CONFERENCE COMMITTEE

GENERAL CHAIR
Andreas Kuehlmann
Cadence Berkeley Labs.
1995 University Ave., Ste. 460
Berkeley, CA 94704
(510) 647-2840
kuehl@cadence.com

PROGRAM CHAIR
Hidetoshi Onodera
Kyoto Univ.
Dept. of Comm. & Comp. Eng.
Sakyo-ku, Kyoto 606-8501 Japan
(81) 75-753-5314
onodera@i.kyoto-u.ac.jp

PROGRAM VICE CHAIR
Majid Sarrafzadeh
Univ. of California, Dept. of CS
Boelter Hall, Rm. 3532C
Los Angeles, CA 90095-1596
(310) 794-4303
majid@cs.ucla.edu

PAST CHAIR
Lawrence T. Pileggi
Carnegie Mellon Univ.
Dept. of ECE, 5000 Forbes
Pittsburgh, PA 15213
(412) 268-6774
pileggi@ece.cmu.edu

TUTORIAL CHAIR
John Cohn
IBM Corp.
1000 River Rd.
Essex Junction, VT 05452
(802) 769-7676
johncohn@us.ibm.com

EUROPEAN REPRESENTATIVE
Donatella Sciuto
Politecnico di Milano
Dip. di Elettronica e Inform.
Piazza L. da Vinci 32
20133 Milano Italy
(39) 02-2399-3663
sciuto@iet.polimi.it

ASIAN REPRESENTATIVE
Allen C. H. Wu
National Tsing Hua Univ.
Dept. of CS
Hsin-Chu, Taiwan 30043
(88) 63-571-5131 ext 3517
chunghaw@cs.nthu.edu.tw

ACM/SIGDA REPRESENTATIVE
Soha Hassoun
Tufts Univ.
Dept. of EE and CS
161 College Ave.
Medford, MA 02155
(617) 627-3217
soha@eecs.tufts.edu

IEEE CS/DATC REPRESENTATIVE
John Darringer
IBM Corp., TJ Watson Research Ctr.
P.O. Box 218
Yorktown Heights, NY 10598
(914) 945-2742
jad@us.ibm.com

IEEE/CAS REPRESENTATIVE
Hiroto Yasuura
Kyushu Univ.
6-1 Kasuga Koen
Kasuga, 816-8580, Fukuoka, Japan
(81) 92-583-7620
yasuura@cse.csce.kyushu-u.ac.jp

PUBLICITY CHAIR
Anne Cirkel
Mentor Graphics Corp.
8005 SW Boeckman Rd.
Wilsonville, OR 97070
(503) 685-7934
anne_cirkel@mentor.com

CONFERENCE MANAGER
Kathy MacLennan
MP Associates, Inc.
5305 Spine Rd., Ste. A
Boulder, CO 80301
(303) 530-4562
kathy@mpassociates.com
FOREWORD

On behalf of the ICCAD 2003 Executive and Technical Program Committees, we would like to welcome you to the International Conference on Computer Aided Design. We hope that you enjoy this key event of our professional community and learn much about the latest advances in electronic design technology and automation.

As part of the continuing effort to keep the conference focused on the emerging problems of our field, ICCAD 2003 broadened its scope and, for the first time, actively solicited papers in the area of innovative design technologies for devices, circuits, and systems. This year, ICCAD attracted a record number of submissions, totaling 490 papers. From this pool of submissions, 129 papers were selected and compiled into an exciting technical program which is further enriched by multiple special sessions and events.

After its successful introduction in 2002, this year's ICCAD Sunday Workshop will be focused on emerging design problems and include six expert presentations on various ASIC, FPGA, and microprocessor design challenges. At the same time, the second "ACM/SIGDA CADathlon at ICCAD" will take place - a programming competition that gives students the opportunity to demonstrate their CAD knowledge and their skills in problem solving, programming, and teamwork. The Sunday program will be concluded by the ICCAD Opening Reception and the Sunday panel entitled "CAD for High-End Design: Help, Hope or Hype?"

The main ICCAD program begins on Monday morning with the conference keynote entitled, "CMOS, Scaling, and the Future" given by Mark Horowitz, Stanford University. The core technical program of the conference is composed of 37 regular paper sessions and six exciting embedded tutorials on "Design and CAD Challenges", "System Level Design and Verification", "Mixed Signal DFT", "Manufacturing-Aware Physical Design", "Dynamic Power Management", and "Large-Scale Circuit Placement". The Monday evening panel entitled "Semiconductor Slowdown: Who Will Blink First?" will discuss different viewpoints on the rapidly growing challenges from increasing integration densities and how design automation can help to address them.

Multiple side events complement the technical conference program and enrich the overall ICCAD schedule. The Technology Fair on Tuesday will provide a forum where conference attendees can meet industrial R&D colleagues to discuss technical problems and solutions, or to simply make new contacts for future relationships. The ICCAD Dinner on Tuesday evening is the social highlight of the conference and will establish a relaxed atmosphere for meeting other attendees and provide a chance to enjoy some exciting entertainment. The conference schedule concludes on Thursday with four new full day tutorials on 1) "Linux for EDA", 2) "Leakage Issues in IC Design: Trends, Estimation and Avoidance", 3) "Recent Advances in Formal Verification" and 4) "Embedded Software Development".

On behalf of the organizers of ICCAD, we would like to thank all people involved in preparing the 2003 event, in particular, the members of the Executive and Technical Program Committees, everyone at MPAssociates, and the many volunteers from our sponsoring societies. Last but not least, we would like to express our gratitude to all of the authors who submitted papers, since these contributions form the backbone of the conference.

