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ABSTRACT 
Current CMOS technologies are characterized by interconnect 
lines with increased relative resistance w.r.t. driver output 
resistance. Designs generate signal waveshapes that are very 
difficult to model using a single parameter model such as the 
transition time. In this paper, we present a simple and robust two-
parameter analytical expression for waveform modeling based on 
the Weibull cumulative distribution function. The Weibull model 
accurately captures the variety of waveshapes without introducing 
significant runtime overhead and produces results with less than 
5% error. We also present a fast and simple algorithm to convert 
waveforms obtained by circuit simulation to the Weibull model. A 
methodology for characterizing gates for the new model is also 
presented. Simulation results for many single and multiple input 
gates show errors well below 5%. Our model can be used in a 
mixed environment where some signals may still be characterized 
by a single parameter. 

1. INTRODUCTION 
As deep sub-micron technology moves towards decreasing feature 
sizes, the impedance of the interconnect lines does not scale down 
by the same factor as the gate impedance [1]. As a result, the 
wave shapes of the signals normally propagated through a digital 
circuit are increasingly more complex. In this context, waveshape 
complexity is a subjective measure of how far from a classical 
saturated ramp the shape is.  

While the signal shapes are not directly interesting from a 
verification perspective, they greatly influence at least two 
quantities important for design performance: gate delay and cross-
coupling noise amplitude. The most widely used analysis tool to 
predict timing performance is the static timing analyzer [2]. 
Current methodologies for static timing analysis map the signal 
shapes that are propagated through a digital circuit to a single 
parameter. The parameter used is usually the transition time 
obtained from the time difference between two points on the 
waveform (for example, the 20% and 80% points).  

This approach is used almost invariably in gate-level static timing 
analyzers where the gates are pre-characterized as a function of 
input transition time and output load. The implicit assumption is 
that all wave shapes reaching the input of a gate resemble the 
shapes used in gate characterization and can be accurately 
described by a single parameter. The gate delay model is used 
during static timing analysis to compute timing windows and path 
delays for the entire circuit. 

The most commonly used one-parameter waveform model in 
literature is the saturated ramp; industrial applications use many 
variations of this model to enhance its accuracy. Generally, these 
variations try to smooth out the corners of the saturated ramp. 
However, none of the variations we are aware of can go 
significantly beyond the limitations of a one-parameter model. We 

will compare our results against both the saturated ramp model 
and one of the more obvious variations. 

Figure 1 RC dominated waveform and its approximations 
 

Figure 1 shows a sample waveform obtained through simulation 
of extracted post-layout netlist taken from the input of an inverter 
in an industrial 90nm technology. Its saturated ramp 
approximation is obtained by measuring the 20% to 80% time 
difference, extending it to a full saturated ramp and shifting the 
waveform to match the 50% point of the original. To obtain the 
standard shape approximation which is typically used during gate 
characterization, a saturated ramp with an average transition time 
was applied to a standard inverter. The capacitive load of the 
inverter was varied to obtain the desired 20% to 80% transition 
time at the output. The waveform at the output was shifted to 
match 50% point of the original waveform and was used as the 
standard shape approximation of the original waveform with same 
transition time. 

Both the original waveform and its approximations were applied 
to the same inverter and the differences in outputs were measured. 
The delay and transition time errors produced by approximating 
the inverter input using a ramp were 14% and 19%, respectively, 
and those produced by approximating the inverter input using a 
standard shape were 9% and 11%, respectively. Moreover, the 
ramp model is not robust in the sense that its accuracy will depend 
highly on the threshold voltage of the receiver. 

As shown by Figure 1, there are cases when a single parameter 
waveshape model cannot cover the variety of waveshapes seen in 
typical integrated circuits. Typically, using more parameters in the 
model increases accuracy in approximating the original signal. 
However, this increase in accuracy also comes with an increase in 
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complexity of modeling and gate characterization, which depends 
exponentially on the number of parameters. 

An accurate four parameter model for signal waveforms has been 
presented in [3] but it increases pre-characterization complexity 
by requiring a 4-dimensional table to store input information for 
gate instead of the one-dimensional table required for a ramp 
approximation. A 2-ramp model has been presented in [4] and it 
provides good accuracy for most of the signals. However, the 
model is hard to use because of its piecewise description and there 
is no clear deterministic method to determine when the model is 
applicable. More recently, [5] introduced a method to compute 
parameters for a waveform model based on a ramp followed by 
exponential for estimating delay variation due to crosstalk. 
However, the region where the ramp meets exponential can be 
very sensitive and can cause significant errors if the ramp and 
exponential do not fit naturally.  

