightly larger than

% X * . Due to the penalty term added, it is
possible that the term � % Y * � Y dominates instead of � %�Y *�� Y ; so� Y will be maximized, instead of � Y . The result would be similar
to the case shown in Figure 4(b), but this time with a snaking-like
behavior5 instead of resource allocation. So, we also need to re-
move the term � � ���$	 % �'*,��� . It is interesting to note here the
similarity between the new objective function (3), and the intuitive
formula � ���
	���
 � � � �?� ���#� � , given in Section 2.1.

Another source of possible oscillations is due to the fact that
we simultaneously route all nets using fixed Lagrangian multiplier
values. As shown in Figure 5, if

%�X * is even slightly larger than% Y * , all the intermediate grid cells would be allocated for net 6 ,
and vice versa to minimize objective function (3). The reason for
such a behavior is that the Lagrangian multipliers are updated only
after the complete routing solution is found using the fixed mul-
tiplier values. For instance, assume that it is required to allocate
extra grid cells for both net 6 and W to satisfy their resource con-
straints (i.e. as in Figure 5(c)). If the solution in iteration - is as in
Figure 5(a),

%�X * would be decreased, and
%�Y * would be increased

for the next iteration. So, the solution in iteration - �l/ would be
as in Figure 5(b). Similar arguments suggest that the solution will
always oscillate between these two extreme cases.

We propose a simple yet effective heuristic for this problem.
First, we rewrite the objective function (3) without any modifica-
tions as follows:

����$	 �\ �^]m_ � /��
% �+&n� % �'* b \ � a �Hb

\ ��c
� (4)

Again, e U do� is a unit edge in the path of net
�
. This formu-

lation suggests that we need to access the variables
% �+& and

% �+*
for each edge e U d � . To avoid the oscillation problem described

5The routing algorithm we use (Section 4) maximizes length if all the
edge weights are negative.

m
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n
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Figure 5: Parallel routing segments of net 6 and net W , together
with allocated resources (indicated by dashed lines). (a) Resource
allocation if

% X * Z % Y * , (b) Resource allocation if
%�Y * Z % X * ,

(c) Desirable resource allocation if
% X * is slightly larger than

% Y * .

above, we will apply random smoothing each time such an access
occurs. Specifically, instead of using

% .�+& and
% .�'* in iteration - ,

we will use: % �'& 4 
 % .�'& � � /p� 
 � % .Fq(2�+& (5)% �+* 4 
 % .�+* � � /p� 
 � % .Fq(2�+* (6)

where 
 is a random number in the range r < � /ts , and it is regener-
ated for each access to

% �+& and
% �+* values. Observe that such a

smoothing is not expected to affect the results if there are no oscil-
lations (since the multiplier values in iterations - �B/ and - would
be consistent with each other.) However, in case of oscillations as
in Figures 5(a) and (b), the result is expected to turn out eventually
as in Figure 5(c).

3. GRAPH MODEL

In this section, we propose a graph model that facilitates resource
allocation during shortest path calculations. The significance of
this model is that all the extra grid cells allocated for net

�
can be

used for extending the length of net
�

through snaking. For sim-
plicity of the presentation, we will give the graph model in case
the preferred direction(see Section 2.1) is RIGHT. It is straight-
forward to extend this model for the other directions.

As a first step, we define a supernode corresponding to each
routing grid cell. A supernode u is defined to contain three subn-
odes: v#w , x;w , and b w . Each subnode corresponds to a different
state of u in terms of the direction of the incoming edge. Namely,v#w , x;w , and b w define the cases in which the incoming edge to u
is upwards, downwards, and straight, respectively. Figure 6 illus-
trates this graph model with an example. Here, supernodes y , z ,
and { correspond to three neighboring routing grid cells, where z
and { are right and down neighbors of y , respectively. All eleven
edges are illustrated separately with the corresponding physical ex-
planation. For instance, the edge bD| I bD} corresponds to the case
where the incoming edge to y is straight, and the connection fromy to z is also straight. Or, the edge v | I~x } corresponds to the
case where the incoming edge to y is upwards, and the connection
from y to z is through allocating some of the top grid cells. Note
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Figure 7: (a) An example routing segment, where allocated grid
cells are shown with dashed lines, (b) The corresponding path in
our graph model.

that in this case, the direction of the incoming edge to z (from y )
is regarded as downwards, assuming that the allocated grid cells
will be used for snaking later.

One point to observe in Figure 6 is that resource allocation is
possible only through the edges v | I�x } , x | I�v } , b
| I~x } ,
and b
| I~v } . This guarantees that all the allocated grid cells dur-
ing min-cost path calculations can be used for snaking later. The
issues such as assigning weights to these edges, determining the
amount of resource allocation, etc. will be discussed in Section 4.

