
Efficient Generation of Monitor Circuits for GSTE
Assertion Graphs

Alan J. Hu∗

Dept. of Computer Science
University of British Columbia

ajh@cs.ubc.ca

Jeremy Casas
Strategic CAD Lab
Intel Corporation

jeremy.casas@intel.com

Jin Yang
Strategic CAD Lab
Intel Corporation

jin.yang@intel.com

ABSTRACT
Generalized symbolic trajectory evaluation (GSTE) is a powerful,
new method for formal verification that combines the industrially-
proven scalability and capacity of classical symbolic trajectory
evaluation with the expressive power of temporal-logic model
checking. GSTE was originally developed at Intel and has
been used successfully on Intel’s next-generation microprocessors.
However, the supporting algorithms and tools for GSTE are still
relatively immature.

GSTE specifications are given as assertion graphs, an extension
of ∀-automata. This paper presents a linear-time, linear-size trans-
lation from GSTE assertion graphs into monitor circuits, which can
be used with dynamic verification both as a quick “sanity check” of
the specification before effort is invested in abstraction and formal
verification, and also as means to reuse GSTE specifications with
other validations methods. We present experimental results using
real GSTE assertion graphs for real industrial circuits, showing that
the circuit construction procedure is efficient in practice and that the
monitor circuits impose minimal simulation overhead.

1. INTRODUCTION
Generalized symbolic trajectory evaluation (GSTE) is a power-

ful, new method for formal design verification [24]. GSTE is based
on classical symbolic trajectory evaluation [20], which has proven
itself able to handle large, industrial designs and has been in active
use at Compaq (now HP), IBM, Intel, and Motorola (e.g., [16, 14, 1,
6]). Classical symbolic trajectory evaluation, although efficient, is
very limited in the types of properties that it can specify and verify.
GSTE extends classical symbolic trajectory evaluation to handle a
full range of temporal properties (all ω-regular properties), giving it
comparable expressive power to more established model-checking
approaches [8, 17, 22, 12], while still maintaining the efficiency
and capacity of classical symbolic trajectory evaluation. GSTE
was originally developed at Intel and has been used successfully on
Intel’s next-generation microprocessors, where users reported supe-
rior efficiency and capacity for some challenging formal verification
tasks [4].

However, a formal verification algorithm alone, no matter how
automatic or efficient, does not constitute an entire verification flow.
In practice, numerous supporting algorithms and tools are needed to
connect any given formal verification method to the overall verifica-
tion effort. Especially needed for formal verification are the abilities
to quickly debug and revise specifications before substantial effort
is invested in the formal verification process, to generate counter-
examples and diagnose the causes of bugs, to relate and compose
smaller verification results to solve a larger verification problem,
and to bridge between different verification methods (e.g., formal

∗Work done while visiting Intel SCL.

vs. simulation-based) and between different levels of abstraction
(e.g., system-level vs. RTL). GSTE, being a very recent develop-
ment, currently has less of this supporting infrastructure than older
formal verification methods do. For example, the efficiency of
GSTE model checking relies, in part, on the particular specifica-
tion style used, but no work has been published connecting GSTE
specifications to other verification methods.

An especially useful piece of methodological glue is the monitor
circuit. A monitor is simply a small circuit that watches, without
interfering, the system being verified and flags whether or not the
system is obeying some user-specified correctness property. Im-
plementing the monitor as a circuit (rather than in, for example, a
formal specification language) allows the same monitor to be used
at all levels of the design cycle and with both formal and infor-
mal verification tools.1 Extensive research has demonstrated the
value of monitor circuits as the cornerstone of a practical verifica-
tion methodology [3], as an enabler of hierarchical, compositional
verification [11, 21, 10], and as a testbench generator for simu-
lation [26]. Monitor circuits could even be synthesized into an
emulation system to aid error observability and debugging.

