A Scalable Application-Specific Processor
Synthesis Methodology

Fei Sunf, Srivaths Ravi, Anand Raghunathan?, and Niraj K. Jha'
1 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
1 NEC Laboratories America, Princeton, NJ 08540

Abstract— Custom processors based on application-specific or
domain-specific instruction sets are gaining popularity, and are
often used to implement critical architectural blocks in com-
plex system-on-chips. While several advances have been made
in custom processor architectures, tools, and design method-
ologies, designers are still required to manually perform some
critical tasks, such as selection of the custom instructions best
suited to the given application and design constraints.

‘We present a scalable methodology for the synthesis of a
custom processor from an embedded software program. A key
feature of the proposed methodology is its scalability, which
is achieved by exploiting the structured, hierarchical nature
of large software programs. We motivate the need for such a
methodology, and describe the algorithms used for the critical
steps, including hardware resource budgeting, local optimiza-
tions, and global exploration. Our methodology utilizes the
concept of “soft” instruction templates, which can be adapted
by adding operations to them or deleting operations from them
at any time during the design space exploration process, al-
lowing for global design decisions to be interleaved with fine-
grained optimizations.

‘We have integrated our methodology in an open source com-
piler, and verified it using a commercial extensible proces-
sor. Experiments with several benchmarks indicate that our
methodology can effectively tackle large programs. It resulted
in the synthesis of high-quality custom processors that demon-
strated an average speedup of 2.61X and a maximum speedup
of 6.32X. The CPU times required for custom processor synthe-
sis were quite small, indicating that the proposed techniques
can be applied to embedded software programs of significant
complexity.

I. INTRODUCTION

Improvements in semiconductor fabrication technologies
promise to make it feasible to replace logic gates or hardware
macro-blocks with microprocessors as building blocks for inte-
grated circuit (IC) design. Such programmable solutions will
provide the ability to meet short product cycles and cope with
changing application functionality (e.g., in areas with evolv-
ing standards). However, the rapid expansion in the market
for embedded systems with tight constraints on cost, perfor-
mance, size, and power consumption implies that the need to
customize the architecture to the application or application
domain will continue to be a primary driving requirement in
system-on-chip (SoC) design.

The application-specific instruction set processor (ASIP)
can provide a good trade-off between flexibility and efficiency,
by tailoring the instruction set and micro-architecture to one
specific application, or a set of applications for the same do-
main. The recent emergence of configurable and extensible
processors (e.g., [1], [2], [3], [4]) has met with significant suc-
cess, and several complex SoCs featuring such processors (of-
ten several on the same IC) are already in production.

Acknowledgments: This work was supported by the NJCST Center for Em-
bedded System-on-a-chip Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

While a significant body of research, built up over a decade,
exists for ASIP synthesis, most of it has focused on generating
custom instruction sets and architectures from scratch, rather
than specializing a given base processor. Most current com-
mercial offerings, however, are based on the latter approach,
since starting with a pre-optimized, pre-verified base architec-
ture considerably eases the challenging tasks of design verifi-
cation as well as generation of the software development tool
chain. More importantly, we believe that further research is
required in order to allow these techniques to scale well with
application program size, to handle large, realistic embedded
software applications.

Enabling the vision of the application-specific processor as
the ubiquitous building block of future SoCs requires sev-
eral innovations in architecture and design methodologies.
These innovations should enable designers to create highly
optimized instances of custom processors, which achieve high
levels of processing efficiency in very short turn-around times
(hardware-like efficiency from software solutions).

Despite significant advances in the supporting methodolo-
gies and automation tools for application-specific processor
design (e.g., re-targetable software tool chains), designers are
still required to manually design custom instructions and the
hardware to speed up the application, which is a slow, te-
dious, and error-prone process. Application-specific processor
synthesis (or custom processor synthesis) attempts to address
this problem by developing tools that automatically analyze
the application, generate and evaluate various choices of the
custom processor architecture, and select the one that best
meets designers’ constraints (e.g., performance, area, power).
Custom processor synthesis is quite challenging due to the
complex inter-dependencies and tradeoffs involved in making
the design decisions, which can be difficult to explore even for
small applications. Moreover, the large size of real-life embed-
ded software applications makes this task even more challeng-
ing. A moderate-sized program may have tens of thousands of
lines of code and hundreds or thousands of functions. For ex-
ample, consider the task of synthesizing an application-specific
processor based MPEG-2 encoder/decoder (CODEC). A typ-
ical MPEG-2 decoder implementation that we analyzed con-
tains 7,832 lines of code and 114 functions, while the encoder
has 7,605 additional lines of code that comprise 95 additional
functions. As shown later in the paper, the number of candi-
date custom instructions that can be generated to accelerate
such applications is huge. Thus, any method to explore the
architectural design space needs to perform highly efficient
design space exploration.

A. Related Work

We first briefly discuss some previous work on ASIP de-
sign, configurable processor synthesis, and custom instruction
generation and selection.

An overview of ASIP design, its benefits, challenges and

283

barriers are described in [5], [6]. The architecture/compiler
codesign of ASIPs is addressed in [7]. A method to search
for a minimal-area processor core and cache, which satisfy
the performance requirements of certain applications, is given
in [8]. An ASIP design methodology for extending an existing
processor instruction set architecture is described in [9]. A
methodology for hardware-software partitioning using func-
tion call graphs is described in [10].

