
On Whitespace and Stability
in Mixed›Size Placement and Physical Synthesis

Saurabh N. Adya
University of Michigan

EECS Department
Ann Arbor, MI 48109›2122

sadya@eecs.umich.edu

Igor L. Markov
University of Michigan

EECS Department
Ann Arbor, MI 48109›2122

imarkov@eecs.umich.edu

Paul G. Villarrubia
IBM, Corporation

11501 Burnet Road
Austin, TX 78758

pgvillar@us.ibm.com

ABSTRACT
In the context of physical synthesis, large-scale standard-cell place-
ment algorithms must facilitate incremental changes to layout, both
local and global. In particular, �exible gate sizing, net buffering and
detail placement require a certain amount of unused space in every
region of the die. The need for �local� whitespace is further em-
phasized by temperature and power-density limits. Another require-
ment, the stability of placement results from run to run, is important
to the convergence of physical synthesis loops. Indeed, logic resyn-
thesis targetting local congestion in a given placement or particular
critical paths may be irrelevant for another placement produced by
the same or a different layout tool.

In this work we offer solutions to the above problems. We show
how to tie the results of a placer to a previously existing placement,
and yet leave room for optimization. In our experiments this tech-
nique produces placements with similar congestion maps. We also
show how to trade-off wirelength for routability by manipulating
whitespace. Empirically, our techniques improve circuit delay of
sparse layouts in conjunction with physical synthesis.

In the context of earlier proposed techniques for mixed-size place-
ment [2], we tune a state-of-the-art recursive bisection placer to bet-
ter handle regular netlists that offer a convenient way to represent
memories, datapaths and random-logic IP blocks. These modi�ca-
tions and better whitespace distribution improve results on recent
mixed-size placement benchmarks.

1. INTRODUCTION
With the rapid decrease of feature sizes circuit layouts become

more complex, both in terms of size and design constraints [3]. Ad-
ditional issues are brought up by massive IP reuse, embedded memo-
ries, the demand for more aggressive timing optimization and power
density constraints. During circuit layout IP blocks and embed-
ded memories often appear as large or medium-sized pre-designed
black boxes that must be placed simultaneously with hundreds of
thousands of small standard cells. This is commonly known as the
mixed-size placement problem or the �boulders and dust problem�.
Our work enhances earlier proposed techniques in several ways. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
ICCAD ’03 San Jose, California USA
Copyright 2003 ACM X›XXXXX›XX›X/XX/XX ...$5.00.

modify the Capo placer [5] to better handle grid based, data-path
style netlists. We also improve Capo performance on designs with
limited whitespace using a two-phase partitioning approach.

To achieve timing closure for high-performance circuits, it is now
common to use physical synthesis � an approach that combines
logic and physical optimization, potentially performing placement-
aware buffer insertion, gate sizing, fanout optimization, etc. A re-
cent work from Intel [18] suggests that buffering alone implies the
need for �local� whitespace throughout the core area. Such unused
cell sites facilitate placement of signal-net and clock-tree buffers in
near-optimal locations rather than pre-determined �buffer islands�.
However, researchers from IBM show [4] that distributing whites-
pace uniformly [7] may signi�cantly increase wirelength. They also
point out that pin-limited and �oorplanned designs, e.g., micropro-
cessors with large on-chip caches, very frequently contain placement
partitions with large amounts of whitespace. To this end, we (i) de-
velop techniques to achieve a compromise between cell density and
design �exibility, and (ii) study relevant trade-offs.

Timing optimization and congestion removal often use loops in
which a netlist is re-placed based on information gleaned from a
trial placement. However, some popular algorithms such as min-cut
placement and simulated annealing tend to produce very different
placement solutions from run to run. Therefore information about
timing-critical nets and nets that failed to route may be invalidated
(similar reasons hamper interconnect prediction [19]). To facilitate
incremental improvement of layout, we propose to stabilize place-
ments from run to run. We distinguish two kinds of stability. An in-
herently stable algorithm, such as many analytical algorithms, would
produce similar results from run to run. However, even with a gener-
ally unstable algorithm we can tether all new placements to a given
trial placement, with a tunable amount of freedom for further opti-
mizations. Thus, we distinguish inherent stability from relative sta-
bility. The latter may be used, e.g., to tie placements produced by
an annealer to a placement produced by a min-cut algorithm. We
demonstrate such relative stability by comparing congestion maps
[14] of several min-cut placements and cell displacements. Surpris-
ingly small modi�cations of a placement instance can suppress the
instability inherent in common placement algorithms, without the
loss of solution quality. Our techniques rely largely on pre- and post-
processing, and can be easily implemented with existing tools.

In the remainder, Section 2 gives background on large-scale place-
ment and describes previous work. Our changes to a min-cut placer
to perform better on regular layouts and in mixed-size placement are
described in Section 3. Whitespace distribution is discussed in Sec-
tion 4, mixed-size placement in Section 5 and stability in Section
6, accompanied by relevant empirical results. Our contrinutions are
summarized in Section 7.

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

Capo HPWL= 267

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

grid_10_opt HPWL= 184, #Cells= 104, #Nets= 184

Capo 8.5 Capo 8.6

Figure 1: Capo placements for designs with regular grid connec-
tivity. Capo 8.5 produces sub-optimal placements. Capo 8.6 pro-
duces the optimal placement for this design. There are 4 terminals
connected to the 4 corner cells to anchor the design.