This paper presents a linear-time, linear-size translation from the
specifications used by GSTE into monitor circuits, thereby enabling
new ways to integrate GSTE into the verification flow. Our gener-
ated monitor circuits handle fully general GSTE specifications if the
simulator can perform a small amount of symbolic simulation; we
also describe how GSTE specifications with some restrictions could
be translated into monitor circuits suitable for fully scalar simula-
tion or emulation. The immediate application for our translation
is to allow quick, (symbolic-)simulation-based “sanity checks” of
GSTE specifications before trying to apply model checking — in
practice, considerable effort is often spent combatting state-space
explosion before a formal verification engine yields it’s first counter-
examples, and we’d like to avoid this effort until we’ve eliminated
simple specification errors. If we can simulate our formal specifi-
cations, we can quickly catch many erroneous specifications before
investing in trying (and failing) to formally prove them correct. We
also envision the generated monitors connecting GSTE-based and
monitor-based verification methodologies. In addition, our monitor
construction is a building block for initial work on compositional
verification with GSTE [9].

2. GSTE AND ASSERTION GRAPHS
GSTE is explained in detail in several sources (e.g., [24, 25, 23],

etc.). Here, we give only a brief overview of the specification style
used by GSTE in order to make this paper self-contained.

GSTE is a model-checking method, where the possible behav-

1Obviously, formalisms designed for specifications have other ad-
vantages over circuits, so it’s very valuable to be able to go from a
formal specification to a monitor circuit, hence this paper.

154

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

v0
WRITE / True

v1
READ_SEL_ALIGN / True

v2
MASK / DATA_CORRECT

v3

True / True

NO_OVERWRITE / True

WRITE := (we = 1)∧ (addr = A)∧ (datawr = D)

NO OVERWRITE := (we = 0)∨ (addr 6= A)

READ SEL ALIGN := (ck = 0)∧ (we = 0)∧ (addr = A)∧ (sel = S)∧ (align = R)

MASK := (ck = 1)∧ (maskbegin = B)∧ (maskend = E)

DATA CORRECT := (dataout = mask(align(select(D,S),R),B,E))

Figure 1: GSTE Assertion Graph Example. The property specified is that a value written to a memory will be read correctly an arbitrary
number of cycles later, subject to alignment and masking operations, provided it was not overwritten. Edges are labeled by an antecedent
followed by a consequent. Every path through the assertion graph is a temporal assertion: if every antecedent along that path is satisfied in
the system being verified at the corresponding clock cycle, then every consequent must be satisfied as well.

iors of the system being verified are considered to be the (usually
infinite) set of all possible execution traces, and verification con-
sists of checking that all of these traces obey the specification. The
specification in GSTE is called an assertion graph, and is basically
a special kind of automaton. One can think of the assertion graph as
defining the set of execution traces that it accepts (i.e., the execution
traces that obey the specification), so the verification problem is to
check that the set of execution traces the system can produce is
contained in the set of execution traces that the assertion graph ac-
cepts (i.e., GSTE model checking follows the language containment
paradigm, as advocated by, for example, Cospan [12]).

Figure 1 shows an example assertion graph, adapted from [24]. It
was used in the verification of an industrial memory design, which
reads and writes data with a variety of selection and alignment
options. The property being verified is that, if data value D is written
to address A, followed by an arbitrary number of clock cycles that
don’t overwrite the same address, followed by a read of the address,
then the value returned is the value that was written, appropriately
aligned and masked. The edge labels are of the form “antecedent
/ consequent”, where the antecedents and consequents are simply
combinational formulas over the state of the system at a given clock
cycle. For example, the antecedent WRITE specifies that the value
of the write-enable input we is high, that the address input addr
is equal to some value A, and that the data input datawr is equal
to some value D. The capital letters denoting values, like A, D,
etc., are symbolic constants that can be equal to any value, making
the verification result hold for all possible values of the symbolic
constants. A path is a sequence of edges that start from the initial
vertex v0. A terminal path is a path that ends with a terminal edge
(indicated in the figure by a tic-mark on the edge, e.g., the edge
from v2 to v3). A path accepts an execution trace if at least one
antecedent on that path fails (evaluates to false on the state of the
system at that clock cycle) or if all antecedents and all consequents
on the path succeed (evaluate to true on the corresponding clock
cycle). Intuitively, a path is an if-then assertion: the antecedents
say if the assertion is relevant; the consequents say what must hold
in the case that the assertion is relevant. If an antecedent fails, the
assertion is vacuously true; if all the antecedents are satisfied, then
the consequents must be satisfied as well. The assertion graph as
a whole accepts an execution trace if every terminal path in the
assertion graph accepts that trace.2 Intuitively, the assertion graph

2GSTE theory actually includes four different kinds of acceptance:

takes a potentially infinite set of assertions about the system and
rolls them up into a graph; therefore, every trace must satisfy every
assertion (vacuously or otherwise).