Instead of designing an ASIP from scratch, configurable
processor synthesis tailors custom processors by adding or
deleting some options, or functional units from the core pro-
cessor. The notion of a flexible instruction processor (FIP)
and parameterization of its modular processor templates is
introduced in [11]. In [12], the PICO-NPA system that auto-
matically synthesizes nonprogrammable accelerators (NPAs)
is described. A method to partially customize the instruction
set of VLIW processors for embedded applications is presented
in [13]. Selection of intellectual property (IP) surrounding an
ASIP core to accelerate application programs is tackled in [14].
The work in [15] deals with a method to merge datapaths to
reduce interconnections. In [16], an automatic method to se-
lect among a few processor options under an area constraint
is proposed.

Custom instruction generation and selection techniques try
to extend the existing instruction set of the base processor
in order to speed up specific applications. In [17], a semi-
automated method for detection and exploitation of custom
instructions for VLIW processors is provided. The work in [18]
describes a method to generate complex instructions from
primitive ones. In [19], a method to choose from different
instruction encoding alternatives in ASIP design is proposed.
Methods to generate custom instructions from operation pat-
terns are described in [20], [21]. A technique to rapidly select
custom instructions from a set of pre-synthesized custom in-
structions is presented in [22]. The work in [23] analyzes the
impact of custom instructions on the entire system, and pro-
vides some case studies.

B. Paper Overview and Contributions

In this paper, we provide a scalable methodology for
application-specific processor synthesis. Given one or more
application programs, and the desired design constraints (e.g.,
area), the methodology generates a custom processor architec-
ture by extending the instruction set of a base processor, so
that its performance in executing the given program is max-
imized. We exploit the fact that large software programs are
written in a modular and hierarchical manner, and are com-
posed of functions or procedures. We use the hierarchical
structure of the program during several phases of our method-
ology, including hardware resource budgeting, and to struc-
ture our custom instruction selection process into local and
global optimizations, much like a software compiler. The pro-
posed methodology solves the problem of custom instruction
selection recursively by traversing the function call graph -
starting with smaller sub-programs at the leaves of the func-
tion call graph, finally merging them to obtain the solution for
the entire program. We develop efficient and accurate macro-
models to estimate the performance and area of a base proces-
sor augmented with a given set of custom instructions. Instead
of considering already-selected custom instructions as atomic
units, we consider adding and dropping of operations inside
each custom instruction, resulting in a finer-grained (and bet-
ter) approach. In order to address the size of the design space,
we formulate the custom instruction pruning problem. While
pruning, we not only consider each custom instruction inde-

pendently, but also consider its performance and area impact
with respect to all the other custom instructions.

We have implemented the proposed techniques by inte-
grating them in an open-source compiler research framework
(SUIF [24]), and have verified them using a commercial exten-
sible processor (Tensilica’s Xtensa [1]). We evaluated our tool
by using it to generate custom processor architectures based
on Xtensa for several embedded software programs. The re-
sulting custom processors were subjected to logic synthesis
and technology mapping to a commercial technology library,
in order to estimate their area and performance. Our exper-
iments indicate that custom processors generated using the
proposed methodology can result in significant efficiency im-
provements in very limited synthesis times.

II. MOTIVATION

In traditional manual custom instruction design flows,
designers need to read through the program, pick out
the performance-critical function, analyze the function, and
rewrite the function and the custom instruction description.
This is a very slow and error-prone process. Moreover, it is
difficult for designers to perform global tradeoffs. Hence, the
custom instructions generated are often only locally optimal,
but not globally optimal.

The final objective of custom instruction synthesis for ex-
tensible processors is to solve the following problem.

Problem 1: Given an extensible processor and an applica-
tion, generate a set of custom instructions to speed up the
application as much as possible while the total area of the
processor is within the given area budget.

In a manual design, designers may be able to obtain custom
instructions for different parts of the program, and then select
a subset of these instructions to meet the area budget. How-
ever, this approach has several drawbacks. One frequently
finds identical code in different parts of a large program. It
is easy for a designer to overlook this fact and not be able to
exploit it for larger speed-ups. It may be possible to reduce
the number of operations in the derived custom instructions
to try to meet the area budget. However, because of the huge
search space involved, a designer is likely to just obtain a sub-
set of the custom instructions he/she found, and not try to
reduce individual custom instructions, in order to meet the
area budget. Note that reducing operations in one custom
instruction has an impact on how other custom instructions
have to be transformed as a result.

A program may have a number of functions and a hierar-
chical structure. The following example illustrates the huge
custom instruction design space, and why good-quality man-
ual design is very difficult.

Ezample 1: Fig. 1(a) shows part of a function call graph
of the mpeg2decode program, rooted at function slice. In
this graph, an edge from a parent function to a child function
indicates that the parent calls the child. The numbers on
the edges are the times each function is called. This is not
a complete call graph as some children and library function
calls are not shown in the figure. Fig. 1(b) shows a table whose
entries indicate the number of cycles each function consumes.