2. BACKGROUND AND PREVIOUS WORK
Modern ASIC designs are typically laid out in the �xed-die con-

text, where the outline of the core area, all routing tracks and power
lines are �xed before placement starts [5]. One of the reasons for
this is the use of previously designed and rigorously simulated power
grids. Also, standard-cell partitions of microprocessors are often laid
out with �xed outlines in hierarchical �oorplan-driven design �ows
because reshaping the outline would affect neighboring partitions.
Large on-chip caches similarly constraint random-logic partitions.
In the context of massive IP reuse, especially with hard IP blocks,
analog circuits (DACs, ADCs, PLLs) and embedded memories, the
die area may be determined by �oorplanning and area minimization
during placement is typically irrelevant. Fixed-die layout is reason-
able for processes with over-the-cell routing on three or more metal
layers. In this context, the total area is �xed and the number of un-
used cell sites � whitespace � is known in advance. Variable-die
placers typically pack all cells to the left in rows. However, �xed-
die placers may allocate whitespace uniformly [5, 7] or according
to congestion maps [16, 21]. When signi�cantly more whitespace
is available, the work in [4] proposes to allocate whitespace so as to
improve half-perimeter wirelength. They show that uniform whites-
pace distribution in such designs causes very signi�cant increase in
wirelength.

2.1 Fixed›die placement in physical synthesis
It is important to note that in the context of physical synthesis,

the structure of the netlist may be changed and incremental place-
ment must be performed. Given that some gates may be up-sized and
many nets are likely to be buffered, the availability of �local� whites-
pace is a necessity. Indeed, the work in [18] predicts that buffers will
soon be the most frequently used gates in large high-performance cir-
cuits. Local whitespace can also be useful to accommodate regular
structures such as N-well contacts that have to be assigned to ver-
tices of a grid and area-array I/O pads that also form a grid. Thus,
desired whitespace distribution must guarantee a minimum percent
of �local� whitespace throughout the chip and beyond that optimize
other design objectives. The requirement for minimum local whites-
pace may also be used to generically improve routability and yield,
even out the temperature gradient across the die and decrease the
likelihood of cross-talk noise.

Another effect of �xed-die layout is the occurrence of unroutable
placements. Indeed, in variable-die layout one can always add rout-
ing tracks to complete routing at the cost of increased area [15], but
this is impossible with a �xed outline. To improve congestion, it is
common to use cell-bloating (i.e., treating cells as if they were larger
in order to free routing tracks around them) in congested regions.
Additionally, a number of logic transformations (fanout optimiza-

tion, input reordering, gate merging and cloning, etc) can be used to
improve congestion. However, if the same placement tool produces
an entirely different placement at the next run, such optimizations
would be wasted. This problem is especially noticeable with plac-
ers based on min-cut and simulated annealing. The same problem
is encountered when logic re-synthesis targets timing optimization.
Therefore, to reliably achieve timing closure one may want to stabi-
lize placement solutions.

2.2 Mixed›size �xed›die placement
Mixed-size placement where large macros are placed simultane-

ously with numerous small cells (also known as the �boulders and
dust� problem) becomes particularly complex in the �xed-die con-
text because of its discreteness. Analytical mixed-size placers have
been reported in [13] and other works, but they are typically vali-
dated on small variable-die layouts, and no competitive results are
shown. Our experience indicates that such tools often place macros
with signi�cant overlap. Large publicly available mixed-size place-
ment benchmarks have been proposed recently in [2], along with
a design �ow that produces placement solutions with zero overlap.
Such results have been further improved in [10]. The reader is re-
ferred to the book [17] for a detailed background discussion of mixed-
size placement. Below we summarize the work in [2, 10].

The main contribution of [2] is a methodology to place designs
with numerous macros by combining �oorplanning and standard-
cell techniques. The proposed design �ow is as follows:

� A black-box standard-cell placer generates an initial place-
ment. In a pre-processing step, all macros are shredded into
small pieces (fake cells) connected by fake wires, and pins
from the macro are propagated to individual pieces. Each
macro is thus represented by a grid similar to Figure 1 right,
and the resulting netlist consists of only small cells. If the fake
nets have suf�ciently high weights, the fake cells belonging to
the same macro should place next to each other. Fixed orien-
tations of macros can be accommodated.

� The initial locations of macros are produced by averaging the
locations of respective fake cells. To remove overlaps be-
tween macros, a physical clustering algorithm constructs a
�xed-outline �oorplanning instance. Thus, small standard cells
placed next to each other are clustered and form soft blocks.

� A �xed-outline �oorplanner [1] generates valid locations of
macros and soft blocks of movable cells.

� With macros considered �xed, the black-box standard-cell placer
is called again to re-place small cells.

While the shredding process is a key step, the methodology mostly
relies on clustering, �oorplanning and �nal re-placement. Thus the
�rst step is mainly used to facilitate good clustering.

An entirely different approach is pursued in [10]. Their placer
mPG-MS is based on an earlier tool mPG, which recursively clus-
ters the netlist to build a hierarchy. The top-level netlist of approxi-
mately 500 clusters is placed using Simulated Annealing (SA), and
then the placement is gradually re�ned by unclustering the netlist
and improving the placement of smaller clusters by SA. mPG-MS
contributes a structure of bins, in which large and small blocks are
placed during coarse placement. The coarse placement is necessar-
ily overlap-free for big objects, but small objects must be further re-
placed by a detail placer. A signi�cant effort is expended to check
for overlap during re�nement and legalize possible violations.