Thus, it is necessary to analyze the tradeoffs between various 
models for signal waveshapes and determine the requirements that 
an ideal model should satisfy. In our opinion, a good model 
should meet the following criteria: 

� adequate coverage for waveshapes typically seen in circuits 
� concurrent usage of both “old” and “new” model 
� intuitive parameters 
� simple gate characterization 
� minimal storage space for gate characterization 

We observed that the cumulative distribution functions (CDFs) of 
some statistical distributions could cover a variety of waveshapes 
using just two parameters [6]. Noting this appealing resemblance, 
we focused on modeling signal waveshapes analytically by using 
CDFs of probability distribution functions. 

In this paper, we propose an analytical waveform model based on 
the CDF of the Weibull distribution function [6] and compare it 
with a ramp approximation of waveforms. We show that our 
model captures a variety of shapes with the introduction of just 
one parameter other than the transition time. The solution 
proposed here is easy to use in time domain and in frequency 
domain, thus making it convenient for circuit analysis. Moreover, 
results show that this smooth model introduces less noise in the 
circuit compared to a ramp approximation of the original signal, 
thus making timing analysis more accurate. 

The Weibull distribution has been previously used to predict 
interconnect delay, [7]. The method used was moment matching 
for mean and standard deviation. With the mean and standard 
deviation roughly approximating the delay and transition time, 
respectively, [7] provides a good flow for linear circuit delay 
computation. Unfortunately, the wave shape proves to be quite 
independent from the delay especially when nonlinear gates are 
present. For example, changing the time reference for the signal to 
be matched will dramatically influence the shape of the resulting 
model given by [7] although the delay will continue to be very 
well approximated. Further details for this problem are given in 
section 3.2. Our conclusion is that none of the results from [7] can 
be used for waveform modeling, and a dedicated model focused 
on wave shape is required. 

The rest of the paper is organized as follows. Theoretical 
background and the new model are presented in section 2. We 
present the fitting algorithm to obtain model parameters from 
original waveforms in section 3. A methodology for 

characterizing the gates with respect to three parameters (two 
describing the input waveform and one the output load) is given in 
section 4. Results for one-parameter modeling and the new two-
parameter model are presented in section 5. The paper is 
concluded in section 6. 

2. TWO-PARAMETER MODEL 
This section presents a justification for the choice of two 
parameters for waveform modeling. Then we present two two-
parameter probability distributions that can be used to 
approximate waveforms. 

2.1 Moving from one parameter to two 
We can define a waveform model as a time domain parameterized 
function 

),,( 21 naaatimefy ��     (1) 

Equation (1) defines a family of time domain signals, each 
member of this family being identified by its set of values 
(a1…an). The parameters (a1…an) can be thought of as natural if 
they show up in the minimal or canonical or most recognizable 
form of the function (1). For example, a and b are natural 
parameters for 

tbeay ����      (2) 

In the case of the saturated ramp model, there is a single 
parameter, tin, and the function is shown in equation (3): 
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The family of time domain signals (each distinguished by a 
specific tin) is shown in Figure 2. 

 

Figure 2 Saturated ramp family of curves 
The current gate delay model [9] depends on two parameters, 
input transition time (the model for the waveform) and capacitive 
load (the model for the load): 
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To avoid increased complexity for the gate delay model, we first 
want to check the results we get by increasing the number of 
parameters for the waveform model just by one to, say, p1 and p2 
instead of the transition time tin: 
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It is possible (at least in a gate-level timing analyzer) to propagate 
the waveform parameters without ever needing to plot the 
waveforms (p1 and p2 at the output of a gate become the input for 
the next stage, then equation (5) is applied to propagate them 
further, and so on). These are the parameters the user learns about 
and therefore we will call them user parameters. It is not 
necessary that the natural and the user parameters be the same 
(although for the saturated ramp model they are). For example, 
equation (2) could be transformed so natural parameter a is 
mapped into the user parameter t0: 

� � batwhereey ttb )ln(0
0 �� ���    (6) 

In order to be more easily accepted by the design community, a 
waveform model should keep the transition time as a user 
parameter, regardless of the natural parameters of the model 
equation. This property makes it possible to mix-and-match old 
and new models easily, revert to previous methodologies and 
maintain the intuition that designers have formed for the single-
parameter model. 