From the function call graph, we can obtain a number
of custom instructions. In functions idctcol and idctrow,
the largest custom instruction has 63 and 64 operations, re-
spectively. Note that the largest custom instruction may
not necessarily yield the best performance (this is because
it may require too many inputs and outputs, which may re-
duce its performance improvement, as discussed later). If
we obtain smaller custom instructions by dropping some

284

9216,

s/ \gle
idctcol idctrow

form predictio

732

form conponent _predi ction

X Show_Bi ts
Function nanme / #calls

Fl ush_Buffer

Function Cycles
start_of_slice 888
form_predictions 6,401
slice 11,094
form_prediction 14,152
motion_compensation 32,868
decode_macroblock 43,295
Get_Bits 65,737
Show_Bits 76,844
Decode-MPEG2_Non_Intra_Block | 88,780
Fast_IDCT 94,464
Clear_Block 152,064
Flush_Buffer 222,988
Decode _MPEG2_Intra_Block 226,937
form_component_prediction 315,987
Add_Block 353,992
saturate 374,128
idctrow 487,624
idctcol 1,116,168

(b)

Fig. 1. mpeg2decode: (a) function call graph, and (b) number of cycles
each function consumes

operations from the largest custom instruction, we end
up with more than 100,000 custom instruction candidates
just for these two functions. Additionally, for functions
form_component_prediction, Add_Block, and saturate, we
can obtain 16, 11 and one largest custom instructions, respec-
tively, that need to be investigated further.

If we only consider the largest custom instructions, we have
230 possible choices for this small call graph. In the entire
program, we can find nearly 300 largest custom instructions.
If we consider the possible combinations of smaller custom
instructions, the number of choices would run into billions. B

Example 1 illustrates that the design space is very large
for hierarchical programs, and hence it is not possible to effi-
ciently solve the custom processor synthesis problem directly.
One approach may be to divide a large program into sev-
eral smaller programs and solve the problem for the latter
first. This divide-and-conquer approach can significantly re-
duce the design space. However, a simple divide-and-conquer
algorithm may lead to a very inferior solution. For example,
a straightforward divide-and-conquer algorithm would be to
divide the available area among the different functions based
on the number of cycles that each function consumes in the

base processor. While, on the surface this may seem like a
fair area allocation, the following example illustrates why this
is not so.

TABLE I
CUSTOM INSTRUCTIONS FOUND FOR THE CALL GRAPH IN FIG.1
Function Custom Saved Area Custom
instr cycles Reg.
idctcol Insy 497,664 | 270,088 13
idctrow Inss 165,888 280,606 13
saturate Inss 72,238 30,576 0
Add_Block Insy 1,152 81,836 4

Ezxample 2: Table 1 shows some custom instructions for
some of the functions in the call graph of Fig.1. The to-
tal number of cycles for all the functions is 3,674,411. The
table also shows the number of cycles saved if that custom
instruction were to be used, the area allocated to the function
(in grids) based on the above philosophy, and the number of
user-defined custom registers.

The problem with the above area allocation policy is that
it allocates the area before we even know whether any custom
instructions can be found for those functions and how much
area they actually require. Hence, except for the few functions
that yield custom instructions, the area allocated to all other
functions is totally wasted. It turns out that the area allocated
to function idctcol is much larger than the area required for
its best custom instruction. If the allocated area is fixed, and
we cannot move the spare area to other functions, then this
also represents waste. To make matters worse, the area re-
quired to implement Inss is larger than the area allocated to
its function, idctrow. Hence, in this case we will not even be
able to choose the custom instruction that can yield the best
performance. We will need to shrink the custom instruction
in some way to satisfy the local area requirement. Finally, in
some cases, a custom instruction may yield a speed-up only
if it is large enough (otherwise the overheads may swamp the
benefits). This means that there is an area lower bound for a
custom instruction to be useful. If it so happens that the area
lower bound for Inss is a little above its local area require-
ment, we cannot even choose Insz. In summary, if we use a
straightforward area budgeting algorithm, because of the large
discrepancy between the saved cycles, area of custom instruc-
tions, and the number of cycles required for the function that
the custom instructions belong to, the result may very easily
get stuck in an inferior solution. [|

In Example 2, we assumed that each custom instruction
has an area allocation, independent of the area allocated to
other custom instructions. However, sometimes it is possible
for two custom instructions to share area because of a similar
structure, or a similar number of inputs and outputs, which
further complicates the problem.

A typical RISC instruction can only have a finite number of
inputs and outputs encoded in an instruction. Suppose these
numbers are « and 3, respectively. If we restrict the num-
ber of inputs and outputs of custom instructions to o and (3,
respectively, we may end up with very few custom instruc-
tion candidates and hence not obtain the complete benefit
of using custom instructions. Fortunately, many commercial
extensible processors, like Xtensa [1], allow more inputs and
outputs for custom instructions. Besides the general-purpose
register file, they allow some user-defined registers. Before
custom instruction computation commences, some write in-
structions write the input data to those user-defined registers.
Then the custom instruction implicitly reads the data from
the user-defined registers during computation, and writes re-

285

sults to user-defined registers. After the computation is com-
plete, some read instructions explicitly read the data from the
user-defined registers.

User-defined registers are local to the processor. It is used
just before and after custom instruction computation. At
other times, the values in those registers are invalid. Hence,
we can reuse the user-defined registers for different custom
instructions, if they are guaranteed to execute sequentially,
which is true for programs on single-pipeline processors. Some
software transformations, such as loop-independent code mo-
tion, can increase the life length of the user-defined registers.
Thus, the above constraint needs to be kept in mind while
performing the transformations.

III. METHODOLOGY AND ALGORITHMS

In this section, we describe our methodology for synthesis
of custom instructions. We first provide an overview of the
entire design flow and then describe the important phases and
steps in detail.