Circuit #Nodes #Nets WS % Optimal Dragon Plato Capo default Capo + repart
HPWL HPWL HPWL HPWL HPWL

10x10 100 184 0 184 293 202 267 184
95x95 9025 17864 5 17884 39687 18302 21828 22764

100x100 10000 19804 0 19804 46066 20519 38352 21314
190x190 36100 71824 5 71864 175623 75384 90665 89814
200x200 40000 79604 0 79604 198182 82335 193167 100041

Table 1: Wirelength achieved by several placers on regular grids of varying size and whitespace. Plato is the original implementation of KraftWerk
by Eisenmann and Johannes. While Plato produces small wirelength on n�n grids, it often diverges on random-logic netlists with embedded grids.

3. BETTER PLACEMENT
OF REGULAR NETLISTS

Observe that the mixed-size placement techniques from [2] call
for placement of grid-graphs embedded into random-logic netlists.
However, we discovered that Capo 8.5 placer used in [2] performs
poorly on grid-graphs, as shown in Figure 1 which illustrates an
optimal and a sub-optimal placement of a 10 � 10 grid with four
�xed cells in the corners. This is hardly a surprise because generic
standard-cell placers are known to perform badly on regular, data-
path style designs [12]. Our improvements to Capo allow it to better
handle regular netlists without the loss of performance on random-
logic netlists. These improvements are described below, and their
implementation was contributed to Capo 8.6.

3.1 A Two›phase Partitioning Approach
During each partitioning step with a vertical cut line, Capo 8.5

with default parameters uses a fairly large tolerance (of the order of
10-20%) in order to �nd better cuts. After a good cut is found, the
geometric cut line is adjusted according to the sizes of partitions,
with an equal distribution of whitespace among the partitions. How-
ever, if no whitespace is available in the block, this technique can
cause cell overlaps. Namely, since cutlines cannot cut through cell
sites and since no �jagged� cutlines are allowed, the set of partition
balances that can be realized with a straight vertical cutline and zero
whitespace is fairly discrete. Capo 8.5 simply rounds the current
balance to the closest realizable and sets the geometric cutline ac-
cordingly. When whitespace is scarce, one of the resulting partitions
may be overfull and the other may have arti�cially-created whites-
pace. Only a relatively small number of cell overlaps can be created
this way, but they can be spread through the whole core area. When
used in the MetaPlacer shell, Capo 8.5 removes overlaps after global
placement by a simple and very fast greedy heuristic which resolves
overlaps at the cost of increased wirelength.

In an attempt to reduce the number of overlaps, we revise the parti-
tioning process in Capo. When a placement block is partitioned with
a vertical cutline, at �rst the tolerance is fairly large. This allows
Capo to determine the location of the geometric cutline by rounding
to the nearest site. Furthermore, if the block has very little whites-
pace, we then repartition it with a small tolerance in an attempt to
rebalance the current partitions according to the newly de�ned ge-
ometric cutline. Such repartitioning may be less useful in placers
with �xed cut-line, but the use of �xed-cutlines itself may increase
wirelength.

3.2 Fuzzy Terminal Propagation
Another modi�cation we implemented is related to terminal prop-

agation in min-cut placers with moveable cut-lines. Normally, if a
projection of a terminal’s location is too close to the expected cut-
line, the terminal is ignored by Capo in an attempt to avoid exces-
sively speculative decisions. The proximity threshold is de�ned in
percent of the current block size, and this parameter is called �par-
tition fuzziness�. For example, suppose that the y location of a ter-
minal is within 9% of the tentative location of the horizontal cutline.
Then, with partition fuzziness of 10%, this terminal will be ignored

during partitioning. Our studies of Capo performance on grids sug-
gest that partition fuzziness should be tuned up, particularly for small
blocks. For example, if a placement block has only three cell rows,
then possible tentative locations of horizontal cutlines are relatively
far from the center. In a neighboring block that has not been parti-
tioned yet, all cells are �located� at the center of the block, causing
all connected terminals to propagate into one partition in the current
block. To avoid this, we increase partition fuzziness to 33%.

Our modi�cations are tested on the grid designs from [3]. The
two changes described above improve the performance of Capo on
the grid designs with 0% whitespace by a factor of two. Addition-
ally, to test the performance of various available placement algo-
rithms, the grid designs are placed by four different algorithms and
the results are summarized in Table 1. Analytical placer KraftWerk
[13] and the modi�ed Capo placer [5] perform reasonably well on
these netlists. Dragon [21] which combines recursive partitioning
with simulated annealing doesn’t do favorably on these purely reg-
ular designs. To validate our modi�cations, we also tested Capo8.6
on datapath designs from the Synopsys design foundation library.
On a six-stage pipelined multiplier design with 10828 cells and 20%
whitespace, routing a Capo placement produces a routed wirelength
of 1:21e9 where as routing a Cadence QPlace placement produces
a routed wirelength of 1:13e9. On a combined arithmetic and bar-
rel shifter design with 1622 cells and 20% whitespace, routing a
Capo placement produces a routed wirelength of 1:10e8 where as
routing a Cadence QPlace placement produces a routed wirelength
of 1:13e8. On the larger datapath design Capo8.6+WRoute �ow is
slightly worse than QPlace+WRoute �ow. However, we point out
that Capo8.6 does not explicitly take routability into account.