To gain some intuition about the second user parameter one could 
easily plot a set of typical waveforms from a design and scale the 
time axis for each of them such that all have the same tin (in our 
case the same 20% to 80% transition time). What we can observe 
from such a plot is the difference in “shape” between the 
waveforms. We would like to see some number associated with 
this “shape.”  

We define the parameter k as a shape factor that has some 
physical meaning attached to it. The shape factor k is associated 
with the shape of the waveform when its voltage value is between 
20% and 80% of VDD. As a design decision, we force the value 
of k to be zero for a standard waveshape such as the output of an 
inverter loaded by four copies of itself. We could force the value 
of k to be negative for normal waveshapes such as the output of 
any CMOS gate and positive for strange waveshape such as 
complex RC responses (an example of this is presented in Figure 
1). 

2.2 CDF-based waveform models 
As mentioned in the introduction, many of the waveshapes seen 
on circuits appear to resemble CDFs of probability distribution 
functions, such as the Gamma distribution and the Weibull 
distribution [6]. Gamma and Weibull distributions have been used 
before to compute interconnect delay [7] -[8]. 

Equations (7) and (8) show expressions for CDFs of the Gamma 
distribution and Weibull distribution respectively. 
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Weibull:  
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These two distributions have the desired parameters, the time-
scaling factor and the shape factor. For a Gamma CDF, 
parameters � and n in equation (7) explicitly represent the time-
scaling factor and the shape factor, respectively. For the Weibull 
distribution, the parameters � and � in equation (8) represent only 
approximately the time-scaling factor and the shape factor, 
respectively.  

Although Gamma CDFs can resemble a variety of shapes, it is not 
well suited for analytical computations. The Gamma distribution 
requires evaluating complicated integrals. Even using lookup 
tables, mapping a PWL waveform to (�, n) values requires a non-
linear regression. Therefore, we will concentrate on the Weibull 
waveform model. 

Figure 3 shows a representative sample of Weibull distributions 
for different values of � and � for the same 20% to 80% transition 
time. The figure shows that the Weibull distribution can be used 
to fit the wide range of complex non-linear waveshapes observed 
on high performance circuits. As � changes from 0.1 to 3.0, the 
shapes change from those similar to more complicated RC 
responses to standard shapes similar to the output of an inverter. If 
a ramp is used to model these complex waveforms, all of the 
waveforms will map on to the same ramp. This causes significant 
error in approximating the original waveforms. 
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Figure 3 Examples of Weibull CDFs (Note: ���� computed from 
equation (11) using ����  and transition time) 

 

2.3 Natural and user parameters for Weibull-
based waveform models 
To preserve the transition time as a user parameter and to align 
ourselves with the natural/user parameter approach we propose 
the transition time �t and shape factor k as user parameters, to 
replace the Weibull natural parameters � and �. By imposing the 
shape factor k to be zero for a “standard” waveform, and defining 
the “standard” waveform as the output of an inverter loaded by 
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four identical inverters we come to the following relationship 
between k and � : 

)( 0�� ���k      (9) 

�0 is technology dependent and in our case we used a value of 1.7. 
The transition time tout can be derived analytically from equation 
(8). Let t20% and t80% be the time points when the measured 
voltage values of (t,v) waveform reach 20% and 80% of VDD, 
respectively. Equation (10) shows their analytical expressions.  

� � � � �� �� /1
%80

/1
%20 )5log()25.1log( ���� tandt  (10) 

The transition time tout is simply t80%-t20% and is given by (11). 

� � � �� ���� /1/1
%20%80 )25.1log()5log( ����� tttout  (11) 

Moreover, the same equations (9) and (11) can be used to obtain 
(�, �) if the pair (k, tout) is known. Thus, designers have the 
convenience to use the set of parameters (k, tout) without any 
concern about the underlying waveform model used in timing 
analysis tools. 