A. Overview

Fig. 2 illustrates the three phases involved in the automatic
generation of custom instructions for hierarchical programs.
The rectangular blocks denote transformation procedures, and
the cylindrical blocks denote data. The intermediate represen-
tation (IR) is obtained from the SUIF compiler [24].

In Phase I, the algorithm first takes a target program (in
C) as input (block 1), and performs some target-independent
transformations (block 2) (e.g., constant folding, copy prop-
agation, common subexpression elimination, etc.) to simplify
the input program. Then the profiling statistics (block 4),
program dependence graph (block 5), and call graph (block
6) are generated from the transformed IR (block 3). Based
on all these data, custom instruction templates are generated
(block 7). Only the largest possible template inside a ba-
sic block is generated, leaving the pruning of the template to
Phase II. This significantly reduces the complexity of template
generation. A lot of C programs use macros for convenience.
The same macro may appear at different places in the pro-
gram, resulting in the same code. Therefore, after all the
largest custom instruction templates are generated, we collect
information on which templates are identical and merge such
templates into one (block 8). The merged template has the
attributes (e.g., number of execution cycles) of all the identi-
cal templates. Finally, a modified IR with custom instruction
template annotations (block 9) is passed to Phase II.

Since the design space for realistic software programs is ex-
tremely large, we cannot use a flattened description of the
application to solve Problem 1. Therefore, Phase II makes
use of the program hierarchy, to divide the large program into
several smaller programs, each having a much smaller design
space. The custom instruction solutions for the smaller pro-
grams are recursively combined to gradually converge into a
solution for the original program. For each custom instruction
template, we first perform some local optimizations (block
10). Then we mark the level in the hierarchy at which each
function resides (block 11). We start from the leaf functions
(block 12), dynamically compute the area and number of cy-
cles saved for all the templates (block 13), and then compute
the target area for the templates for the current function and
its subgraph (block 14). Based on the target area, we scale the
custom instruction templates in the function subgraph (block
15). If all the functions at the same level have finished compu-
tation, we ascend levels in the function hierarchy and repeat
the computation (block 16). Finally, when we reach the root

function, a set of custom instruction templates satisfying the
area constraints has been selected (block 17). A more detailed
explanation for these steps is given in Section ITI-B.

Phase IIT performs more software transformations (block
18) including optimizations like loop-invariant motion, and
generates the custom instruction descriptions (block 21). The
original program is also modified through insertion of custom
instructions (blocks 19 & 20). Finally, the custom processor,
which includes the base processor and custom instructions, is
built, synthesized and verified (block 22).

B. Details

In this section, we describe the steps in Phase II in detail.
First, we mathematically formulate the problem using a flat-
tened hierarchy in Section ITI-B.1 (note that this formulation
is only applicable to small programs). Then we present a
global exploration algorithm to reduce the design space using
the program hierarchy in Section I1I-B.2). A detailed expla-
nation of the cost function and other important steps in the
algorithm are presented in Sections III-B.3, III-B.4, and III-
B.5.

B.1 Problem formulation

Our final objective is to solve Problem 1. To have a clearer
understanding of this problem, we define a custom instruction
more rigorously.

Definition 1: A custom instruction (Ins) can be repre-
sented as a directed acyclic graph (DAG), G = (V, E). Node
v; € V represents an operation. Edge e, € E represents the
data dependence between two nodes v;,v; (ex = (v;Ztv;)).
v; is called the data dependence predecessor of v; (abbrevi-
ated to predecessor), while v; is called the data dependence
successor of v; (abbreviated to successor). s; is the sym-
bol that connects v; and v;. There are two special nodes,
source (Vsource) and drain (Vdrqin). Usource is the predecessor
of all input nodes, and vgrqin is the successor of all output
nodes. In and Out are the input and output sets of the cus-
tom instruction, respectively. In = {si|lex = (Vsource 2Lv;)},
Out = {silex = (viLVgrain)}. |[In| and |Out| represent the
number of inputs and outputs, respectively.

Definition 2: Each node v; € V has two attributes: cycles
(ci), representing the number of cycles required to compute
the operation in the base processor, and area (a;), representing
the functional unit area of the operation if it is part of a
custom instruction.

Definition 3: Each custom instruction (Ins) has three at-
tributes: execution count (EC), representing the number of
times the custom instruction is executed, cycles saved (C'S)
and area (A). They are computed using the following equa-

tions:
cs= Y a-C, (1)
v EV
C = SC + max(|In| — a, 0) + max(|Out| — 3,0), (2)
A=BA+ Y ai, (3)
v, €V

In Definition 3, Equation (1) computes the cycles saved in
each execution. The first term gives the number of cycles
needed on the base processor, and the second term gives the
number of cycles needed using the custom instruction. Equa-
tion (2) shows how the second term is computed. Its first
term, SC, denotes the number of scheduled cycles used by
the custom instruction, which can be obtained by comparing
the longest delay of the custom instruction and the processor
clock period. The second and third terms give the extra cycles
needed to write and read values to and from the user-defined

286

1 Cprogram

10

!
ﬁnitia] softwaretrans‘ormations}
2

kR
Transformed
IR

~

Profiling

Hierarchical program
dependence graph 6

12

Function layer

L ocal optimization

1

J\/ |

[
[

Starting from leaf functions]

markin 13[

Dynamically compute custom

19

statistics

S
Program a [A
dependence graph ﬁ

Template generation [

8
{ Identical template merging}

L

S
IR with all

templates

|
Phase | J

instructions area/cycles_saved
%’" g Custom
Computetarget area for a instructions
function subgraph S& 2
=3 Optimized
Q = C program
Shrink/expand custom } 2 > e
instructionsin function subgraph J |2
22
Processor with

custom
instructions

@se n

Fig. 2. Custom instruction generation design flow for hierarchical programs

registers, assuming the custom instruction can encode o and
inputs and outputs in the instruction, respectively. The extra
inputs have to be written to some user-defined registers before
computation. These write instructions take extra cycles. Sim-
ilar arguments hold for outputs. Equation (3) computes the
area of the custom instruction. It is composed of two parts.
BA denotes the base area of the custom instruction, required
for decoding and other interface logic. The second term gives
the functional unit area.