Figure 7 shows an example path on the routing grid, and its
graph representation. Here, resource allocation is performed for
two edges, and the notation extra=4 in part (b) means that four
extra grid cells are allocated around this edge. Observe that a total
of six grid cells is allocated in part (a), and it is possible to extend
the length of this path from 5 to 11 if all these grid cells are used
for snaking.

ROUTE-ALL-NETS(Inputs:
% �+& ,

% �+* values for each net
�
)

Initialize congestion cost of each grid cell to zero
while a congestion-free routing solution not found do

for each net
��U � do

calculate edge weights
find min cost path for net

�
increase congestion costs of overused grid cells

Figure 8: Low level algorithm description

4. ROUTING NETS

In this section we describe the technique we use to route all the
nets

�9U � , given fixed
% �+& and

% �'* values. Our algorithm is
based on the Pathfinder negotiated congestion algorithm [7, 1, 2]
originally proposed for FPGA routing problem. The main idea
here can be summarized as follows. First, every net is routed in-
dividually, regardless of any overuse (i.e. congestion) of routing
grid cells. Then the nets are ripped-up and rerouted one by one it-
eratively. In each iteration, the congestion cost of each grid cell is
updated based on the current and past overuse of it. By increasing
the congestion cost of an overused grid cell gradually, the nets with
alternative routes are forced not to use this grid cell. Eventually,
only the net that needs to use this grid cell most will end up using
it.

In one iteration of this algorithm, each routing grid cell has a
fixed congestion cost value. The problem here is to find the best
path and resource allocation for each net

�
, based on fixed conges-

tion costs and fixed
% �+& ,

% �+* values. For this, we will model the
routing grid as a graph using the model described in Section 3.
To calculate the edge weights, we incorporate congestion costs
into the Lagrangian objective function (4) defined in Section 2.3.
Specifically for a net

�
, the weight of edge e will be calculated as:

� e ���;� = � e � 4 /P� % �+&n� % �+* b \ � a �Hb
\ ��c���� \ (7)

where b \ is the number of extra grid cells allocated around this
edge, and � \ is the total congestion cost of the grid cells occupied
by this edge. As described in Section 3, some types of edges are
not suitable for resource allocation. If e is such an edge, then b \ is
set to zero, and � \ is set to the sum of the congestion costs of the
two grid cells connected by this edge. Otherwise, b \ is selected
so as to minimize � e ���;� = � e � in Equation 7. Note that increasingb \ means allocating more grid cells, hence possibly increasing � \ .
Here, the optimal value of b \ depends on the value of

% �'* (i.e. the
importance of resource allocation constraint), and congestion costs
of the grid cells around this edge.

After setting edge weights, the next step is to find the mini-
mum cost path for net

�
. Note that shorter nets would automatically

prefer the routes where they can allocate enough resources around.
On the other hand, longer nets would probably not be detoured de-
spite congestion costs, because

% �+& would dominate Equation 7
for small or moderate congestion levels.

Closer examination of the edges illustrated in Figure 6 would
reveal that our graph is in fact a DAG (directed acyclic graph).
It is known that minimum cost path problem can be solved for a
weighted DAG in linear time[5].

The overall method described in this section is summarized in
Figure 8.
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5. GENERALIZING THE MODELS

The models and algorithms in the previous sections mainly focus
on routing a single bus on a single layer. However, it is straight-
forward to extend these ideas to more general cases.

For a multilayer layout, the graph model proposed in Sec-
tion 3, and the weight calculation scheme given by equation (7)
can be applied for each layer independently. However, the main
difference here is in modeling interlayer connections. Assume that
grid cells y and z are in different layers, and a via connection
is possible between them. To model such a connection, we need
to create edges between all subnodes of y and z . Since resource
allocation is not applicable here, the weight of these edges would
only reflect the length requirement and congestion. For example,
we can modify equation (7) for this purpose as follows:

� e ���;� = � eF� ���`� 4 � % �'& xR� �����E� \ ��� C � 8 � e
W 8k� =�� (8)

Note that, an interlayer connection is likely to have different de-
lay characteristics than a regular intralayer connection; so it might
be necessary to use a circuit-dependent factor xk� ��� to model such
difference. Furthermore, since via connections are typically unde-
sired, the constant C � 8 � e
W 8k� =�� is used to avoid using these edges
unless they are really necessary.

Also, we can extend these models for routing multiple buses
simultaneously. For this, we need to modify the original formula-
tion (1) such that each bus uses a different target length � . We can
also extend this formulation to the most general case, where each
net has different upper and lower bound constraints:

minimize ����$	 � �
subject to: � ��� ���"� ���F��� ��� ���,� � ��! ������

(9)

where � �F�� and � ���� are the upper and lower bounds for net
�
. Note

that such a modification in constraints would only effect the update
schedule of Lagrangian multipliers. Rest of the models and algo-
rithms given for the single bus case can be used without a change.