3. PARAMETER EXTRACTION 
We describe how parameters (����) are obtained from a PWL 
waveform. 

3.1 Parameter estimation 
An important step in using any waveform model is the mapping of 
a signal given as a (time, value) vector pair to the model function 
(by computing the parameters best fitting the original). This 
procedure is applied during gate characterization for the output 
waveform after each simulation. It is also applied by a transistor-
level static timing analyzer after each circuit simulation to 
compress the output waveform data. The second case is the most 
demanding in terms of the parameter mapping efficiency. For the 
classical one-parameter model this step consists of determining 
the 20% and 80% points on the waveform and finding the 
difference between them. 

For the Weibull-based model we start from a variation of (8) 
which introduces a time shift parameter t0 whose meaning will be 
explained later on. 
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For now let us consider the case with t0 equal to zero. After 
rearranging the terms and applying the natural logarithm, we have 
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Again taking natural logarithm of equation (13) and after some 
rearrangement, we obtain 
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Equation (14) is a linear expression with variables ln(t) and 
ln(ln(1/(1-W))) and parameters ln(�) and 1/� : 

axby #�      (15) 
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The high-level fitting algorithm to obtain � and � for any given 
(time, value) waveform is presented in Figure 4. 

 

Figure 4 High-level Weibull fitting algorithm 
 

It is important to determine what points to pick for step 4 of the 
fitting algorithm. These points should come from the region of 
signal that has the most influence on the propagation delay and 
the transition time of the output. We measured the delay through 
an inverter for the set of Weibull curves shown in Figure 3. Our 
experiments showed that variation in shape in the 0% of VDD to 
20% of VDD region of input waveforms contributed around 5% 
variation in delay through the inverter. Similarly, the 80% to 
100% region contributed around 1% variation in delay. However, 
variation in shape in the 20% to 80% region of the input 
waveforms contributed as much as 95% variation in delay. Thus, a 
good choice of points for fitting would be a set of points that fall 
in the region where their value is between 20% and 80% of VDD. 
Experimentally we determined that only 5-6 points are necessary 
for the fitting process. 

Step 5 of the fitting algorithm requires a linear regression and 
least squares method should suffice for implementing this method. 
However, as we show in the following sub-section, 
implementation of step 5 requires some consideration of time-
shifting the measured waveform. 

3.2 Implementation 
Used as presented in the previous section, the fitting algorithm 
from  fits delay and not the shape. Figure 5 shows three identical 
original signals shifted in time-domain and their Weibull models 
produced by the fitting algorithm. Ideally, the fitting algorithm 
should produce the same � and � for all the three waveforms but 
that is not the case here. To solve this time-shift problem, we need 
a modified Weibull function with an extra parameter, t0, which 
allows for time shifting as described in (12). The problem of 
estimating the parameters for the modified Weibull function can 
be reduced to a form equivalent to (14) given by: 
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WEIBULL_FITTING(t,v) 
1. Obtain time-value (t,v) waveform from circuit simulation. 

2. Normalize v by VDD. 

3. If (t,v) represents a falling transition, set v = 1-v. 

4. Select 5-6 points (ti,vi) from the set (t,v) for fitting. 

5. Perform a linear regression (least-squares method) on  
equation (15) to obtain b and a 

6. Obtain � and �  using equation (14) and (15) and return. 
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Figure 5 Time-shift problem 
Note that this is still a two-parameter model since t0 is not saved 
once � and � are obtained. However, now the regression is no 
longer linear and we have to use an iterative or heuristic method 
to find a good enough t0 that minimizes least squares fitting error. 

The goal of the fitting algorithm is to find �, �, and t0 that 
minimize the least squares fitting error for equation (16). Equation 
(17) gives the expression for the square of fitting error for m 
(time, value) measurements with (ti, vi) as the measured points.  
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Equation (17) poses a three-dimensional problem. However, it can 
be easily translated to one-dimensional problem by noting that 
once t0 is fixed, � and � can be obtained by a simple linear 
regression on equation (15) by using 0ttt measured �� . Thus, (17) 
can be rewritten as: 
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Figure 6 Convexity of fitting error 

Minimum E can be obtained easily using a Newton’s method [10] 
if E is convex with respect to t0. Figure 6 plots E(t0) for two cases 
extracted from our benchmark set. The upper plot shows a typical 
case. The lower plot represents the worst-case from a convexity 
point of view that we encountered. A good starting point for 
iterative Newton’s method can always be chosen as t0,initial = 
min(ti) for i=1..m. This point corresponds to the boundary point 
on curve E(t0) after which E(t0) is complex because 00 
� tti if 