The total area of all the n custom instructions can be com-
puted as follows:

AREA= Y A;+SA4,

1<i<n

(4)

A= In; — i — Area,
S (1r§nla§xn(| n; —al) + 11Sniagxn(\0ut B])) x URegArea (5)

Because the area to implement the user-defined register can
be shared across custom instructions, we include it as a sep-
arate item for all the custom instructions. SA represents the
area for user-defined registers, which is the sum of the maxi-
mum number of extra inputs and maximum number of extra
outputs times unit user-defined register area, U RegArea. The
total area is the sum of the area of each custom instruction
and the area of user-defined registers.

Now, Problem 1 can be restated as:

Problem 2: Given a base processor, an application, and an
area budget AB, find a set of custom instructions {Ins;} such

that Z CS; x EC; is maximized while AREFA < AB.

After Phase I, a number of custom instructions {Ins;} be-
comes available, where typically Z A;+SA > AB. Thus, we

1
need to select a subset of the custom instruction nodes. The
problem can now be further refined as follows:

Problem 3: Given a base processor, an application, and an
area budget AB, suppose n custom instructions {Ins;} are
found and there are m; operations in custom instruction 4.
We need to find an assignment of values to variables x;; for
node j of custom instruction 7 (1 <7 < n,1 < j7 < my), in
order to maximize the following cost function:

CcS = Z CS; x ECY, (6)

where

CSI = Z TijCij — Ci, (7)
vij
C; = SC; + max(|In}| — a,0) + max(|Out}| — 3,0), (8)
In; = {sim|eq = ('Uijmvik)aa?ij =0,z = 1}, (9)
Sim

Out; = {simleqn = (vij ——vig), zij = 1, x5 = 0}, (10)

subject to
AREA < AB, (11)

where
AREA =Y A; + SA, (12)
i
Ai=BAi+)_ wijai, (13)
v

SA = (max(|In} — a|) + max(|Out;| — 8)) x URegArea, (14)
zi; = {0,1}, (15)

xi; is 0 iff any node v,s in any path from v;; to vigrain or
from v;; back to visource has xrs = 0.

B.2 Global exploration

Obviously, Problem 3 is an NP-hard problem. Hence, it is
not practical to use a flattened approach to solve the prob-
lem for large hierarchical programs, especially when a;; <<
AB << ARFEA. We make use of the program hierarchy to
recursively solve Problem 3 for sub-programs of the program,
and finally converge to the global solution.

For each template, we first perform local optimization by
dividing the template if the divided template can yield better
performance and smaller area. We also perform some initial
pruning of the templates. Then we break the loops in the call
graph to form a DAG. We mark the levels of all the functions
in the call graph, starting from the root function (main) and
marking it as 1, then marking all the functions it calls as 2,
and so on. Basically, a function is marked as being at level
n + 1 if the highest level of the caller functions is n.

Starting from the function at the first level, we compute the
total number of cycles saved (C'S) and area (AREA) for all the
templates passed from Phase I, using Equations (6) and (12),
respectively, disregarding the area constraint for now.

287

For each function at the current level, we again compute
the total number of cycles saved (C'S’) and area (AREA')
for all the templates in the function subgraph, i.e., functions
directly or indirectly called by the current function. Then we
compute the target area and solve Problem 3 by scaling all the
templates in the function subgraph to meet the target area.

After all the functions in the current level have been pro-
cessed, we decrease the level number and perform the compu-
tation again. Note that a lower level corresponds to a larger
function subgraph, resulting in a larger design space search.
The previous custom instruction node selection step just pro-
vides an initial solution for the current search.

Function F,g F15 Fls+1 Ff:L FiJrl SL+2
Cycles 6,000 | 41,000 | 9,000 | 56,000 14,000 | 24,000
Custom instr none Insy none Inso Inss Insy
(b)
Custom instr | Saved cycles Area Custom Reg.

Insy 13,000 18,500 2

Insa 53,950 36,500 4

Inss 10,000 14,000 1

Insy 50 21,000 0

(c)

Fig. 3. Illustration of global exploration: (a) call graph, (b) cycle
consumption and custom instruction in each function, and (c) custom
instruction properties

The following example illustrates the above algorithm.

Ezample 3: Fig. 3(a) depicts part of a labeled call graph of
a hierarchical program. Each node is a function. The dot-
ted ovals denote the function subgraphs. The superscript of
a node represents the level number of the function, and the
subscript represents the functions in the corresponding level.
Fig. 3(b) shows the number of cycles and custom instruction
for a function subgraph. Fig. 3(c) shows the custom instruc-
tion properties.