4. WHITESPACE MANAGEMENT
Min-cut placers that uniformly distribute whitespace [7] tend to

produce excessive wirelength when large amounts of whitespace are
present [4]. The authors of [4] propose a fairly sophisticated tech-
nique ACG that combines quadratic placement with min-cut. While
we address the same problem, our study is somewhat orthogonal to
theirs. The methods we propose are much simpler and can be im-
plemented as pre-processing without having access to placer source
code. This allows us to explore the effect of whitespace on routed
wirelength and congestion using different placers. Additionally, our
placement framework is somewhat different from that used in [4] and
bene�ts from these simple techniques in new ways. Namely, Capo
can shift cut-line to better re�ect the outcome (balance) of every min-
cut partitioning call, whereas the placer in [4] uses a grid of place-
ment blocks rather than a more general slicing �oorplan as in Capo.
It has been argued that analytical or quadratic placement algorithms
have a global view of the problem and can manage large amounts
of whitespace better. Analytical Constraint Generation (ACG) [4]
combines min-cut based placer with quadratic placement engine, to
generate partitioning capacities during top-down recursive bisection
based min-cut placement �ow. According to [4], ACG technique
manages whitespace better than a typical min-cut placer.

The technique we propose assumes a placer that uniformly dis-
tributes whitespace across the core area. We assume that the mini-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 %
 #

B
in

s

 % Whitespace in Bins

 Placer Whitespace = 74%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 30%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 15%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 74%. FengShui

(A) (B) (C) (D)
Figure 2: A histogram for local whitespace in design ckt4 from IBM with 74% whitespace. We subdivide the core area into a 27x27 grid and
calculate local whitespace in each bin. We plot the % number of bins versus the % whitespace in each bin. Figure (A) shows the local whitespace
distribution in a Capo placement with no �ller cells added. Figure (D) shows a similar distribution for Feng Shui 2.0 that has no whitespace
management and packs cells to the left. Figures (B) and (C) show the local whitespace distribution achieved by Capo with �ller cells added to
reduce the whitespace available to the placer. Filler cells are removed after placement for local whitespace computation.

Capo 8.6 Dragon 2.23 (fixed-die mode: -fd)
%Filler Place Place Routed Route #Vio Route Place Place Routed Route #Vio Route
Cells WL(e8) Time(s) WL(e8) Time(s) lations Success WL(e8) Time(s) WL(e8) Time(s) lations Success

0 1.80 129 2.29 2160 1 Yes 1.97 1618 2.42 1020 0 Yes
5 1.68 130 2.14 1080 0 Yes 1.89 1611 2.37 780 0 Yes

10 1.68 152 2.22 1800 0 Yes 1.83 1348 2.31 1560 1 Yes
15 1.64 162 2.77 1680 20741 No 1.67 1921 2.07 600 0 Yes
20 1.57 168 2.90 2040 27883 No 1.66 2342 2.17 720 0 Yes
25 1.55 186 2.95 2640 63864 No 1.57 2030 2.09 780 0 Yes
30 1.52 181 3.00 1560 66096 No 1.52 1988 2.12 1380 0 Yes

Table 2: Place and Route results for ibm02 benchmark from IBM-Dragon suite with whitespace increased to 65%. Filler cells (as a fraction of
total area) are added to handle whitespace. Capo allocates the remaining whitespace uniformly. Dragon performs congestion-driven allocation of
the remaining whitespace. All experiments are conducted on a 2GHz Pentium/Linux platform.

mum �local� whitespace requirement leaves certain slack relative to
the total whitespace available in the design. By pre-processing we
can ensure (i) the minimum �local� whitespace through the core area,
and (ii) better allocation of the remaining whitespace. The technique
consists of adding small disconnected ��ller cells� to the design in an
amount not exceeding whitespace that remains after the �local� re-
quirement is satis�ed. Since �ller cells are disconnected and small,
a placer is free to place those cells so as to improve relevant design
objectives. After placement, we remove �ller cells and treat the re-
maining cell sites as empty. This causes high cell density in certain
areas, with �ller cells occupying the vacant areas of the chip.

Our empirical evaluation uses the Capo placer [5] which uniformly
distributes available whitespace [7] with routability in mind (Feng
Shui 2.0 and mPl 2.0 currently do not distribute whitespace,
but Dragon 2.23 does, in the �xed-die mode). However with de-
signs having low placement densities this strategy results in exces-
sive wirelength and potentially bad timing. Figure 3 shows place-
ments of an industrial design with 72940 nodes, 73155 nets and
74% whitespace. Figure 3 (A) shows the placement achieved by
uniform distribution of whitespace and Figure (B) shows the place-
ment achieved by introducing �ller cells to reduce whitespace to
15%. The wirelength of the design was improved from 15.32e6 to
8.77e6. The global placement runtime increased from 444 seconds
to 722 seconds. ACG was also tested on this circuit [4], and wire-
length improved from 11.43e6 (for uniform whitespace distribution)
to 10.38e6 (with ACG). Figure 2 shows the effect of �ller cells on
the local whitespace distribution for the same design. To calculate
the local whitespace distribution, we divide the layout region into a
grid of bins (27x27 in this case) and calculate the local whitespace in
each bin. Filler cells are removed from the design before calculating
the local whitespace distribution. We plot the % of bins vs. the %
local whitespace in each bin. As seen from Figure 2, with no �ller
cells introduced during the placement, most of the bins have a local
whitespace of around 70-80%. When �ller cells are added to the de-

sign to reduce whitespace to 30%, a large number of bins have 100%
whitespace. These bins represent the vacant areas of the chip as seen
in Figure 3 (B). However, most of the bins containing standard cells
have a local whitespace around 30%. Similar effect is observed when
�ller cells are added to reduce whitespace to 15%. While we have
not performed experiments with ACG, we suspect that it may further
improve wirelength if used in conjunction with �ller cells. This can
be demonstrated using a sparse design with one dense cluster of logic
connected to pins on the periphery so that the cluster must be placed
in the center to minimize wirelength. However, since such a place-
ment implies a high top-level cut, some top-down placers (especially
those with �xed cutline) will avoid this optimal placement.