6. EXPERIMENTAL RESULTS

In this section, we have compared our scheme with a commonly
used greedy approach. For this purpose, we have written a pro-
gram that performs routing (with no extra grid allocation) first,
and then greedily performs snaking for each net starting from the
shortest one in postprocessing.

We have implemented all these algorithms in C++, and we
have performed our experiments on an Intel Pentium 4 2.4Ghz sys-
tem with 512MB memory, and a Linux operating system.

Figure 9 illustrates a sample outcome of our algorithm6. Here,
there are various nets that are routed with almost the same path

6We have not fine tuned our program to reduce the number of bend
points. However, if these are undesirable, it is possible to eliminate them
in postprocessing.

Table 1: Properties of test problems
Test Vertical Spacing Manhattan Dist. number of
Problem avg stdev avg stdev layers
B1 3.15 2.91 117 6.63 single
B2 3.22 2.13 115 13.82 single
B3 2.53 1.99 115 13.96 single
B4 2.32 1.78 115 7.30 single
B5 3.97 1.84 116 7.23 two
B6 3.39 2.59 116 14.41 two
B7 2.34 1.39 116 7.19 two
B8 2.27 1.53 116 11.52 two
B9 1.94 1.36 116 5.80 two
B10 1.85 1.15 117 15.91 two

Table 2: Routing results on test problems
Test GREEDY SNAKING LR BASED ROUTING
Problem minL maxL stdev time minL maxL stdev time
B1 120 142 3.71 1:45 141 142 0.59 4.53
B2 97 163 11.51 0:50 158 159 0.52 3:44
B3 105 159 9.80 2:40 164 165 0.50 6.06
B4 103 146 7.07 1:56 130 131 0.56 12:06
B5 130 131 0.50 0:15 130 131 0.50 0:15
B6 103 149 5.65 0:14 146 147 0.54 0:44
B7 109 131 2.67 0:14 132 133 0.50 2:50
B8 99 141 6.82 0:14 142 143 0.50 5:27
B9 107 128 3.64 0:14 132 133 0.61 8:49
B10 93 149 9.64 0:14 152 153 0.50 11:50

length. Specifically, we have set the constant � in objective func-
tion (1) to 1 in our experiments7 . In accordance with this con-
straint, the difference between the minimum and maximum path
lengths is only one grid cell in the solution of Figure 9. Observe
that snaking could be performed even in the dense areas of the
layout.

We have also performed experiments on test problems proper-
ties of which are summarized in Table 1. Here, vertical spacing is
measured in terms of the number of grid cells between the terminal
points of adjacent nets, and it indicates how dense the problem is.
On the other hand, Manhattan distance is given in terms of number
of grid cells between two terminals of the same net. The deviation
in this value is a good indicator for the amount of snaking needed
to be performed. Each bus given in this table has around 80-100
nets, and the objective is to route them and match their lengths.
Note also that, the underlying grid sizes are between /
� < �B� <m<
and /D� < �9� <m< , depending on the problem size.

We have executed both the greedy algorithm mentioned be-
fore and the Lagrangian relaxation (LR) based routing algorithm
on these test problems. The comparison of the results are given in
Table 2. Here, minL, maxL, stdev denote the minimum path length,
maximum path length, and standard deviation in path lengths, re-
spectively; and all results are given in terms of the number of
grid cells spanned. Also, the execution times of these algorithms
are given under columns time, and they are reported with min:sec
units. Observe that the greedy method fails to match lengths espe-
cially when the problem is dense, or the variation in net lengths is
large. However, our method performs multiple iterations in such
cases (see the algorithm given in Figure 3) to effectively find the
solution that satisfies length constraints. Due to these multiple it-
erations, the execution time increases; nevertheless the appropriate
solution is obtained eventually.

7The length of a route can be extended only by an even number of grid
cells. So, if there are two different nets (one with an even path length, one
with an odd path length), their lengths can be matched only up to 1 grid
cell difference.
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Figure 9: A sample routing solution using Lagrangian relaxation based resource allocation.

7. CONCLUSIONS

We have proposed an algorithm for routing nets within minimum
and maximum length bounds. The focus of the paper is mainly on
the application of length matching for a group of nets belonging to
a bus structure. However, we have shown that it is straightforward
to extend the proposed model for more general problems. Our ex-
periments have indicated that our algorithm can be effectively used
for routing nets with min-max length constraints, even in the situ-
ations where the greedy strategy fails to satisfy these constraints.
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