Suppose the target area for an entire program is 100,000
grids and initially all the custom instruction templates com-
bined can save 200,000 cycles and consume 200,000 grids of
area. During local optimization, the local target area for Insi
to Inss are computed as 26,000, 107,900, 20,000, and 100,
respectively. Hence, Inss is shrunk to 0. After local opti-
mization, suppose the area is reduced to 150,000 grids and
the number of cycles saved is reduced to 160,000 cycles.

At level 6, for function FS,, the target area of Inss is com-
puted to be 38,914, larger than the one giving the best per-

formance. Hence, it is not changed. For function FT?L+17 the
target area of Inss is computed to be 8,854. Hence, the tem-
plate has to shrink to occupy an area that is smaller than this
value. For simplicity, let us assume that the template can
scale exactly to the target area. The number of cycles saved
is also reduced to 2,000 cycles due to the shrinkage. For func-
tion FP_,, the target area is still 0. After all functions are
processed, the total area is reduced to 130,000 and the total
saved cycles is reduced to 140,000.

At level 5, for the function subgraph rooted at F?, the total
saved cycles is 68,950, and the total area for implementing
Insi, Insy and Inss is 56,254. Note that this is smaller than
simply adding the respective areas because of sharing of user-
defined registers. The target area is now computed to be
61,070. Hence, the templates are expanded again to meet the
target area. For the function subgraph rooted at F7,, the
target area is 8,857 and hence Inss is shrunk again. After
all the functions are processed, the area becomes 125,000 due
to the reduction in some other templates, and the total saved
cycles is reduced to 133,000.

At level 4, for the function subgraph rooted at Fj, again
the total saved cycles is 68,950, and the total area is 56,257.
The computed target area is 61,562. Hence, the instructions
are expanded again. This continues until the area constraint
is met. [|

B.3 Custom instruction partitioning

In Phase I of Fig. 2, we compute the largest custom instruc-
tions in a basic block, but it may not necessarily be the best
candidate in terms of performance. If the custom instruction
has more than « inputs and 3 outputs, some cycles are needed
to write/read extra values to/from user-defined registers. If
the number of inputs or outputs is too large, the write or
read instruction will dominate the number of cycles required
to execute the custom instruction. However, if the large cus-
tom instruction can be divided into several smaller custom
instructions, and the execution cycles of the large custom in-
struction is greater than the sum of the execution cycles of
the small custom instructions, the division can improve per-
formance without significant cost. Usually, if this is beneficial,
the total area for the divided custom instructions is smaller
too, because of area sharing of the user-defined registers. This
method can reduce the critical path as well, as shown next.

Ezample 4: Suppose one large custom instruction has three
inputs (In1, Ing, Ing) and two outputs (Out1, Outz), uses two
user-defined registers, one for the input and one for the out-
put, and takes three cycles. The code is shown below. Here,
WUserRegister (RUserRegister) refers to writing (reading)
of a user-defined register.

WUserRegisterl(Ing);
Outo = CustomInstr(Iny, Ins);
Outy = RUser Register2();

If the above custom instruction is divided into two smaller
custom instructions, as shown below, they will not use any
user-defined registers and take only two cycles in all.

Outl = CustomInstrl(Iny, Ing);
Outy = CustomInstr2(Insz, Outy);

Thus, one cycle is saved for each execution of the custom
instruction. [|

The above example illustrates that sometimes it is beneficial
to divide a large custom instruction into two or more smaller
custom instructions.

B.4 Target area computation

Both in the local optimization and global exploration steps,
we need to compute the target area, and scale templates to

288

meet the target area. The modified templates form the new
initial solution for the next level. Several factors need to be
considered to compute the target area:

o The target area that the template occupies should be rea-
sonable. For example, a template contributing 1% of the total
cycles saved cannot be allowed to occupy 10% of the total bud-
geted area, if that area can be used for some other templates
that can contribute to more saved cycles.

o The target area should reflect the function hierarchy struc-
ture and reduce the overall area gradually. Each level just
provides an initial solution for the next level. It is better to
consistently change the area by a little amount at each level,
so that the new solution can converge quickly.

Based on the above factors, we first compute the local target
area for each template, and shrink the template correspond-
ingly. The local target area (LT A) is computed using the
following function:

/

LTA = RF x cs X AREA
cs

(16)

where RF is a constant relaxation factor. It is usually greater
than one. Its purpose is to relax the area budget so that the
custom instructions are not pruned too aggressively at the
very beginning. For example, suppose the RF' is set to 10,
then only the custom instructions consuming more than 10
times the area they deserve are pruned. In some programs,
some custom instructions only save a few cycles while consum-
ing a significant portion of the area. They should be pruned
at the very beginning. C'S’ is the number of cycles saved by
the current template and CS is the number of cycles saved
by all the templates. Since in the global exploration phase,
some templates will be considered earlier than others, local
optimization provides a relatively good initial solution for the
next phase.

In the global exploration phase, at level i, we compute the
target area based on the following function:

/

cS

TA =

x (AREA — %(AREA — AB)) a7

C'S’ here represents the number of cycles saved by templates
in the current function subgraph. The first term in Equa-
tion (17) reflects the first aspect we considered above. Ideally,
the percentage of the area each template occupies should cor-
respond to the percentage of the number of cycles saved by
the template. The second term in this equation reflects the
gradually reducing area. There are 7 steps between levels ¢
and 1. Each time the area is reduced a little bit, i.e., by
%(AREA — AB). The custom instructions area is gradually
reduced to the area budget.