To someone familiar with formal verification theory, two char-
acteristics of assertion graphs stand out: the antecedent/consequent
labeling of edges, and the graph accepting based on acceptance for
all paths. The antecedent/consequent style comes from classical
symbolic trajectory evaluation [20] and is a natural way to specify
temporal properties. For example, timing diagrams are typically
interpreted this way (e.g., if some sequence of events happens, then
some other events must happen) [2]. In addition, the GSTE model-
checking algorithm exploits the explicit antecedent/consequent la-
beling to limit the search space during fixpoint computation, pro-
viding some efficiency gains and aiding user control of the model
checker. The “for all paths” acceptance criteria makes assertion
graphs a variety of ∀-automata [13], which are less familiar than the
usual existential acceptance of non-deterministic automata (where a
trace is accepted if there exists a corresponding path through the au-
tomata), but the ∀ semantics provides both usability and efficiency
benefits. The usability arises because an assertion graph defines a
set of assertions, and one typically wants all assertions to be true;
in contrast, usually with automata as specifications, the automata
directly defines a set of possible behaviors, so verification consists
of determining if the system’s behavior exists in the set provided by
the specification. The theoretical basis for the efficiency is that a ∀-
automata is essentially pre-complemented, so model checking can
bypass the expensive step of complementing a non-deterministic
automaton. GSTE shares this theoretical efficiency advantage with
other approaches that have used ∀-automata as specifications [13,
12, 2].

As an aside, we note that assertion graphs are a low-level specifi-
cation style. On one hand, this low-level orientation gives the user
precise, fine-grained control over the GSTE model-checking algo-
rithm, making it easier to avoid blow-up when verifying large de-
signs. On the other hand, in an overall verification flow, translating
from a higher-level property specification language into assertion

strong, in which all finite paths must be satisfied; terminal, de-
scribed here, in which all paths that end at terminal edges must
be satisfied; normal, in which all infinite-length paths must be sat-
isfied; and fair, in which all fair (generalized Büchi fairness) paths
must be satisfied. Since we are building monitor circuits that should
work with simulation and synthesis, we are concentrating on termi-
nal acceptance, which includes strong acceptance as a special case.

155

graphs might enhance ease-of-use. We are not advocating assertion
graphs as the ultimate property specification formalism; rather, we
accept that assertion graphs are an entry point to an industrially-
proven, practically-efficient formal verification approach — GSTE
model checking — and seek to provide methodological support for
dealing with assertion graphs.

3. MONITOR CIRCUIT CONSTRUCTION
We now present how to construct a monitor circuit for an assertion

graph. The construction runs in linear time and produces a circuit
that is linear size relative to the size of the assertion graph. Our
approach is inspired by very efficient methods for generating circuits
directly from regular expressions [19, 18, 15].

The monitor circuit should watch the system being verified and
check that the execution trace so far is legal. To check whether the
execution trace is legal, the monitor must verify that all (terminal)
paths in the assertion graph accept the execution trace. The intuition
of our construction is as follows:

Imagine that the monitor circuit has an internal copy of
the assertion graph. The monitor can use this copy to
track all paths in the assertion graph by placing tokens
on the edges. Each token indicates that there is a path
that ends at that edge, on that clock cycle. The tokens
move forward one edge at each clock cycle, and fork
into multiple tokens when a vertex has multiple outgo-
ing edges (corresponding to multiple continuations of
the current path). Each token corresponds to a path,
which must accept the execution trace so far.

For example, consider the assertion graph in Figure 1
after, say, 2 clock cycles. At that point, there would be
2 tokens: one on the edge from v1 to v2, corresponding
to the path from v0 to v1 to v2; and another token on
the self-loop on v1, corresponding to the path from v0
to v1 and looping to v1 again. After another clock
cycle, the first token would move to the edge between
v2 and v3, and the second token would fork into two
tokens: one on edge v1-v2, corresponding to path v0-
v1-v1-v2; the other on self-loop v1-v1, corresponding
to path v0-v1-v1-v1.