Physical synthesis �ows interleave placement optimizations with
logic optimizations to achieve desired timing on a design. This re-
duces the number of iterations required between the front-end de-
sign and back-end design for timing closure. Physical synthesis tools
typically start from a global placement and perform logic optimiza-
tions like buffer insertion, driver sizing, logic replication etc. to im-
prove timing of the design. These logic optimizations are based on
the physical information generated by the initial global placement.
Such tools rely on ECO placement techniques to legalize incremen-
tal changes in the netlist after global placement. This enforces a min-
imum local whitespace requirement after global placement to facili-
tate ECO placement after changes due to logic optimizations. Com-
pacting a placement without physical synthesis in mind will severely
limit the ef�cacy of the physical synthesis tools. We study the ef-
fect of �ller cells on physical synthesis in Table 4. We conduct our
experiments on proprietary industrial benchmarks with varying row-
utilization. We report the worst slack and the total negative slack
(TNS) in the design after the physical synthesis. In the default run,
the global placer (Capo) uniformly spreads the cells around the core
area. As an alternative �ow, we add �ller cells during the global
placement stage to reduce the whitespace available to the placer to
40%. Thus the global placer compacts the placement but ensures

Circuit Flow = Capo+Parquet+Capo [2] Our Flow = Capo+Parquet+Capo mPG[10]
(High Temp Anneal) (Low Temp Anneal)

I II III IV
Uniform WS Uniform WS Uniform WS + Filler Cells

HPWL(e6) Time #FP Tries HPWL(e6) Time #FP Tries HPWL(e6) Time #FP Tries HPWL(e6) Time

ibm01 3.96 18m 1 3.36 13m 1 3.05 20m 4 3.01 18m
ibm02 8.37 31m 1 8.23 4hr0m 15 6.83 11m 1 7.42 32m
ibm03 12.16 42m 1 11.53 22m 1 10.38 59m 6 11.2 32m
ibm04 13.48 47m 1 11.93 25m 1 10.11 15m 1 10.5 42m
ibm05 11.51 8m N/A 11.20 5m N/A 11.1 5m N/A 10.9 36m
ibm06 10.25 56m 3 9.63 19m 1 9.94 18m 1 9.2 45m
ibm07 15.75 58m 1 15.80 39m 1 15.25 25m 1 13.7 1hr8m
ibm08 21.18 1hr34m 1 18.85 1hr51m 3 17.91 29m 1 16.4 1hr22m
ibm09 19.59 1hr6m 1 17.52 2hr58m 6 19.88 29m 1 18.6 1hr24m
ibm10 60.72 3hr49m 1 53.58 8hr10m 3 45.46 1hr56m 1 43.6 2hr52m
ibm11 28.49 1hr46m 1 26.47 1hr9m 1 29.4 45m 1 26.5 1hr52m
ibm12 51.74 11hr15m 4 55.12 1hr59m 1 55.79 25m 1 44.3 1hr33m
ibm13 39.39 2hr31m 1 33.56 1hr28m 1 37.73 53m 1 37.7 1hr31m
ibm14 56.19 4hr46m 1 52.67 5hr33m 2 50.26 2hr35m 1 43.5 4hr36m
ibm15 70.48 3hr57m 1 64.69 4hr24m 2 65.0 3hr15m 1 65.5 6hr25m
ibm16 - - - 83.14 9hr40m 4 90.01 2hr42m 2 72.4 7hr16m
ibm17 92.38 7hr23m 1 91.50 4hr9m 1 89.17 3hr8m 1 78.5 10hr6m
ibm18 54.90 5hr78m 2 54.11 6hr37m 5 51.84 2hr7m 1 50.7 7hr17m

Table 3: Mixed-size placement (Capo+Parquet+Capo), with the �oorplanner Parquet using low-temperature annealing to preserve initial macro
locations. We report results for uniform whitespace distribution without �ller cells (II) and with �ller cells (III). Results are compared with the
high-temperature annealing �ow from [2] with uniform whitespace distribution (I) and mPG (IV). Runtimes for Table I are observed on 1 GHz
Linux/Pentium 3 machine and are reproduced from [2]. Runtimes for Table II and III are observed on a 2 GHz Linux/Pentium 4 machine. Runtimes
for mPG (IV) are observed on a Sun Blade 1000 workstation running at 750 MHz and are reproduced from [10].

minimum local whitespace of 40% around the core area. Filler cells
are removed after global placement. As seen from the results in Ta-
ble 4, the worst slack and total negative slack for all the designs
improve considerably by adding �ller cells during the global place-
ment stage of physical synthesis. All the designs are routable even
after compacting the designs by using �ller cells.