B.5 Custom instruction scaling

After the target area has been computed, all the templates
in the function subgraph are shrunk or expanded to meet the
target area in order to solve Problem 3. This can be done inde-
pendently of global exploration. We can choose from among
various approaches for this purpose, such as simulated an-
nealing, genetic algorithm, iterative improvement or a greedy
approach.

The aim of the hierarchical synthesis approach is to reduce
the design space. In the beginning of this approach, the design
space is small, whereas at the end of the approach, the design
space is large. However, since we have a reasonably good ini-
tial solution, we do not need to use very complex heuristics
to solve Problem 3. The initial solution gets refined by re-
peated computation with an increasingly tighter target area
constraint. Thus, instead of choosing simulated annealing or

genetic algorithm, we chose a simple greedy algorithm with
some relaxation. As demonstrated in the experimental results
section, this gave very good results.

In the algorithm, we first compare the area (AREA’) of
the initial solution and the target area (T'A). If the actual
area is larger than the target area, we start deleting nodes.
Otherwise, we start adding nodes. For node deletion, we first
try all deletion possibilities, compute the area and cycles saved
for all the templates in the subgraph, and choose the one that
has the highest ratio of cycles saved over area. Note that with
node deletion, the area is always smaller in the long run. If
in one try, however, the area is smaller than the area budget,
we compare it with the best solution computed so far. If the
number of cycles saved is more than that for the best solution
or they are equal but its area is smaller, we update the best
solution.

For node addition, we first try all addition possibilities that
lead to performance improvement, compute the area and cy-
cles saved, and choose the one that has the highest ratio of
cycles saved over area. We also keep track of the best solution
computed thus far. If a better solution is found, we add the
node and update the solution.

IV. EXPERIMENTAL RESULTS

We have implemented the design flow given in Fig. 2 us-
ing SUIF [24], which is a free, open source compiler research
tool. Its intermediate format is platform-independent and can
be transformed back to high level language (C). A number of
optimizations (passes) can be applied to the intermediate for-
mat and the output written in the same format. Because of
the modular property, designers can select, and order the opti-
mizations very easily. They can also write their own passes for
specific purposes. We wrote a number of passes to generate,
select and optimize the custom instructions.

We calibrated the area and delay of a library of register-
transfer level (RTL) components and used this information
to estimate the area of custom instructions quickly in the
synthesis loop (note that the final area/delay results are re-
ported based on accurate lower-level tools). We used the sim-
ple profiling system in SUIF [25] to obtain profiling statistics
(block 4 in the flow of Fig. 2), program dependence graph
generator [26] to get the program dependence graph (block
5), and some code transformation passes over SUIF to trans-
form the code (blocks 2, 3, 6, 9, 18 and 20). We also im-
plemented some passes to perform some custom instruction-
specific transformations (blocks 2, 7, 8, 9, 17, 18, 19 and
21).

We verified our implementations using the Xtensa [1] plat-
form from Tensilica. Its architecture is designed from scratch
to be customizable. The designer can select a number of ar-
chitecture options to enhance the base processor core. The
designer can also extend the base processor by writing some
custom instructions to speed up some specific applications. A
complete GNU-based software tool suite and hardware syn-
thesis and verification scripts are automatically generated to
match the configuration specified in the configuration gener-
ator.

We used a GNU-based compiler to compile the program
with and without custom instructions, instruction set simu-
lator (ISS) to get the execution cycles, Tensilica Instruction
Extension (TIE) compiler to convert custom instruction de-
scriptions to RTL Verilog code, and Synopsys Design Com-
piler [27] to synthesize the RTL Verilog code and map it to a
commercial 0.18u technology library [28].

We evaluated our flow using six benchmarks. AES refers to

289

TABLE II

COMPARISON OF PERFORMANCE AND AREA USING OUR TOOL

Execution time (ms) | Performance | Processor area (grids) | # Custom | Synthesis

Program | Original New improvement | Original New instructions | time (s)
AES 9.56 6.16 1.55X 433389 469184 3 67.6
DES 19.3 8.98 2.15X 433389 453684 3 5.0
MD5 9.13 5.62 1.62X 433389 622982 5 3.9
SHA 4.54 2.90 1.57X 433389 568852 4 6.3
adpem 3.54 1.46 2.42X 433389 502435 1 3.8
dct 14.92 2.36 6.32X 433389 818448 2 74.3

the advanced encryption standard algorithm. DES refers to the [8] D. Kirovski, C. Lee, M. Potkonjak, and W. H. Mangione-Smith,

data encryption standard algorithm. MD5 denotes a message
digest algorithm. SHA denotes a secure hash algorithm. adpcm
refers to adaptive differential pulse code modulation. Finally,
dct denotes a discrete cosine transform algorithm. We ran our
tool on a 1.2GHz Pentium III processor with 256 MB memory.

Table II summarizes the results of our experiments. It com-
pares the execution time of the benchmarks on the original
base processor, and the customized processor (with custom in-
structions augmenting the base processor as generated by our
tool). The clock period for both processors is 6.5ns. We also
include the area overhead due to the addition of the custom
instructions, the number of custom instructions selected, and
the time required by our tool to generate and select the cus-
tom instructions. The number of execution cycles is reported
by a cycle-accurate ISS. The area is obtained from gate-level
synthesis of the entire processor. Custom instruction synthesis
using our tool usually takes less than a minute. Verification
based on simulating and profiling the modified program on
the customized processor using the Xtensa [1] software tool
chain, and synthesizing the entire customized processor using
Design Compiler [27] usually take several hours. The results
indicate that our methodology can quickly (in several seconds
to a minute) generate and prune custom instructions for real-
istic programs. The selected custom instructions can achieve
an average speedup of 2.61X and peak speedup of 6.32X over
the original processor.