The actual implementation follows this intuition closely. The struc-
ture of the generated circuit itself forms the “copy of the assertion
graph”. Latches at each edge are set or cleared to indicate the
presence or absence of tokens. Vertices are basically fan-out stems,
distributing incoming tokens to all outgoing edges. The challenge
is to keep the number of tokens finite (and small) to make creating
a circuit possible.

The key insight is that paths are almost memoryless. All paths
that reach an edge at some point in time share the same future.
The only difference between paths is three different kinds of pasts,
which we dub “blessed”, “happy”, and “condemned”:

Blessed Blessed paths have had an antecedent fail already. These
paths will always accept, from here to eternity, and need not
be tracked by the circuit.

Happy Happy paths have had all antecedents and all consequents
succeed so far. These paths are currently accepting, but their
continuations may or may not accept extensions of the current
trace.

Condemned Condemned paths have had all antecedents succeed,
but at least one consequent has already failed. These paths
do not accept (and therefore, the existence of any condemned
paths means the current trace is rejected), but the continua-
tions from these paths may eventually become blessed.

Because of the limited history information required, the circuit can
merge all tokens of the same type that arrive at a given edge at the
same time. Therefore, the number of latches required to track all
the tokens is only two per edge: one to track if any happy paths are
at this edge, and the other to track if any condemned paths are at this
edge. The circuit structure perfectly matches the structure of the
assertion graph, with sub-circuits corresponding to each edge and
each vertex of the assertion graph. The circuit works by passing
tokens from edge to edge, updating the kinds of tokens depending
on whether the current antecedents and consequents succeed or fail.

More formally, given an assertion graph G, we build a monitor
circuit such that the set of traces that the assertion graph accepts
(under terminal satisfiability) is the same as the set of input se-
quences that cause the monitor circuit’s accept output to be high.
We assume that the labels on the edges for the antecedents ant(e)
and consequents cons(e) are given as combinational logic over the
signals (e.g., the inputs and state variables) of the system being ver-
ified, as well as over the symbolic constant latches (defined below).

• The monitor circuit has inputs that are driven by signals in the
system being verified. In particular, each signal name that is
mentioned in the assertion graph G is an input to the monitor
circuit. There is one additional input init. The monitor has
one output accept.

• For all the symbolic constants in G, the monitor circuit has
latches that are initialized to non-deterministic values, and
then hold the values indefinitely.

• The monitor circuit is composed of sub-circuits, one for each
vertex and each edge in G. These sub-circuits are wired
together exactly as the graph G is connected, with two signals,
happy and condemned, between sub-circuits. For example,
if directed edge e ends at vertex v, then the happyout and
condemnedout outputs from the circuit for e connect to a
happyin and condemnedin input of the circuit for v.

• The sub-circuit for a vertex v is combinational. It basically
ORs all incoming happyin signals and fans the result out
to all of its happyout outputs. Likewise, it ORs all of it’s
incoming condemned signals and fans the result out on all of
its condemned outputs.

happyout =
_

incoming edges
happyini

condemnedout =
_

incoming edges
condemnedini

The circuit for the initial vertex v0 has an additional input
which is ORed in with the happy signals. This input is used
to start the first token in the circuit at initialization, described
below.

• The sub-circuit for an edge e is more complicated (Fig-
ure 2). Build combinational circuits ant(e) and cons(e) that
check the current value on the monitor’s inputs against this

156

Edge
Circuit

ant(e)

alive(e) reject(e)

cons(e)

Circuit Inputs
Latches for Symbolic Constants

happy

condemned

out

outin

inhappy

condemned

Figure 2: Sub-Circuit for Each Edge. Each edge corresponds
to a sub-circuit that receives incoming tokens for happy and con-
demned paths, updates the tokens depending on whether the current
antecedent and consequent pass, and passes the tokens onward on
the next clock cycle.