We hope that you will enjoy the conference program and also find enough time to meet with your colleagues and friends for catching up on the latest in your work.

Andreas Kuehlmann
General Chair

Hidetoshi Onodera
Technical Program Chair
William J. McCalla ICCAD Best Paper Award
The "Best Paper Awards", selected by the ICCAD Program Committee, were selected through a rigorous and multi-stage review process. The Awards are given in memory of William J. McCalla, for his contributions to ICCAD and his CAD technical work through his career.

Noise Analysis for Optical Fiber Communication Systems
Paper 6C.1
Author: Alper Demir
Affiliation: KOC University, Sariyer-Istanbul, Turkey

Block-Based Static Timing Analysis with Uncertainty
Paper 8B.1
Author: Anirudh Devgan
Affiliation: IBM Research, Austin, TX

Author: Chandramouli Kashyap
Affiliation: IBM Microelectronics, Austin, TX

The following IEEE CAS Society Award will be presented at ICCAD.

CAS Industrial Pioneer Award
Prabhu Goel
Tharas Systems, Inc., Santa Clara, CA

For his contributions to design modeling and design verification through Verilog and Verilog based design tools that dramatically boosted the productivity of design engineers.

2003 SIGDA Outstanding New Faculty Award
Dennis Sylvester
Univ. of Michigan., Ann Arbor, MI

The SIGDA Outstanding New Faculty Award recognizes a junior faculty member early in her or his academic career who demonstrates outstanding potential as an educator and researcher in the field of electronic design automation. The award is presented annually at ICCAD, and consists of a $10,000 grant supporting the faculty member's research program, as well as a citation.
ICCAD-2003 TECHNICAL PROGRAM COMMITTEE

Mark D. Aagaard
Univ. of Waterloo
Waterloo, ON, Canada
maagaard@uwaterloo.ca

Narayan Aluru
Univ. of Illinois
Urbana, IL
aluru@uiuc.edu

Kia Bazargan
Univ. of Minnesota
Minneapolis, MN
kia@ece.umn.edu

Michel Berkelaar
Magma Design Automation, Inc.
Eindhoven, The Netherlands
michel@Magma-da.com

David Blaauw
Univ. of Michigan
Ann Arbor, MI
blaauw@umich.edu

Eric Bracken
Ansoft Corp.
Pittsburgh, PA
bracken@ansoft.com

Forrest D. Brewer
Univ. of California
Santa Barbara, CA
forrest@ece.ucsb.edu

Thomas Burd
Consultant
Berkeley, CA
tom.burd@attbi.com

Timothy Burks
Magma Design Automation, Inc.
Cupertino, CA
tim@magma-da.com

Jeffrey L. Burns
IBM Corp.
Austin, TX
jlburns@us.ibm.com

Michael Butts
Cadence Design Systems, Inc.
Portland, OR
mbutts@cadence.com

Charlie Chung-Ping Chen
National Taiwan Univ.
Taipei, Taiwan
ccchen@cc.ee.ntu.edu

Howard Chen
IBM Corp.
Yorktown Heights, NY
haowei@us.ibm.com

Chung-Kuan Cheng
Univ. of California at San Diego
La Jolla, CA
kuan@cs.ucsd.edu

Eli Chiprout
Intel Labs.
Chandler, AZ
eli.chiprout@intel.com

Jun-Dong Cho
Univ. of Suwon
Suwon, Korea
jdcho@skku.ac.kr

Olivier R. Coudert
Monterey Design Systems, Inc.
Sunnyvale, CA
coudert@mondes.com

Bernard Courtois
TIMALab.
Grenoble Cedex, France
bernard.courtois@imag.fr

Antun Domic
Synopsys, Inc.
Mountain View, CA
domic@synopsys.com

Nikil Dutt
Univ. of California
Irvine, CA
dutt@ics.uci.edu

John P. Fishburn
Consultant
Murray Hill, NJ
jfisburn@ieee.org

Tony Givargis
Univ. of California
Irvine, CA
givargis@ics.uci.edu

Seth Goldstein
Carnegie Mellon Univ.
Pittsburgh, PA
seth@cs.cmu.edu

Helmut Graeb
Technical Univ. Muenchen
Munich, Germany
helmut.graeb@et.tum.de

Aarti Gupta
NEC Labs.
Princeton, NJ
agupta@nec-labs.com

Nagib Z. Hakim
Intel Corp.
Santa Clara, CA
nagib.hakim@intel.com

David J. Hathaway
IBM Corp.
Essex Junction, VT
dhathawa@us.ibm.com

Joerg Henkel
NEC Labs.
Princeton, NJ
henkel@nce-labs.com

Dwight D. Hill
Synopsys, Inc.
Mountain View, CA
hill@synopsys.com

James C. Hoe
Carnegie Mellon Univ.
Pittsburgh, PA
jhoe@ece.cmu.edu

Wen-Mei W. Hwu
Univ. of Illinois
Urbana, IL
w-hwu@uiuc.edu

Tomoo Inoue
Hiroshima City Univ.
Hiroshima, Japan
tomoo@im.hiroshima-cu.ac.jp

Andre Ivanov
Univ. of British Columbia
Vancouver, BC, Canada
ivanov@ece.ubc.ca

Rajeev Jayaraman
Xilinx Inc.
San Jose, CA
rajeev.jayaraman@xilinx.com

Christoph Jungemann
Stanford Univ.
Stanford, CA
junge@gloworm.stanford.edu

Yoji Kajitani
Univ. of Kitakyushu
Fukuoka, Japan
kajitani@comp.kitakyushu-u.ac.jp