We also conduct experiments to demonstrate the effect of �ller
cells on the routability of a design. We use the ibm02 benchmark
from [21]. The design initially has about 9% whitespace. The de-
sign is re-�oorplanned to have 65% whitespace. The design is placed
with Capo placer and routed with WarpRoute from Cadence. Filler
cells are gradually added during placement, reducing whitespace that
the placer can allocate uniformly. Each of these designs is placed,
then the �ller cells are removed and the design is routed with Ca-
dence WarpRoute. Table 2 reports the results of these experiments.
Clearly, adding �ller cells consistently improves half perimeter wire-
length. The routed wirelength and routing time also improve ini-
tially because of better placed wirelength. However after a certain
threshold, routed wirelength increases and then the designs become
consistently unroutable. Thus, �ller cells are useful in reducing the
half-perimeter wirelength, but distributing a portion of whitespace
helps Capo produce routable placements. In fact, reporting only
half-perimeter wirelength may be misleading. Routability of Capo
and Dragon placements on ibm-Dragon benchmarks is discussed
in [3], where the differences are traced to greater horizontal wire-
length and smaller vertical wirelength in Capo placements.

5. IMPROVED MIXED›SIZE PLACEMENT
We show that better whitespace allocation reduces wirelength in

mixed-size placement, and further improve the placement �ow from
[2] with unrelated techniques, including those from Section 3. Step
2 of that mixed-size placement �ow forms clustered blocks of stan-
dard cells using physical clustering and uses a �xed-outline �oor-
planner to help remove overlaps between macros subject the �xed-
outline constraints. Fixed-outline �oorplanning is the main bottle-
neck in [2], mainly because satisfying a given outline takes a num-
ber of restarts. We speed-up this stage as follows. When forming
soft clusters of standard cells using physical clustering, we reduce

the area of each clustered soft block by 10%. Thus the area of
the clustered block is 0.9 * (sum of areas of sub-cells). This in-
creases the amount of whitespace available to the �oorplanner and
helps the �xed-outline �oorplanner in �nding a solution satisfying
�xed-outline constraints faster. Additionally, instead of using full-
blown annealing that starts with a random initial solution, we try
to maintain the initial positions of macros (obtained from placing a
shredded version of the netlist). This is done by forming a sequence
pair from the illegal placement obtained from Step 1 of the �ow and
then employing low-temperature annealing.

Step 3 of the �ow �xes the macro locations to the ones provided
by the �oorplanner and replaces standard-cells around the macros.
Here we improve whitespace allocation by introducing �ller cells.
Figure 4 shows the improvements to the mixed-size placement �ow.
Figure 4 (A) shows the placement of ibm01 design after placing the
shredded netlist. Figure 4 (B) shows the placement after �oorplan-
ning the design. Since low-temperature annealing is used, the macro
locations follow the locations of Figure (A). Figure 4 (C) shows the
design with macros �xed and standard cells placed around them with
uniform whitespace distribution. We add �ller cells to reduce the
available whitespace to the placer to 10% and replace the design with
the macros being �xed. Figure 4 (D) shows standard cells placed
around macros with �ller cells and uniform whitespace distribution.
The �ller cells are not shown. The results are summarized in Table
3. We compare our results to mPG [10].

6. STABILITY
Physical synthesis �ows often require the stability of placement

results from run to run for future optimizations targeting timing and/or
congestion. However, Figures 5 (A) and (B) show that congestion
maps [14] produced for unrelated runs of a randomized min-cut placer
may be very different. In order to improve congestion, one may dis-
tribute whitespace to congested areas or restructure the logic, but
such �xes may be irrelevant to the result of the next run, or if another
placer is used. To achieve relative stability, we propose the follow-
ing approach. Given a placement, we modify the original netlist by
adding fake pins and fake nets. After the modi�ed netlist is placed,
the locations of real cells are likely to be close to their original lo-

Circuit #Cells no Filler Cells w Filler Cells
(During After Placement After Phy-Synthesis After Placement After Phy-Synthesis

Placement Place Place Worst Worst Place Place Worst Worst
Stage) %WS RunTime WL Slack Slack TNS %WS RunTime WL Slack Slack TNS

(sec) (ns) (ns) (ns) (sec) (ns) (ns) (ns)

Ind1 10957 89 38 4.29e6 -3.75 -0.116 -2.150 40 75 3.37e6 -2.62 0.046 0.00
Ind2 39600 60 185 4.67e6 -7.70 -2.14 -6975 40 223 4.08e6 -6.57 -0.951 -2854
Ind3 109558 81 818 2.71e7 -14.77 -8.67 -133467 40 1562 1.51e7 -9.89 -2.19 -47578

Table 4: The impact of �ller cells on physical synthesis for industrial designs with low utilization. We report the worst slack and total negative
slack (TNS) after physical synthesis. During the placement stage of physical synthesis, we add �ller cells so that the whitespace available to the
placer was reduced to 40%. Filler cells are removed after global placement. All designs are routable after physical synthesis.

cations, and the amount of change allowed can be easily controlled
during pre-processing. It is important to note that we are not adding
constraints � in principle, any cell can be placed anywhere. How-
ever, locations that are far from the original location carry a wire-
length penalty in terms of fake wires � further the location, greater
the penalty. A key property of our construction is that all locations
within a prescribed rectangle centered around the original location
carry the same minimal wirelength penalty, and this are equally at-
tractive during wirelength optimization.