edge’s antecedent and consequent. By combining happyin,
condemnedin, ant(e), and cons(e), we can compute the cor-
rect values of happyout and condemnedout, which will
be delayed by one cycle in latches, as well as output sig-
nals alive(e) and reject(e), which will be used to determine
whether the monitor circuit overall accepts or rejects. The
signal alive(e) indicates if there exist any unblessed paths at
this edge at this point in time. The signal reject(e) indicates
if there exist any condemned paths at this edge at this point
in time. Intuitively, alive(e) is just happy∨condemned, and
reject(e) is just condemned. However, to allow the monitor
to respond immediately to the current cycle’s inputs (Mealy
machine), some additional combinational logic is needed:

happynow = ant(e)∧ cons(e)∧happyin
condemnednow = (ant(e)∧condemnedin)∨

(ant(e)∧¬cons(e)∧happyin)

alive(e) = happynow ∨condemnednow

reject(e) = condemnednow

happyout = DFF(happynow)

condemnedout = DFF(condemnednow)

• The global accept output of the monitor is based on all
terminal edges. Basically, if an edge is alive, it must not be
rejecting:

accept =
^

all terminal edges e
(alive(e) ⇒¬reject(e))

• Initialization is accomplished by asserting the init signal.
When init is asserted, the outputs of all the edge latches
(happyout and condemnedout) are forced to 0. (This
happens combinationally because the construction creates a
Mealy machine.) In addition, a 1 is asserted on the extra
initialization input for the initial vertex v0. For certain kinds
of assertion graphs (basically, those that are expected to hold
in any state of the circuit, without forcing an initialization
sequence as an antecedent), we can obtain additional simula-
tion coverage for free by continuously inserting happy tokens

at the initial vertex. Doing so checks all suffixes of a given
trace in a single simulation run. To enable this functional-
ity, our construction gives the user the option of having the
initialization input to v0 always tied to 1 instead of being
dependent on the init signal.

This completes the construction.
The overall construction is obviously linear-size and linear-time

in the size of the assertion graph, because each portion of the as-
sertion graph requires a constant amount of work to translate and
produces a constant amount of circuitry. Some straightforward opti-
mizations are possible. For example, the acceptance signal is really
based on not having any condemned paths at a terminal edge, so
the alive(e) and reject(e) signals can be simplified. Also, there is
no need to track happy paths if there is also a condemned token on
the same edge.

From a conventional simulation or emulation perspective, our
method for handling symbolic constants is problematic. The is-
sue is that symbolic constants are intrinsically symbolic, encoding
slightly different assertions for every possible value. In our con-
struction, the latches for the symbolic constants “guess” the values
of the symbolic constants; if the guess is wrong, the assertion graph
accepts vacuously and incorrectly. If the symbolic constants are
simulated symbolically, however, the simulation is simultaneously
guessing all possible values of the constant, giving the correct re-
sults. We have chosen this translation because it is simple and com-
pact, and because our simulator is actually a symbolic simulator,
so it can correctly simulate all possible values of the symbolic con-
stants at the same time. Note that this is very lightweight symbolic
simulation, because it is simply matching the symbolic constants to
what occurs in the trace being monitored; all other aspects of the as-
sertion graph are being simulated normally. It is far less expensive
than full symbolic simulation or model checking.

If symbolic simulation is not possible (e.g., if the monitor is being
compiled into an emulator), then an alternative construction could
be to use a three-valued (0, 1, or X) encoding for the symbolic
constant latches. The latches would start uninitialized (all Xs),
and the first time the symbolic constant is used, the latch would
get the specific value written to it. For example, in the assertion
graph in Figure 1, when the WRITE happens, the A and D symbolic
constants would record the values of the addr and datawr inputs,
and these values would be checked by the later edges. The cost
of this alternative is higher hardware complexity and some syn-
tactic restrictions on the assertion graphs — antecedents involving
symbolic constants would have to be convertible into assignments
to those constants. Symbolic constants are typically used in this
manner (intuitively, to remember values for comparison later), so
the syntactic restrictions may not matter in practice. A better so-
lution may be to make assignments to symbolic constants explicit;
this would also allow creating monitors that are “retriggerable”,
e.g., when no longer needed to monitor one transaction, the same
symbolic constants could be reused to monitor another transaction.