Bozena Kaminska
3rd Millennium
Test Solutions
Lake Oswego, OR
bkaminska@aol.com

Sharad Kapur
Integrand Software, Inc.
Hoboken, NJ
sharad@integrandsoftware.com

Tanay Karnik
Intel Corp.
Hillsboro, OR
tanay.karnik@intel.com

Kurt Keutzer
Univ. of California
Berkeley, CA
keutzer@eecs.berkeley.edu

Shinji Kimura
Waseda Univ.
Kitakyushu, Japan
shinji_kimura@waseda.jp

Michael Kishinevsky
Intel Corp.
Hillsboro, OR
mkishine@ichips.intel.com

Cheng-Kok Koh
Purdue Univ.
West Lafayette, IN
chengkok@ecn.purdue.edu
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prabhakar Kudva</td>
<td>IBM Corp.</td>
<td>kudva@us.ibm.com</td>
</tr>
<tr>
<td>James H. Kukula</td>
<td>Synopsys, Inc.</td>
<td>kukula@synopsys.com</td>
</tr>
<tr>
<td>Kenneth Kundert</td>
<td>Cadence Design Systems, Inc.</td>
<td>kundert@cadence.com</td>
</tr>
<tr>
<td>Wolfgang Kunz</td>
<td>Univ. of Kaiserslantantern</td>
<td>kuz@eit.uni-kl.de</td>
</tr>
<tr>
<td>Tadahiro Kuroda</td>
<td>Keio Univ.</td>
<td>kuroda@elec.keio.ac.jp</td>
</tr>
<tr>
<td>Kimmo Kuusilinna</td>
<td>Tampere Univ. of Tech.</td>
<td>havu@ele.tut.fi</td>
</tr>
<tr>
<td>Jay Lawrence</td>
<td>Cadence Design Systems, Inc.</td>
<td>lawrence@cadence.com</td>
</tr>
<tr>
<td>Rainer Leupers</td>
<td>Aachen Univ. of Tech.</td>
<td>leupers@iss.rwth-aachen.de</td>
</tr>
<tr>
<td>Yanbing Li</td>
<td>Synopsys, Inc.</td>
<td>yanbing.li@synopsys.com</td>
</tr>
<tr>
<td>Stan Y. Liao</td>
<td>Synopsys, Inc.</td>
<td>stan.liao@synopsys.com</td>
</tr>
<tr>
<td>Shen Lin</td>
<td>Apache Design Solutions, Inc.</td>
<td>shen_lin@apache-da.com</td>
</tr>
<tr>
<td>Diana Marculescu</td>
<td>Carnegie Mellon Univ.</td>
<td>dianam@ece.cmu.edu</td>
</tr>
<tr>
<td>Radu Marculescu</td>
<td>Carnegie Mellon Univ.</td>
<td>radum@ece.cmu.edu</td>
</tr>
<tr>
<td>Igor L. Markov</td>
<td>Univ. of Michgan</td>
<td>imarkov@eecs.umich.edu</td>
</tr>
<tr>
<td>Yusupe Matsunaga</td>
<td>Kyushu Univ.</td>
<td>matsunaga@c.cse.kyushu-u.ac.jp</td>
</tr>
<tr>
<td>Ken McMillan</td>
<td>Cadence Berkeley Labs.</td>
<td>mcmillan@cadence.com</td>
</tr>
<tr>
<td>Purnendu K. (PK) Mozumder</td>
<td>PDF Solutions Inc.</td>
<td>pk.mozumder@pdf.com</td>
</tr>
<tr>
<td>Tamal Mukherjee</td>
<td>Carnegie Mellon Univ.</td>
<td>tamal@ece.cmu.edu</td>
</tr>
<tr>
<td>Farid N. Najm</td>
<td>Univ. of Toronto</td>
<td>f.najm@utoronto.ca</td>
</tr>
<tr>
<td>Sani R. Nassif</td>
<td>IBM Corp.</td>
<td>nassif@us.ibm.com</td>
</tr>
<tr>
<td>Wolfgang Nebel</td>
<td>OFFIS and Oldenburg Univ.</td>
<td>nebel@offis.de</td>
</tr>
<tr>
<td>Borivoje Nikolic</td>
<td>Univ. of California</td>
<td>bora@eecs.berkeley.edu</td>
</tr>
<tr>
<td>Alex Oraaliglo</td>
<td>Univ. of California at San Diego</td>
<td>alex@cs.ucsd.edu</td>
</tr>
<tr>
<td>David Overhauser</td>
<td>Carnegie Design Systems, Inc.</td>
<td>ovee@cadence.com</td>
</tr>
<tr>
<td>Zhigang (David) Pan</td>
<td>Univ. of Texas</td>
<td>dpan@ece.utexas.edu</td>
</tr>
<tr>
<td>Rajendran Panda</td>
<td>Motorola</td>
<td>rajendran.panda@motorola.com</td>
</tr>
<tr>
<td>Joel R. Phillips</td>
<td>Cadence Berkeley Labs.</td>
<td>jrp@cadence.com</td>
</tr>
<tr>
<td>Salil Raje</td>
<td>Hier Design, Inc.</td>
<td>salil@hierdesign.com</td>
</tr>
<tr>
<td>Jaijeet Roychowdhury</td>
<td>Univ. of Minnesota</td>
<td>jr@ece.umn.edu</td>
</tr>
<tr>
<td>Louis Scheffer</td>
<td>Cadence Design Systems, Inc.</td>
<td>lou@cadence.com</td>
</tr>
<tr>
<td>Kenneth L. Shepard</td>
<td>Columbia Univ.</td>
<td>shepard@ece.columbia.edu</td>
</tr>
<tr>
<td>Youngsoo Shin</td>
<td>IBM Corp.</td>
<td>youngsoo@us.ibm.com</td>
</tr>
<tr>
<td>Leon Stok</td>
<td>IBM Corp.</td>
<td>stokl@watson.ibm.com</td>
</tr>
<tr>
<td>Atsushi Takahashi</td>
<td>Tokyo Institute of Tech.</td>
<td>atushi@lab.ss.titech.ac.jp</td>
</tr>
<tr>
<td>Hiroyuki Tomiyama</td>
<td>Nagoya Univ.</td>
<td>tomiyama@isit.or.jp</td>
</tr>
<tr>
<td>N. P. (Nick) van der Meijs</td>
<td>Delft Univ. of Tech.</td>
<td>nick@cobalt.et.tudelft.nl</td>
</tr>
<tr>
<td>Duncan M. (Hank) Walker</td>
<td>Texas A&M Univ.</td>
<td>walker@cs.tamu.edu</td>
</tr>
<tr>
<td>Martin D. F. Wong</td>
<td>Univ. of Illinois</td>
<td>mdfwong@uivlsi.csl.uiuc.edu</td>
</tr>
<tr>
<td>Allen C.-H. Wu</td>
<td>Tsing Hua Univ.</td>
<td>chung@cs.nthu.edu.tw</td>
</tr>
<tr>
<td>Hai Zhou</td>
<td>Northwestern Univ.</td>
<td>haizhou@ece.northwestern.edu</td>
</tr>
</tbody>
</table>