(A) (B) (C) (D)

Figure 6: A single cell/macro is tied to a rectangular region in 4
different ways. Solid dots show arti�cially added (fake) pins, skew
lines show fake two-pin nets, and a fake 5-pin net is shown by a
spline. In all three cases moving the cell within the region does not
affect the total length of fake nets. However, any placement beyond
the region will incur a wirelength penalty that is independent of
other movable objects. In (A), four fake pins are added in the cor-
ners to preserve cell orientation. In (B), one fake pin is added at the
center so that changes in orientation do not affect wirelength. In
(C), the same effect is achieved by using one fake 5-pin net rather
than four fake two-pin nets. In (B) and (C), only the center of the
cell is constrained to be in the region. In (D), one fake 8-pin net is
used with the fake pins in the corners to ensure that the entire cell
is placed within the region.

Figure 6 demonstrates several ways to tie a cell or a macro to a
region without inducing a hard constraint. The four outer fake pins
are �xed in the corners of the given region. Note that a technique
similar to that in Figure 6 (A) is used in [2] to restrict orientations of
macros (however, in that work the four outer fake pins are �xed at the
corners of the core region). Three of the new constructions ignore
orientations. The �rst one uses four two-pin nets, the second uses
one �ve-pin net and the third uses one eight pin net. The latter was
suggested to us by Amir Farrahi from Synplicity and can be used to
mitigate the number of added nets. The third new construction uses
a single eight-pin net and can be used to ensure that the entire cell
is placed within the constraining region and also reduces the number
of added nets. Otherwise, these constructions are equivalent if used
with min-cut placers or placers based on simulated annealing.

In our experiments, we randomly select 2%-5% cells in a given
placement and tie them to regions centered at the cell’s location.
The size of the regions is selected as a small fraction (several per-
cent) of the core region size. These sizes and the weights of fake
wires allow one to control changes from the original placement. As
shown in Figure 5 (C), additional runs of the min-cut placer Capo
produce essentially the same congestion map. The placement in Fig-

ure 5 (D) is tied to the output of Dragon. Table 6 reports the effect
of tethering cells to a base placement on the IBM-v1 benchmarks
[20]. Base placements are generated using the randomized min-cut
placer Capo. We then tether a small number of randomly selected
cells of the netlist to the base placement. The ibm-v1 benchmarks
have disconnected groups of cells, caused by the removal of macros
(and incident nets) during the conversion from the original ISPD 98
partitioning suite to placement benchmarks [20].1 To stabilize such
designs we randomly select for tethering at least one cell from each
disconnected component in the netlist. Table 6 reports the average
and maximum Manhattan difference between locations of nodes in
the new tethered placements to those in the base placement. The dif-
ference is reported as a percentage of the core region bounding box
and can be compared to the tethering region whose half-perimeter is
1% of that bounding box. As seen from the results, tethering several
% of the cells to a base placement dramatically improves the sta-
bility of the randomized min-cut placer � the average cell displace-
ment from the initial locations is very small. However, the maximum
displacement remains comparatively high. We trace this to cells in
high fanout nets which, if not tethered, have a large freedom to be
placed around the core region without affecting the half-perimeter
wirelength of the design.2 In practice, when it is desirable to sta-
bilize placement with respect to a particular design objective, e.g.,
circuit delay, one should tether cells that are relevant to that objec-
tive, e.g., those on critical paths.

Table 5 shows that the constraining-region size does not have a
signi�cant effect on the stability of global placement as measured by
average and maximum displacement � a surprising result.

Finally, in all of our experiments, except for those with very small
constraining regions, the wirelength of tethered placements is similar
to the original wirelength.

% Rgn Size % Avg %Max
(of layout) Diff Diff

0.2 3.3 47
0.5 2.6 58
1.0 3.9 50

10.0 3.7 43
50.0 5.1 48

Table 5: The impact of constraining region size during tether-
ing on the stability of global placements produced by Capo on
the ibm06 benchmark. The constraining region size is measured
as a percent of the total layout region size. 5% of cells are teth-
ered to the base placement for all the runs. We report the average
and maximum Manhattan displacement per cell between tethered
placements and the base placement.

1Similar disconnected cells and groups of cells also occur in some
real-world design methodologies, e.g., �bonus cells� that are sprin-
kled through designs in anticipation of future incremental changes.
2We attempted adding cells with largest displacements to the list of
tethered cells and re-running the placer. On our benchmarks this
approach has only moderate effect because it takes a number of iter-
ations to identify all �loose� cells.

7. CONCLUSIONS
Large-scale placement is becoming more sophisticated in the pres-

ence of large IP blocks, embedded memories and macros. Aggres-
sive timing constraints, large whitespace and physical synthesis �ows
pose new challenges to layout tools. In particular, local and global
incremental changes must be sustained without chaotic effects on
congestion and circuit delay. We observe that �local� whitespace
makes layouts amenable to local modi�cations and resynthesis, while
stability of placement results facilitates larger incremental changes.

We contribute simple and tunable techniques for ensuring min-
imum �local� whitespace throughout the core region without dis-
tributing all whitespace uniformly, and empirically demonstrate that
such local whitespace is achieved with approximately 5% precision.
Our study is complementary to that in [4] where whitespace is man-
aged using a combination of min-cut and analytical placement tech-
niques. Similarly, our methods can be used with congestion-driven
whitespace allocation from [16, 21]. Our empirical results show that
lax controls over whitespace may lead to better half-perimeter wire-
length, but at the same time may increase routed wirelength or even
lead to unroutable designs. This may be the clearest example yet of
the divergence between half-perimeter wirelength and routed wire-
length as optimization objectives. Our experiments with physical
synthesis point out that using a combination of �ller cells and uni-
form whitespace distribution during global placement can signi�-
cantly improve circuit delay of low-utilization designs.