4. EXPERIMENTAL RESULTS
We have implemented the above translation into Intel’s Forte ver-

ification system3 and report empirical results measuring the sizes
of generated circuits as well as the impact of the monitor circuits
on simulation speed. Our system is implemented in an interpreted,

3Forte is available for download at http://www.intel.com/software
/products/opensource/tools1/verification/ but our new algorithms
are not yet part of the standard distribution.

157

FIFO Assertion Graph Monitor Circuit
Depth Vertices Edges Gates Latches Time

2 7 15 1127 68 0.0
4 11 29 2219 124 0.1
8 19 57 4403 236 0.2

16 35 113 8771 460 0.6
32 67 225 17507 908 1.4
64 131 449 34979 1804 3.8

128 259 897 69923 3596 11.9
256 515 1793 139811 7180 42.4
512 1027 3585 279587 14348 164.7

1024 2051 7169 559139 28684 606.1

Table 1: Results for FIFO Example. This example shows time
and size behavior of our construction as we scale the number of
vertices and edges in an assertion graph. The “Depth” column
indicates the depth of the FIFO. (It is 8 bits wide.) “Vertices”
and “Edges” indicate the size of the assertion graph. “Gates” and
“Latches” indicate the size of the monitor circuit. “Time” is how
many seconds it took to generate the monitor circuit. Size is clearly
linear; run time is almost linear.

functional programming language, which provides an excellent pro-
totyping environment at some cost in raw performance. Accord-
ingly, run times should be considered as a relative indication of
performance, rather than as absolute speed measures. All experi-
ments were run using an Intel Pentium 4 processor running at 2.8
Ghz. Memory size was not a factor in our experiments, despite
the small amount of symbolic simulation used to handle symbolic
constants.

We have run three types of experiments: two using realistic,
but somewhat idealized, assertion graphs that are easily scalable,
and a third experiment using an actual industrial circuit. The first
two experiments allow us to measure the run time and the size of
the generated monitor circuit as a function of different kinds of
scaling of the assertion graph. The third experiment lets us measure
simulation slow-down due to our generated monitors.

4.1 FIFO
The first example is a scalable family of assertion graphs used

to verify a FIFO buffer. The property specified is that the empty
and full signals are being set properly, and that the enqueued data
is not corrupted and comes out at the right time. In this example,
the size of the assertion graph, measured in terms of vertices and
edges, is easily scaled for different buffer depths. Indeed, the
assertion graph itself is generated via a script. Table 1 shows
the results as we scale the assertion graph size for different buffer
depths. The size of the generated monitor circuits is clearly growing
linearly in the size of the assertion graph. The generation time
appears to be growing slightly faster than linearly, probably due to
implementation overheads. In any case, both the monitor sizes and
the times required to generate them are quite reasonable. Some
simple logic optimization would likely further reduce the sizes of
the monitors.

4.2 Memory
The next example is an assertion graph for verifying memories.

The property being specified is that a read from a given address will
return the most recent data value written to that address, similar to
the assertion graph shown in Figure 1. In this example, the structure

Address Assertion Graph Monitor Circuit
Size Vertices Edges Gates Latches Time

2 3 3 1766 136 0.2
4 3 3 1815 138 0.2
6 3 3 1866 140 0.2
8 3 3 1910 142 0.2

10 3 3 1954 144 0.2
12 3 3 1998 146 0.2

Table 2: Results for Memory Example. This example shows time
and size behavior of our construction as we scale the complexity of
the edge labels. The “Size” column indicates the width of addresses
to the memory. (The data size is 128 bits.) Here, the number of
vertices and edges are constant, but the edge labels grow linearly in
the address size, so the monitor circuit does, too.

of the assertion graph remains constant as we scale up the number
of addresses, but the complexity of the antecedent and consequent
labels grows linearly with the size of the addresses, because of
operations that compare addresses. Table 2 shows results for this
example. The number of latches is clearly growing linearly. The
number of gates is also growing roughly linearly, although not per-
fectly smoothly due to idiosyncrasies of our translation of Boolean
expressions. The run time is swamped by constant overhead.