ICCAD-2003 TECHNICAL PROGRAM COMMITTEE
Mark D. Aagaard
Cristinel Ababei
Saurabh Adya
Aseem Agarwal
Kanak Agarwal
Karsten Åbers
Charles Alpert
Narayan Aluru
Jason Anderson
Jens Appell
Baris Arslan
Bikram Baidya
Sudarshan Banerjee
Reuven Bar-Yehuda
Skandar Basrour
Kia Bazargan
Murat Becer
Ralf Beckers
Nikhil Bensal
Michel Berkelaar
Partha Biswas
Calvin Bittner
Per Bjesse
David Blaauw
Shawn Blanton
Eric Bracken
Forrest D. Brewer
Joe Buck
Mihai Budiu
Thomas Burd
Timothy Burks
Frank Burns
Jeffrey L. Burns
Steve Butler
Michael R. Butts
Srirhari Cadambi
Jennifer Campbell
Aiqun Cao
Sean M. Casey
Bryan Casper
Krishnendu Chakrabarty
Sourav Chakravarty
Hayward Chan
Vikas Chandra
Shubh Shen Chang
Anupam Chattopadhyay
Shubhyant Chaturvedi
Charlie Chung-Ping Chen
Chunhong Chen
Deming Chen
Howard Chen
Yiran Chen
Chung-Kuan Cheng
Kwang-Ting (Tim) Cheng
Charles Chiang
Eli Chiprut
Jun Dong Cho
Umakanta Choudhury
Chris C.-N. Chu
Florin Ciontu
Valentina Ciriani
Vlad Ciubotaru
Ian Clark
Frederic Collet
Jordi Cortadella
Olivier R. Coudert
Bernard Courtois
John Croix
Changhong Dai
Florentin Dartu
Shidhartha Das
Nancy Day
Benigné Deprey
Bill Dewey
Nagu Dhanwada
Liang-Teck Ding
Antun Domic
Frederic Doucet
William E. Dougherty
Elena Dubrova
Nikil Dutt
Robi Dutta
Eugene Earlie
Stephen Edwards
Farzan Falalah
Francois Fang
Uwe Feldmann
John P. Fishburn
Art Friedman
Yuhong Fu
Kunihiro Fujiyoshi
Malay K. Ganai
Joshua Garrett
Arijit Ghosh
Tony Givargis
Volker Gloeckel
Seth Goldstein
Jian Gong
Helmut Graeb
Christian Grecu
Eric Grimme
Eike Grimpe
Aarti Gupta
Sumit Gupta
Matt Guthaus
Nagib Z. Hakim
Xin Hao
Nikos Hardavellas
Ian Harris
Masanori Hashimoto
Masaki Hashizume
David Hathaway
Steve Haynal
Peter Hazucha
Lei He
Kenn Heinrich
Sybille Hellebrand
Fook-Luen Heng
Joerg Henkel
Loïc Henry-Gerard
Nathaniel Hieter
Shinobu Higami
Jason Higgins
Dwight D. Hill
James C. Hoe
Yatin Hoskote
Toshinori Hosokawa
Stephen Houben
Michael Hsiao
Steven Hsu
Jingcao Hu
Chih-Tsun Huang
Wen-Mei W. Hwu
Hideyuki Ichihara
Tomoo Inoue
Ilya Issenin
Andre Ivanov
Mahesh Iyer
Etienne Jacobs
Ashok Jagannathan
Geert Janssen
Rajeev Jayaraman
Ravindra Jejurikar
Dan Jiao
Robert Jones
Christoph Jungemann
Andrew Kahng
Seiji Kajihara
Yoji Kajitani
Gila Kamhi
Bozena Kaminska
Rouwaida Kan
Sean Kao
Sharad Kapur
Tanay Karnik
Chandramouli Kashyap
Ryan Kastner
Himanshu Kaul
Jamil Kawa
Hiroshi Kagawuchi
Arun Kejariwal
Mahesh Ketkar
Kurt Keutzer
Farzad Khalevati
Muhammad Khellah
Keji Kida
Shinji Kimura
Peter Kinget
Michael Kishinevsky
Haruo Kobayashi
Chikaaki Kodama
Alfred Koelbl
Cheng-Kok Koh
Alex Kondratyev
Tianming Kong
Victor Kravets
Ram Krishnamurthy
Nagendra Krishnapura
Lars Kruse
Yukiko Kubo
Prabhakar Kudva
James H. Kurula
Kenneth Kundert
David Kung
Wolfgang Kunz
Andy Kuo
Tadahiro Kuroda
Kimmo Kuusilinna
Hee Hwan Kwak
Stephen Lacy
Marcello Lajolo
Wai-Ching Douglas Lam
Erik Larsson
Luciano Lavagno
Jay Lawrence
Dongwo Lee
Woo Hyung Lee
Valerie Lehner
Rainer Leupers
Chen Li
Yanbing Li
ICCAD-2003 REVIEWERS