Our work improves the performance of state-of-the-art min-cut
placer Capo on regular grid-like netlists and datapaths. This is par-
ticularly useful in a design �ow where large macros are placed si-
multaneously with numerous small cells by means of shredding and
subsequent legalization [2]. Our empirical results for mixed-size
placement are signi�cantly better than those reported in [2] and are
comparable to those in [10]. It should be noted however, that the
multi-level techniques in [10] are very different from those used by
other researchers and can, in principle, be combined with ours or
even applied to placements produced by our methods. We believe
that even within our �ow several additional improvements can be
made, and our ongoing work pursues such possibilities.

Our study of stability shows that while min-cut placers may pro-
duce solutions with very different congestion maps, it is possible to
stabilize their results by a simple pre-processing. In fact, it takes a
surprisingly small modi�cation of the netlist to tie future placement
solutions to a given set of locations. While some algorithms, e.g.,
analytical placement, tend to produce consistent results on multiple
runs, our techniques can be used to tie the results produced by dif-
ferent placement algorithms and implementations to each other. In
particular, placement predictions made by a fast estimator can be
enforced at a global scale when a slower placer is used to optimize
wirelength and various design objectives.

Straightforward implementations of the proposed techniques, such
as �ller cells and fake nets, may increase the memory footprint of the
placer and its runtime. Instead, those techniques can be implemented
implicitly so as to guarantee the original memory footprint and only
an insigni�cant slow-down. We do not pursue this avenue in our
work because it requires non-trivial source code modi�cation and is
incompatible with the simple pre-processing approach that enabled
our experiments with several placers.

Acknowledgments This work was supported by the Gigascale
Silicon Research Center, an IBM University Partnership award and
equipment grants from Intel and IBM. We would also like to thank
Xiaojian Yang (Synplicity) and Amir Farrahi (Synplicity) for tech-
nical discussions, as well as Shubhyant Chaturvedi (The University
of Michigan) for evaluating Capo on datapath circuits from the Syn-
opsys design foundation library.

8. REFERENCES
[1] S. N. Adya and I. L. Markov, “Fixed-outline Floorplanning Through

Better Local Search”, ICCD 2001, pp. 328-334.
[2] S. N. Adya and I. L. Markov, “Consistent Placement of Macro-Blocks

using Floorplanning and Standard-Cell Placement”, ISPD 2002, pp.
12-17.

[3] S. N. Adya et al., “Benchmarking for Large-Scale Placement and
Beyond,” ISPD 2003, pp. 95-103.

[4] C. J. Alpert, G.-J. Nam and P. G. Villarrubia, “Free Space
Management for Cut-Based Placement”, ICCAD 2002, pp. 746-751.

[5] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?” DAC 2000, pp. 477-82.

[6] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners and
End-case Placers for Standard-cell Layout”, IEEE Trans. on CAD, vol.
19, no. 11, 2000, pp. 1304-1314

[7] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Hierarchical Whitespace
Allocation in Top-down Placement”, IEEE Trans. on CAD, vol. 22,
no. 11, 2003, pp. 716-723

[8] A. E. Caldwell, A. B. Kahng, I. L. Markov, “VLSI CAD Bookshelf”
http://vlsicad.eecs.umich.edu/BK

[9] C. C. Chang, J. Cong and M. Xie, “Optimality and Scalability Study
of Existing Placement Algorithms,” ASP DAC 2003, pp. 621-627.

[10] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level Placement for
Large-Scale Mixed-Size IC Designs,” ASPDAC 2003, pp. 325-330.

[11] J. Cong, M. Romesis, M. Xie, “Optimality, Scalability and Stability
Study of Partitioning and Placement Algorithms”, ISPD 2003, pp.
88-94.

[12] W. J. Dally and A. Chang, “The Role of Custom Design in ASIC
Chips”, DAC 2000, p. 643-647.

[13] H. Eisenmann and F. M. Johannes, “Generic Global Placement and
Floorplanning”, DAC 1988, p. 269-274.

[14] J. Lou, S. Krishnamoorthy, H. S. Sheng, “Estimating Routing
Congestion using Probabilistic Analysis,” ISPD 2001, pp 112-117.

[15] P. N. Parakh, R. B. Brown, K. A. Sakallah, “Congestion Driven
Quadratic Placement”, DAC 1998, pp. 275-278.

[16] A. Rohe and U. Brenner, “An Effective Congestion Driven Placement
Framework,” ISPD 2002, pp. 6-11.

[17] M. Sarrafzadeh, M. Wang and X. Yang, “Modern Placement
Techniques,” Kluwer 2002.

[18] P. Saxena, N. Menezes and D. Kirkpatrick, “The Scaling Challenge:
Can Correct-By-Construction Design Help?”, ISPD 2003, pp. 51-58.

[19] L. Scheffer and E. Nequist, “Why interconnect prediction doesn’t
work,” SLIP 2000, pp. 139-144.

[20] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-cell
Placement Tool for Large Industry Circuits,” ICCAD 2000, pp.
260-263.

[21] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement,” ISPD
2002, pp. 42-50.