4.3 Industrial Cache Circuit
The last example is a real, industrial circuit. The circuit is

a 32K cache with non-trivial read/write logic. (The circuit has
403972 gates and 35157 latches in total.) The property being spec-
ified/checked is similar to that for the memory example: a read
will return the value of the most recent write to that location. The
assertion graph has 3 vertices and 3 edges, the generated monitor
circuit has 9363 gates and 46 latches, and generation took 2.7 sec-
onds. The point of this example is to measure the slowdown of our
monitor circuit on simulation.

We generated a 25000 cycle random trace. At each cycle, the
write probability was 50% and the read probability was 80%. All
memory cells were the target of at least one write in the trace, and
all reads were to addresses that had previously been written.

Using the simulator built into our verification environment, we
could simulate this trace on the cache circuit alone in 1109.6 sec-
onds. Adding the monitor to the simulation resulted in a run time
of 1283.1 seconds, or roughly a 16% overhead. Since our simulator
is a symbolic simulator, the simulation run with the monitor circuit
covered all possible values of the symbolic constants in a single
simulation run.

In a production environment, running on a multiprocessor, it
should be possible to eliminate the overhead of the monitor cir-
cuit entirely. The information flow is one-way from the system
being verified to the monitor, so the monitor could be simulated
asynchronously on a second processor. As long as the monitor
simulation can keep up with the system simulation, there would be
no slowdown. Even without further optimizations, however, the
relative simulation overhead of our generated monitor is minimal.

5. CONCLUSION AND FUTURE WORK
We have presented a procedure to construct monitor circuits for

GSTE assertion graphs. The construction is highly efficient in
theory, and experimental results confirm that monitor circuits for
real industrial GSTE assertion graphs can be constructed in negli-

158

gible time and impose minimal simulation overhead. The ability
to build monitor circuits from formal assertions has numerous ap-
plications for tying formal verification into the overall verification
flow.

The most obvious direction for future work is to improve the han-
dling of symbolic constants under simulation, as described earlier.
Our current construction, however, does work very well with sym-
bolic simulation. Similarly, efficiency improvements are possible
in the sub-circuits generated to check antecedents and consequents.

In this paper, our assumption has been that the motivation for
using assertion graphs is to access the efficiency of GSTE model
checking. The monitor construction, however, translates an asser-
tion graph into a circuit, which allows using assertion graphs as
specifications with other formal verification engines (e.g., symbolic
model checking [7], bounded model checking [5], etc.). An intrigu-
ing exercise would be to explore for what types of problems each
verification engine works best.

Our main direction for future work is to investigate compositional
reasoning. Because of the capacity limitations of formal verification
tools, being able to compose smaller verification results into larger
conclusions is a critical part of a scalable formal verification flow.
For example, we may wish to assume one property while trying
to verify another (e.g., assume-guarantee reasoning, environment
constraints). Because the GSTE model-checking algorithm verifies
a relationship between a circuit and a specification, the ability to
convert specifications into monitor circuits creates the possibility
of using GSTE to verify relationships involving multiple specifi-
cations (e.g., assume one assertion graph while verifying another).
We have preliminary results along these lines, showing that the con-
struction presented here is a valuable building block toward efficient
compositional verification with GSTE [9].

6. REFERENCES
[1] Mark Aagaard, Robert B. Jones, and Carl-Johan H. Seger.

Combining theorem proving and trajectory evaluation in an industrial
environment. In 35th Design Automation Conference, pages
538–541. ACM/IEEE, 1998.

[2] Nina Amla, E. Allen Emerson, and Kedar S. Namjoshi. Efficient
decompositional model-checking for regular timing diagrams. In
Correct Hardware Design and Verification: 10th IFIP WG 10.5
Advanced Research Working Conference (CHARME’99), pages
67–81. Springer, 1999. Lecture Notes in Computer Science
Number 1703.

[3] Lionel Bening and Harry Foster. Principles of Verifiable RTL Design:
A Functional Coding Style Supporting Verification Processes in
Verilog. Kluwer Academic Publishers, 2nd edition, 2001.

[4] Bob Bentley. High level validation of next generation
microprocessors. In International Workshop on High-Level Design,
Validation, and Test. IEEE, 2002.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Tools and
Algorithms for Construction and Analysis of Systems, pages
193–207. Springer, 1999. Lecture Notes in Computer Science
Vol. 1579.