Edward Liao
Stan Y. Liao
Weiping Liao
Sungkyu Lim
Chuan Lin
Joey Y. Lin
Shen Lin
Changbo Long
David Long
Ruiming Lu
Shih-Lien Lu
Jiong Luo
Manev Luthra
Tony Ma
Patrick Madden
Cliff Maier
Arthur W.K. Mak
Mahesh Mamidipaka
Freddy Mang
Diana Marculescu
Radu Marculescu
Margaret Marek-Sadowska
Igor L. Markov
Dejan Markovic
Joao Marques-Silva
Aaron Martin
Tobias Massier
Yusuke Matsunaga
Sanu Matthew
Sean McCarthy
Ken McMillan
Noel Menezes
William Migatz
Jacob Rajkumar Minz
Prabhat Mishra
Yukiya Miura
Hiroshi Miyashita
Masahide Miyazaki
C. Rama Mohan
In-Ho Moon
Purnendu K (PK) Mozumder
Tamal Mukherjee
Hirosi Murata
Rajeel Murgai
Myung-hee Na
Andre Nacul
Mohsen Nahvi
Farid N. Najm
Shigetoshi Nakatake
Gijoorn Nam
Jaganathan Narasimhan
Naren Narasimhan
Siva Narendra
Sani R. Nassif
Wolfgang Nebel
Rolf Neubert
Bora Nikolic
Fu Ning
Takashi Nojima
Grace Nordin
Alex Orailoglu
Seong Yong Oum
David Overhauser
Sule Ozev
Fabrice Paillet
Zhihgang (David) Pan
Rajendran Panda
Partha Pande
Davide Pandini
Liang-Teck Pang
Sanjay Pant
Chris Papachristou
Sudeep Pasricha
Priyadarsan Patra
Ivan Pecuh
He Peng
Joel R. Phillips
Irith Pomeranz
Markus Pueschel
Ruchir Puri
Salil Rajeev Rao
Vasant Rao
Wenjing Rao
Dror Rawitz
Lakshmi Reddy
Sudhakar M. Reddy
Haxiong Ren
Mehrdad Reshadi
Michaell Romesis
Elyse Rosenbaum
Bruno Rouzeyle
Jarrod Roy
Jaijeet Roychowdhury
Jeroen Rutten
Ali Sadigh
Kewal Saluja
Sachin S. Sapatnekar
Prashant Saxena
Andreas Schallenberg
Louis Scheffer
Eike Schmidt
Gerhard Schrom
Thorsten Schubert
Luc Semeria
Delong Shang
Li Shang
Liang-Teck Shang
Hazem Shehata
Farhana Sheikh
Vivek Shende
Kenneth L. Shepard
Youngsoo Shin
Tsuyoshi Shinoghi
Yoichi Shiraishi
Pun H. Shiu
Aviral Shrivastava
Ozgur Sinanoglu
Amit Singh
Frank Slomka
Finnegan Southey
Srikanth Srinivasan
Ashish Narain Srivastava
Ansgar Stumpermann
Guido Stehr
Guenter Stenz
Vladimir Stojanovic
Leon Stok
Bernd Straube
Andrew Sullivan
Richard Sun
Savithri Sundareswaran
Ashish Syal
Kenton Sze
Abdallah Tabbara
Atsushi Takahashi
Hirosi Takahashi
Yasunori Takashima
Takeshi Takeshi
Alexander Taubin
Michael Theobald
Bhavana Thudi
Bo Tian
Nozomu Togawa
Hiroyuki Tomiyama
Rasit Topaloglu
Nur Toubia
Louise Trevillyan
Cheonguyen Tsang
Chung-Wen Albert Tsao
James Tschanz
Socrates Vamvakos
Nick van der Meij
Sriram Vangal
Miroslav Velev
Natesan Venkateswaran
Aravind Vijayakumar
Paul Villarrubia
Tiziano Villa
Chandu Visweswariah
Duncan M. (Hank) Walker
Baosheng Wang
Hongmo Wang
Li C. Wang
Benjamin Warlick
Yoshinobu Watanabe
Josef Watts
David Winston
Martin D.F. Wong
Allen C.-H. Wu
Hans-Joachim Wunderlich
Fei Xia
Min Xie
Hui Xu
Jiapeng Xu
Se-Hyun Yang
Ya-Chi Yang
Yibin Ye
Engling Yeo
Avetik Yessayan
Tomokazu Yoneda
Moon Hyun Yoo
Hiroyuki Yotsuyanagi
Evangelie F.Y. Young
Xin Yuan
Yue Zeng
Bo Zhai
Xuliang Zhang
Yanbing Zhang
Yumin Zhang
Guan Zhao
Hai Zhou
Yunshan Zhu
Zhengyong Zhu
Changwen Zhuang
Xiaohe Zhuang
Radu Zlatanovici
Vladimir Zolotov
Vladimir Zolotov
ICCAD-2003 KEYNOTE