V. CONCLUSIONS

Custom processor synthesis is quite challenging for real-life
applications because of the complex interdependencies and
tradeoffs involved in making the design decisions. In this
paper, we use the modular and hierarchical structure of the
program and provide a scalable methodology for application-
specific processor synthesis. We have integrated our design
flow in an open source compiler and verified it on a com-
mercial extensible processor. Our experiments demonstrate
that our hierarchical approach can effectively tackle large pro-
grams, achieving significant performance improvement in very
limited synthesis times.

References

—

Xtensa microprocessor, Tensilica Inc. (http://www.tensilica.com).

(1]

[2] Jazz DSP, Improv Systems Inc. (http://www.improvsys.com).

[3] DSP core, 3DSP Corp. (http://www.3dsp.com).

[4] ARCtangent processor, Arc International (http://www.arc.com).

[6] J. A. Fisher, “Customized instruction sets for embedded processors,” in

Proc. Design Automation Conf., June 1999, pp. 253-257.

[6] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The
next design discontinuity,” in Proc. Int. Conf. Computer Design, Sept.
2002, pp. 84-90.

[7] D. Fischer, J. Teich, M. Thies, and R. Weper, “Efficient architec-
ture/compiler co-exploration for ASIPs,” in Proc. Int. Conf. Compilers,
Architecture, and Synthesis for Embedded Systems, Oct. 2002, pp. 27-34.

(9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

290

“Application-driven synthesis of core-based systems,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 1997, pp. 104-107.

K. Kucukcakar, “An ASIP design methodology for embedded systems,”
in Proc. Int. Symp. HW/SW Codesign, May 1999, pp. 17-21.

M. Knieser and C. Papachristou, “COMET: A hardware-software code-
sign methodology,”
1996, pp. 178-183.
S. P. Seng, W. Luk, and P. Y. K. Cheung,
cessors,” in Proc. Int. Conf. Compilers, Architecture, and Synthesis for
Embedded Systems, Nov. 2000, pp. 193-200.

R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cron-
quist, and M. Sivaraman, “PICO-NPA: High-level synthesis of nonpro-
Tech. Rep., HP Laboratories, Palo

in Proc. European Design Automation Conf., Sept.

“Flexible instruction pro-

grammable hardware accelerators,”
Alto, 2001.

C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG-based design
approach for reconfigurable VLIW processors,” in Proc. Design Automa-
tion & Test Europe Conf., Mar. 1999, pp. 778-779.

H. Choi, J. H. Yi, J.-Y. Lee, I.-C. Park, and C.-M. Kyung, “Exploiting
intellectual properties in ASIP designs for embedded DSP software,” in
Proc. Design Automation Conf., June 1999, pp. 939-944.

N. Moreano, G. Araujo, Z. Huang, and S. Malik,
and interconnection sharing for reconfigurable architectures,”
Int. Symp. System Synthesis, Nov. 2002, pp. 38—-43.

T.V.K Gupta, R. Ko, and R. Barua, “Compiler-directed customization
of ASIP cores,” in Proc. Int. Symp. HW/SW Codesign, May 2002, pp.
97-102.

M. Arnold and H. Corporaal, “Designing domain-specific processors,”
in Proc. Int. Symp. HW/SW Codesign, Apr. 2001, pp. 61-66.

H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang, and C.-M.
Kyung, “Synthesis of application specific instructions for embedded DSP
software,” IEEE Trans. Computers, vol. 48, no. 6, pp. 603-614, June
1999.

J. E. Lee, K. Choi, and N. Dutt,
automatic instruction set design of configurable ASIPs,”
Conf. Computer-Aided Design, Nov. 2002, pp. 649-654.

F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of custom
processors based on extensible platforms,” in Proc. Int. Conf. Computer-
Aided Design, Nov. 2002, pp. 641-648.

K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in
Proc. Design Automation Conf., June 2003, pp. 256—261.

N. Cheung, J. Henkel, and S. Parameswaran, “Rapid configuration &
instruction selection for an ASIP: A case study,” in Proc. Design Au-
tomation & Test Furope Conf., Mar. 2003, pp. 802-807.

N. Clark, W. Tang, and S. Mahlke, “Automatically generating custom
instruction set extensions,” in Proc. Wkshp. Application Specific Proces-
sors, Nov. 2002.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. A. M.
Anderson, S. W. K. Tjiang, S. W. Liao, C. W. Tseng, M. W. Hall, M. S.
Lam, and J. L. Hennessy, “SUIF: An infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Notices, vol. 29, no.
12, pp. 31-37, 1994.

T. Callahan and J. Wawrzynek, “Simple profiling system for SUIF,” in
Proc. The First SUIF Compiler Wkshp., Jan. 1996.

J. B. Fenwick Jr. and L. L. Pollock, “Implementing an optimizing Linda
compiler using SUIF,” in Proc. The First SUIF Compiler Wkshp., Jan.
1996.

Design Compiler, Synopsys Inc. (http://wwu.synopsys.com).

CB-11 Cell Based IC Product Family, NEC Electronics, Inc. (http://wuw.
necel.com).

“Datapath merging
in Proc.

“Efficient instruction encoding for
in Proc. Int.

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