0tti 
  and )ln( 0tt i �  is undefined for such case in real domain. 
Also note that the choice of initial point t0,initial = min(ti) is also 
good because we can always reach the global minimum of E(t0) 
from that starting point as E(t0) is convex between t0,initial and the 
global minimum. Figure 7 shows the distribution for number of 
iterations required to obtain good values of t0, �, and � for 2000 
sample cases. 
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Figure 7 Histogram of number of iterations for non-linear 
fitting 

 

4. GATE CHARACTERIZATION 
The practicality of any waveform model also depends on how 
easy it is to use it in a design flow. The model has to be amiable to 
gate characterization. In this section, we present a gate 
characterization method for the Weibull-based model. The 
model’s realizability is illustrated on many typical single and 
multiple input gates. 

4.1 Gate characterization parameters and 
equations 
To be consistent with the natural parameter approach, we 
characterize gates in terms of the transition time �t, the shape 
factor k, and the output loading CL. Thus, our goal is to determine 
the following three functions for any given gate and input. 
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Note that the functions f(.), g(.), and h(.), will have the same form 
for all the gates but the constants a1, a2, …, b1, b2, …, c1, c2, …, 
etc. will be unique for a given gate and input conditions. Before 
we determine these functions and constants, it is necessary to 
determine the ranges of natural parameters �t, k, and CL over 
which the gates will be characterized. 

It was observed for many circuits that the shape factor k ranges 
from -1.3 to 1.2 for an overwhelming majority of signals; hence 
we chose to characterize gates for k&[-1.3,1.2]. This corresponds 
to � in the range [0.5,3.0] (equation (9)). Note that � in this range 
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covers all of the waveshapes shown in Figure 3. To determine the 
range for CL, we observe that the output loading capacitance for 
typical CMOS gates is roughly 1x-10x the size of input 
capacitance. The input capacitance for any given gate can be 
obtained as follows – determine equivalent inverter for the gate, 
drive the inverter through a high resistance, measure the delay 
across that resistance and compare it with an RC delay where C is 
the gate input capacitance we are trying to compute. The 
minimum �t necessary for characterization can be computed as 
follows – load a minimum size inverter with a copy of itself 
(which is also loaded by a similar inverter), apply a step input to 
first inverter and obtain the output transition time, apply the 
output of first inverter iteratively to its input until its transition 
time converges. Maximum �t can be obtained in a similar fashion 
except that the second inverter in the chain should be replaced by 
an inverter of roughly 10x the minimum size. 

Equation (20) shows the form of functions f(.), g(.), and h(.) that 
fits well with the Weibull-model for the range of parameters 
described above. Equation (20) has very few terms (maximum of 
nine). This simple form and high accuracy of characterization 
equations makes the Weibull-model highly suitable for gate 
characterization. After gates are characterized for the Weibull 
model, it is possible (at least in a gate-level timing analyzer) to 
propagate the Weibull waveform parameters without ever needing 
to plot the waveforms. 
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4.2 Gate characterization results 
We characterized 22 different single and multiple input gates with 
single input switching conditions. We ran SPICE simulations on 
an equally spaced 4x4x4 grid of �tin, kin, and CL (total of 64 
points) and measured delay and �tout. The shape factor kout was 
obtained from the output waveform using the methodology 
described in section 3. We used a modified version of least 
squares fitting to obtain the constants a1-a9, b1-b8, and c1-c9 that 
minimize the relative error between (20) and the measured values. 
The measured values for an equally spaced 7x7x7 grid of �tin, kin, 
and CL covering the same range as the grid used for fitting were 
compared with values obtained from equation (20). 

Simulation results show that delay, �tout, and kout are smooth 
functions of �tin, kin, and CL and thus equation (20) approximates 
the actual values accurately. Table 1 shows the results for all the 
simulated gates and input combinations. 

It is clear from the table that most of the errors are well below 5%. 
Some of the large errors in shape factor appeared as overestimates 
done by equation (20) for measured � >1.9. As shown in Figure 3, 

� >1.9 hardly changes the shape of the Weibull curve and thus the 
large errors in shape factor hardly have a physical impact. 
Moreover, errors in shape factor translated to well below less than 
1.5% error in delay and output transition time of the next gate for 
almost all the cases and less than 5% error for all the cases. 