Mark Horowitz
Professor
Stanford Univ., Stanford, CA

CMOS, SCALING, AND THE FUTURE

Description: Technology scaling has driven integrated circuit designers for the past four decades, both enabling them to create ever more complex electronic systems, but also forcing them to change the way that they think about design. This talk is a mostly serious look at the factors driving designers today, looking at design issues that future designers will need to face.

Although technology scaling is a predictable and smooth process, designer's response is not smooth, and often has step-like changes when new tools or techniques are introduced. Some of the most dramatic design changes occur when the basic circuit technology changes, but other design changes can be as large, like the introduction of HDL and synthesis. We are currently facing a number of issues which might lead to large changes in design. The most critical is power. Previous shifts in circuit style, from bipolar (TTL and ECL, if you are old enough to remember) to nMOS, and then from nMOS to the CMOS style we have been using for roughly the past 20 years were partially driven by power issues. Yet today's CMOS chips dissipate more power than even the old bipolar chips did, and the scaling trends are not promising. The looming power constraints will force us to worry about performance efficiency instead of performance, since in the future the peak performance solution will always dissipate too much power.

Biography: Mark Horowitz is the Yahoo Founder's Professor of Electrical Engineering and Computer Science at Stanford University. He received his BS and MS in Electrical Engineering from MIT in 1978, and his PhD from Stanford in 1984. Dr. Horowitz is the recipient of a 1985 Presidential Young Investigator Award, and an IBM Faculty Development Award, as well as the 1993 Best Paper Award at the International Solid State Circuits Conference.

Dr. Horowitz's research area is in digital system design, and he has led a number of processor designs including MIPS-X, one of the first processors to include an on-chip instruction cache, TORCH, a statically-scheduled, superscalar processor that supported speculative execution, and FLASH, a flexible DSM machine. He has also worked in a number of other chip design areas including high-speed and low-power memory design, high-bandwidth interfaces, and fast floating point. In 1990 he took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth chip interface technology. His current research includes multiprocessor design, low power circuits, memory design, and high-speed links.
TUTORIAL 1

LINUX FOR EDA

Speakers:

Stephen Edwards – Columbia University, New York, NY
Tom Grotton - Cadence Design Systems, Inc., San Jose, CA
Tim Marriott – Synopsys, Inc., Santa Clara, CA
Mel Nicholson – Synopsys, Inc., Santa Clara, CA
Fabio Somenzi – Univ. of Colorado, Boulder, CO

Background: Over the last three years a large number of EDA tools have become available under Linux. While it is clear that the EDA industry has adopted Linux as one of the main platforms, the process of migrating applications to it has not reached maturity yet. This tutorial is therefore addressed to people involved in developing, porting, or deploying EDA software in the Linux environment. The tutorial will cover portability issues, programmer productivity tools, and performance analysis tools. The tutorial will also include a section on grid computing and the benefits and complexities of using parallel computing for CAD applications. Finally, the tutorial will include a discussion of the challenges involved in making Linux the main development platform.

The tutorial is intended for designers and CAD engineers interested in Linux as a CAD platform. Basic background in software development is useful though not needed.
TUTORIAL 2

LEAKAGE ISSUES IN IC DESIGN:
TRENDS, ESTIMATION AND AVOIDANCE

Speakers:

Siva Narendra – Intel Labs., Hillsboro, OR
David Blaauw – Univ of Michigan, Ann Arbor, MI
Anirudh Devgan – IBM Research, Austin, TX
Farid Najm – Univ. of Toronto, Toronto, ON, Canada

Background: Leakage power is emerging as a key challenge in IC design. Traditionally, leakage has been considered as an important design variable in handheld devices and in standby circuit operation. However, this significant increase of leakage now warrants that it be considered as the key design variable in all IC designs. This tutorial presents a comprehensive review of leakage power issues in IC design. The tutorial is organized in four major parts. The first part provides an overview of technology and scaling trends which are causing the significant increase in leakage current. The device physics that leads to sub-threshold and gate leakage will be described, along with their dependence on circuit design variables. The second part of the tutorial will focus on circuit level leakage estimation and avoidance. Comprehensive description of multiple-Vt techniques for leakage avoidance will be presented along with associated leakage estimation techniques. The third part of the tutorial focuses on chip level effects on leakage. Leakage estimation techniques which consider both inter and intra-die process variations will be covered as well leakage minimization techniques such as Adaptive Body Bias (ABB) and power supply control. The final part of the tutorial covers system and circuit architectures for leakage avoidance. In standby mode, the leakage of the circuit can be lowered by putting it a low-leakage state. This section of the tutorial will cover topics including state assignment for leakage minimization, leakage-driven memory and cache circuits and architectures.