[6] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an
Alpha microprocessor using satisfiability solvers. In Computer-Aided
Verification: 13th International Conference, pages 454–464.
Springer, 2001. Lecture Notes in Computer Science Number 2102.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In
Conference on Logic in Computer Science, pages 428–439, 1990. An
extended version of this paper appeared in Information and
Computation, Vol. 98, No. 2, June 1992.

[8] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In

Dexter Kozen, editor, Workshop on Logics of Programs, pages
52–71, May 1981. Published 1982 as Lecture Notes in Computer
Science Number 131.

[9] Alan J. Hu, Jeremy Casas, and Jin Yang. Reasoning about GSTE
assertion graphs. In Correct Hardware Design and Verification
Methods: 12th IFIP WG 10.5 Advanced Research Working
Conference (CHARME’03). Springer, 2003. Lecture Notes in
Computer Science. To appear.

[10] M. S. Jahanpour and E. Cerny. Compositional verification of an ATM
switch module using interface recognizer/suppliers (IRS). In
International High-Level Design, Validation, and Test Workshop,
pages 71–76. IEEE, 2000.

[11] Matt Kaufmann, Andrew Martin, and Carl Pixley. Design constraints
in symbolic model checking. In Computer-Aided Verification: 10th
International Conference, pages 477–487. Springer, 1998. Lecture
Notes in Computer Science Number 1427.

[12] Robert P. Kurshan. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton University
Press, 1994.

[13] Zohar Manna and Amir Pnueli. Specification and verification of
concurrent programs by ∀-automata. In Symposium on Principles of
Programming Languages, pages 1–12. ACM, 1987.

[14] Kyle L. Nelson, Alok Jain, and Randal E. Bryant. Formal verification
of a superscalar execution unit. In 34th Design Automation
Conference, pages 161–166. ACM/IEEE, 1997.

[15] Márcio T. Oliveira and Alan J. Hu. High-level specification and
automatic generation of IP interface monitors. In 39th Design
Automation Conference, pages 129–134. ACM/IEEE, 2002.

[16] Manish Pandey, Richard Raimi, Derek L. Beatty, and Randal E.
Bryant. Formal verification of PowerPC arrays using symbolic
trajecory evaluation. In 33rd Design Automation Conference, pages
649–654. ACM/IEEE, 1996.

[17] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in Cesar. In 5th International Symposium on
Programming, pages 337–351. Springer, 1981. Lecture Notes in
Computer Science Number 137.

[18] Pascal Raymond. Recognizing regular expressions by means of
dataflow networks. In 23rd International Colloquium on Automata,
Languages, and Programming, pages 336–347. Springer, 1996.
Lecture Notes in Computer Science Number 1099.

[19] Andrew Seawright and Forrest Brewer. High-level symbolic
construction techniques for high performance sequential synthesis. In
30th Design Automation Conference, pages 424–428. ACM/IEEE,
1993.

[20] Carl-Johan H. Seger and Randal E. Bryant. Formal verification by
symbolic evaluation of partially-ordered trajectories. Formal
Methods in System Design, 6(2):147–190, 1995.

[21] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor-based formal
specification of PCI. In Formal Methods in Computer-Aided Design,
pages 335–353. Springer, 2000. Lecture Notes in Computer Science
Number 1954.

[22] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach
to automatic program verification. In Symposium on Logic in
Computer Science, pages 332–344. IEEE Computer Society, 1986.

[23] Jin Yang and Amit Goel. GSTE through a case study. In
International Conference on Computer-Aided Design, pages
534–541. IEEE/ACM, 2002.

[24] Jin Yang and Carl-Johan H. Seger. Introduction to generalized
symbolic trajectory evaluation. In International Conference on
Computer Design, pages 360–365. IEEE, 2001.

[25] Jin Yang and Carl-Johan H. Seger. Generalized symbolic trajectory
evaluation — abstraction in action. In Formal Methods in
Computer-Aided Design: Fourth International Conference, pages
70–87. Springer, 2002. Lecture Notes in Computer Science
Number 2517.

[26] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz.
Modeling design constraints and biasing in simulation using BDDs.
In International Conference on Computer-Aided Design, pages
584–589. IEEE/ACM, 1999.

159

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