Table 1 Gate Characterization Errors in % for 7x7x7 grid of 
(�tin, kin, CL) (measured values vs. equation (20)) 

max      
|err|

avg      
err

std 
dev

max      
|err|

avg      
err

std 
dev

max      
|err|

avg      
err

std 
dev

INV A',X( 3.18 -0.24 1.29 5.04 -0.13 1.85 6.53 0.66 2.37
INV A(,X' 3.86 -0.34 1.43 3.74 -0.04 1.16 8.86 -0.08 2.27
NAND2 A',X( 3.78 -0.21 1.40 5.15 0.17 2.19 15.56 2.08 3.75
NAND2 B(,X' 3.35 -0.27 1.46 3.76 0.09 1.10 10.58 -0.17 2.44
NOR2 A',X( 3.01 -0.29 1.25 4.85 -0.01 1.78 5.76 0.36 2.16
NOR2 B(,X' 3.94 -0.29 1.29 5.12 0.19 1.36 5.86 -0.32 2.20
AND2 A(,X( 1.90 -0.03 0.51 2.35 -0.26 0.78 5.67 0.25 1.38
AND2 B',X' 2.69 -0.05 0.67 2.65 0.00 0.46 3.31 -0.05 0.99
OR2 B(,X( 1.14 -0.03 0.33 1.90 -0.21 0.77 3.79 0.22 1.28
OR2 A',X' 1.06 -0.09 0.29 2.80 -0.35 0.98 1.53 -0.07 0.44
NAND3 A',X( 3.65 -0.37 1.30 4.78 0.02 2.00 7.42 1.21 2.48
NAND3 B',X( 3.00 -0.26 1.00 4.26 0.22 1.66 4.00 0.13 1.17
NAND3 C',X( 2.82 -0.19 1.17 3.30 0.24 1.42 2.80 -0.34 0.92
NOR3 A',X( 3.06 -0.20 1.21 4.49 0.11 1.64 6.15 0.38 2.20
NOR3 B',X( 2.98 -0.26 1.23 4.76 0.07 1.66 5.81 0.36 2.14
NOR3 C',X( 3.03 -0.27 1.26 5.03 -0.16 1.79 5.74 0.01 2.35
AND3 A(,X( 2.45 -0.01 0.64 5.75 0.43 1.83 3.01 -0.09 0.97
AND3 B(,X( 3.25 0.01 0.72 5.36 0.44 1.71 2.56 -0.09 0.92
AND3 C(,X( 4.29 -0.03 0.86 5.19 0.49 1.73 2.71 -0.07 0.96
OR3 A(,X( 1.21 -0.05 0.33 5.43 0.46 1.61 3.10 -0.08 1.01
OR3 B(,X( 0.99 -0.07 0.30 5.33 0.41 1.75 3.37 -0.10 1.10
OR3 C(,X( 1.30 0.00 0.29 5.22 0.42 1.67 3.27 -0.15 1.00

Delay

Gate

Shape                     
FactorTransition Time

 
 

5. RESULTS 
Let us first revisit the example shown in Figure 1. The Weibull 
model for the input waveform dramatically improves the results as 
shown in Figure 8. The delay error produced by Weibull 
approximation was 0.02%. The delay errors produced by ramp 
and standard shape were 14% and 9%, respectively. Similarly, 
Weibull approximation reduced transition time error down to 
2.4% from 19% produced by ramp approximation and 11% 
produced by standard shape approximation. 

Figure 8 Weibull approximation for Figure 1 
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Figure 9 Synthetic benchmark for testing 

In order to test the model on a more frequently occurring set of 
waveforms, we generated a synthetic benchmark on an industrial 
90nm technology using the circuit shown in Figure 9. Voltage 
waveshapes were sampled at receiver inputs (nodes 2 and 4) by 
forcing a ramp on driver input (node 1). We obtained 1000 
different circuits by varying the transition time at node 1, sizing of 
the gates, sizing of interconnect (length), impedance (length and 
metal layer) of interconnect relative to that of gates, and PMOS to 
NMOS transistor ratios for the gates. The combination of circuit 
parameters reflected industrial design guidelines. We must note 
that the interconnect length used in our benchmark varied between 
100)m and 500)m. These lengths are quite common not only on 
microprocessors but on many other designs.  