The tutorial is intended for designers and CAD engineers interested in next generation design techniques and methodologies and emerging power challenges. Basic background of VLSI and CAD is useful though not needed.
TUTORIAL 3

RECENT ADVANCES IN FORMAL VERIFICATION

Speakers:

- Pei-Hsin Ho - Synopsys Inc., Beaverton, OR
- Ken McMillan - Cadence Berkeley Labs., Berkeley, CA
- Vigyan Singhal - Jasper Design Automation, Inc., Fremont, CA

Background: Recent progress in model checking techniques has allowed formal verification to be applied to larger and more complex design blocks. This tutorial will examine some of the recent methods that have led to a remarkable expansion in the capacity of formal verification tools. The tutorial will be divided into three parts. The first section will discuss iterative abstraction methods. One key to verifying assertions in larger designs is to be able to automatically determine which parts of a design are relevant to a given property. In the past few years, a number of new techniques have been developed for this purpose. This has made it possible in many cases to verify assertions on designs blocks with thousands of registers. The second portion will cover the role of Boolean SAT solvers in model checking. Many recent model checking approaches make use of Boolean satisfiability solvers. We will look at how SAT solvers work, why and in what cases they can be applied effectively to large problems, and how they can be exploited in model checking. The final section will cover predicate abstraction. This approach has made it possible to apply model checking to verify properties of relatively large pieces of software, such as device drivers in the Windows and Linux kernels.

The tutorial is intended for designers and CAD engineers interested in next generation formal verification methods. Basic background of VLSI and CAD is useful though not needed.
TUTORIAL 4
EMBEDDED SOFTWARE DEVELOPMENT

Speakers:

Lance Brooks – Mentor Graphics Corp., Mobile, AL
Mike McGrath – Intel Corp., Chandler, AZ
Vladimir Ivanovic – California State Univ., Hayward, CA

Background: Embedded software development is unlike software development for desktop or network environments. It is unique not only because every embedded device serves a unique purpose, it is different due to the very nature of firmware being very close to specialized hardware. This tutorial will provide an overview of the various pieces involved to develop embedded applications in a cross-target environment, including: integrated development environments for creating the software; compilers and associated tools for building the software targeted for various embedded CPUs and System-on-Chips (SoCs); debuggers designed to debug software running on the many different types of embedded CPU cores; and finally the different types of debug connections to various target execution environments and actual embedded hardware. The tutorial will also cover the specific problems faced by designers writing software prior to the availability of hardware. Attendees will leave with a good understanding of various pieces and the roles they play so they are better prepared to develop embedded software.

The tutorial is intended for designers and CAD engineers interested in the design of embedded software. Basic background in software development and VLSI is useful though not needed.
SUNDAY PANEL:
CAD FOR HIGH-END DESIGN: HELP, HOPE OR HYPE?

Moderator: Leon Stok - IBM Corp., TJ Watson Research Ctr., Yorktown Heights, NY

While it is tempting to think of CAD as the center of the Universe, there is no denying that it’s the designers that really drive what we do. In keeping with the design focus of the ICCAD Sunday Program, this panel brings together speakers from our Sunday Workshop to discuss their views on the current state of CAD for VLSI. Our panelists are designers representing the industry’s most aggressive microprocessor, ASIC and FPGA-based system design efforts. They will share their views of the current state of CAD including: What’s working? What’s not working? And where do we as an industry need to go? This is a perfect forum for CAD professionals to meet their prime customers and for the designers to meet the CAD industry face to face. Will it be a love fest or a slug fest? Come and find out. Moderator Leon Stok is guaranteed to keep the discussion lively.

Panelists:

Stefan Rusu - Intel Corp., Santa Clara, CA
Peter Hofstee - IBM Corp., Austin, TX
Rick Paul - Cisco Systems Inc., San Jose, CA
Jeff Dauber - Apple Corp., Cupertino, CA
Joe Hanson - Altera Corp., San Jose, CA
Richard Vallee - Amirix Systems Inc., Halifax, NS, Canada
MONDAY PANEL:

SEMICONDUCTOR SLOWDOWN: WHO WILL BLINK FIRST?

Moderator: John Darringer - IBM Corp., TJ Watson Research Ctr., Yorktown Heights, NY

The entire electronics industry has benefited from decades of remarkable adherence to "Moore's Law". Is the fantastic ride over? Is this predicted slowdown for real? What will be the limiting factor? Will the technologists finally fail to deliver the sub-100nm factories on time? Will design automation tools be able to deliver completed designs with the needed productivity advances? Or will the designers finally fail to find an economically viable use for a billion transistors on a chip?

To debate these topics we have a distinguished panel of experts from academia and industry representing technology, tools and design. Come prepared with your questions for the open discussion.

Panelists:

Mark Horowitz - Stanford Univ., Stanford, CA
Yoshiharu Furui - Sony Semiconductor Kyushu Corp., Isahaya-shi, Nagasaki-ken Japan
Kerry Bernstein - IBM Corp., TJ Watson Research Ctr., Yorktown Heights, NY
Ivo Bolsens - Xilinx, Inc., San Jose, CA
Joseph Sawicki - Mentor Graphics Corp., Wilsonville, OR
Aki Fujimura - Cadence Design Systems, Inc., San Jose, CA
Bill Grundmann - Intel, Shrewsbury, MA
Table of Contents

Conference Committee .. iii
Foreword .. iv
Awards .. v
Technical Program Committee ... vi
Reviewers ... viii
Keynote ... x
Tutorial 1: LINUX for EDA ... xi
Tutorial 2: Leakage Issues in IC Design: Trends, Estimation, and Avoidance xi
Tutorial 3: Recent Advances in Formal Verification .. xiii
Tutorial 4: Embedded Software Development .. xiv
Sunday Panel: CAD for High-End Design: Help, Hope, or Hype? ... xv
Monday Panel: Semiconductor Slowdown: Who Will Blink First? .. xvi