A check was also placed to ensure that the benchmark circuits 
generated by varying the above factors do not produce unrealistic 
waveforms. For example, we enforced that the interconnect path 
delay does not exceed the Elmore delay for this technology, 
otherwise there would have been a repeater on the interconnect 
line. Loading of gates 2 and 3 was varied to catch the sensitivity 
of the gate delay and the output transition time with respect to the 
shape of input waveform and the loading. 

 

Figure 10 Delay error distribution 

The 2000 waveforms obtained using the circuit in Figure 9 were 
approximated using ramps having their corresponding transition 
times (taken as 20% to 80% of VDD). These were fed as input to 
the receivers and the input to output delay and the output 
transition time were measured for all these waveforms. The results 
are shown in Figure 10. The errors incurred by the “standard 
shape” model (as described in Section 1) and the Weibull model 
are also shown. 

5.1 Impact on noise 
The Weibull model also offers other advantages over the ramp 
model. The Weibull model provides a smooth model for 
approximating waveforms. Hence we expect it to introduce less 
noise in the circuit when it is used for timing simulation and 
performance verification. Unlike the original waveforms and the 
Weibull model, a ramp model is not smooth and consequently it 
introduces noise that is not present on the real circuit. We used 
two coupled transmission lines to compare noise produced by the 
ramp model and the Weibull model for the 2000 waveforms in the 
experiments. Original waveforms and their ramp and Weibull 
approximations were placed on the aggressor net and the peak 
voltage due to cross coupling noise was measured on the quiet 
victim net. Noise produced on the victim net by the Weibull 
waveform on the aggressor net was very close to the noise 
produced on victim net by the original waveform on the aggressor 
net. Moreover, the Weibull approximation of original waveforms 
produced 9.4% less noise on average compared to ramp 
approximation (Figure 11). This is in line with our expectations 
and thus the Weibull approximation improves timing analysis 
accuracy for coupled circuits.  
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Figure 11 Weibull Noise vs. Saturated Ramp Noise 

 

Using the Weibull model, it is also possible to compute cross-
coupling noise analytically. To compute the response of an input 
waveform described by a transition time and shape factor k, first 
we need to compute the corresponding parameters � and �  of the 
Weibull model using equations (9) and (11). Given the Weibull 
parameters � and � of the waveform, the frequency domain 
representation of the Weibull CDF is 
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where m0, m1, …, etc. are the Weibull PDF moments which can  
computed analytically [6] as 


�

�����
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�
�
�

�
#��

0

1)(,1 dyeyx
i

m yxi
i �

� .  (22) 

The moments mi can be computed very quickly because the 
gamma function �(x) is a well known mathematical function that 
is implemented efficiently in many math libraries. Since the 
circuit waveforms are modeled using Weibull, the response 
(including cross-coupling noise) Y(�,�,s) at any node on an 
interconnect circuit with transfer function H(s) can be computed 
as 

)(),,(),,( sHsWsY ���� �     (23) 

with W(�,�,s) as the input to the circuit. Using standard moment 
matching techniques, Y(�,�,s) can be converted easily to any 
desired waveform model. That model can then be used to obtain 
the time-domain response. 

6. CONCLUSIONS 
In this paper, we have shown that modeling of signal waveshapes 
using the CDF of a Weibull distribution is significantly more 
accurate than using a one-parameter ramp approximation without 
requiring a significant runtime overhead. Experimental results 
show that the Weibull model can bring down the error in delay 
from ±15% to less than ±5%. Similarly, transition time error was 
brought down from ±19% to less ±5%. Thus, the Weibull model 
offers more accuracy without a significant loss in speed during 
timing analysis. The Weibull model is also highly suitable for gate 
characterization. Results show that errors in delay and transition 
time estimation are well below 5% for many single and multiple 
input gates. Moreover, the Weibull approximation offers other 
advantages such as improved accuracy in noise calculations and 
convenience in linear circuit analysis. Since the Weibull 
distribution covers the variety and complexity of waveshapes 
occurring on real circuits, it is well suited for timing analysis 
applications. Our future work will include waveform modeling for 
more complex waveshapes that show ringing and glitching 
effects. 
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