Session 1A Interconnect-Centric SoC Design
Moderators: Kaustav Banerjee - Univ. of California, Santa Barbara, CA
 Tajana Simunic - Hewlett-Packard Labs./Stanford Univ., Palo Alto, CA

1A.1 Adaptive Error Protection for Energy Efficiency .. 2
 Lin Li, N. Vijaykrishnan, Mahmut Kandemir, Mary Jane Irwin

1A.2 SAMBA-Bus: A High Performance Bus Architecture for System-on-Chips 8
 Ruibing Lu, Cheng-Kok Koh

1A.3 The Y-Architecture for On-Chip Interconnect: Analysis and Methodology 13
 Hongyu Chen, Chung-Kuan Cheng, Andrew B. Kahng, Ion Mandoiu, Qinke Wang,
 Bo Yao

Session 1B Energy Optimization using Dynamic Voltage Scaling for Embedded Systems
Moderators: Stan Y. Liao - Synopsys, Inc., Mountain View, CA
 Hiroyuki Tomiyama - Nagoya Univ., Nagoya, Japan

1B.1 Generalized Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-
 Time Systems ... 21
 Vishnu Swaminathan, Krishnendu Chakrabarty
1B.2 Approaching the Maximum Energy Saving on Embedded Systems with Multiple Voltages
Shaoxiong Hua, Gang Qu

1B.3 Combined Dynamic Voltage Scaling and Adaptive Body Biasing for Heterogeneous Distributed Real-Time Embedded Systems
Le Yan, Jiong Luo, Niraj K. Jha

Session 1C New Opportunities in High-Level Synthesis
Moderators: James C. Hoe - Carnegie Mellon Univ., Pittsburgh, PA
Steve Haynal - Intel Corp., Hillsboro, OR

1C.1 RTL Power Optimization with Gate Level Accuracy
Qi Wang, Sumit Roy

1C.2 Synthesis of Heterogeneous Distributed Architectures for Memory-Intensive Applications
Chao Huang, Srivaths Ravi, Anand Raghunathan, Niraj K. Jha

1C.3 Achieving Design Closure Through Delay Relaxation Parameter
Ankur Srivastava, Seda Ogrenci Memik, Bo-Kyung Choi, Majid Sarrafzadeh

1C.4 Hardware Scheduling for Dynamic Adaptability using External Profiling and Hardware Threading
Brian Swahn, Soha Hassoun

Session 1D New Ideas in Placement and Floorplanning
Moderators: Zhigang (David) Pan - IBM Corp., Yorktown Heights, NY
Kia Bazargan - Univ. of Minnesota, Minneapolis, MN

1D.1 Bus-Driven Floorplanning
Hua Xiang, Xiaoping Tang, Martin D. F. Wong

1D.2 A Novel Geometric Algorithm for Fast Wire-Optimized Floorplanning
Peter G. Sassone, Sung K. Lim

1D.3 Placement Method Targeting Predictability Robustness and Performance
Cristinel Ababei, Kia Bazargan

1D.4 Efficient Thermal Placement of Standard Cells in 3D ICs using a Force Directed Approach
Brent A. Goplen, Sachin S. Sapatnekar

Session 2A Improvements in SoC Testing
Moderators: Bozena Kaminska - 3MTS, Lake Oswego, OR
Krishnendu Chakrabarty - Duke Univ., Durham, NC

2A.1 Partial Core Encryption for Performance-Efficient Test of SoCs
Ozgur Sinanoglu, Alex Orailoglu

2A.2 TAM Optimization for Mixed-Signal SoCs using Analog Test Wrappers
Anuja Sehgal, Sule Ozev, Krishnendu Chakrabarty
2A.3 Using Distributed Rectangle Bin-Packing Approach for Core-based SoC Test Scheduling with Power Constraints .. 100
Yu Xia, Malgorzata E. Chrzanowska-Jeske, Benyi Wang, Marcin Jeske

Session 2B Electrical and Power Models - System to Transistor Level
Moderators: David Overhauser - Cadence Design Systems, Inc., San Jose, CA
Farid N. Najm - Univ. of Toronto, Toronto, Canada

2B.1 Moment-Based Power Estimation in Very Deep Submicron Technologies 107
Alberto Garcia-Ortiz, Lukusa Kabulepa, Tudor Murgan, Manfred Glesner

2B.2 IDAP: A Tool for High Level Power Estimation of Custom Array Structures 113
Mahesh N. Mamidipaka, Kamal Khouri, Nikil Dutt, Magdy Abadir

2B.3 SOI Transistor Model for Fast Transient Simulation ... 120
Dmitry Nadezhin, Sergey Gavrilev, Alexey Glebov, Yury Egorov, Vladimir P. Zolotov, David Blaauw, Rajendran Panda, Murat Beceer, Alexandre Ardelea, Ajay Patel

Session 2C Embedded Tutorial: Design and CAD Challenges for sub-90nm CMOS Technology
Moderators: Dennis Sylvester - Univ. of Michigan, Ann Arbor, MI
Thomas Burd - Consultant, Berkeley, CA

2C.1 Embedded Tutorial: Design and CAD Challenges in sub-90nm CMOS Technologies .. 129
Kerry Bernstein, Ching-Te Chuang, Rajiv V. Joshi, Ruchir Puri

Session 3A Emerging Techniques in Dynamic Verification
Moderators: Jay Lawrence - Cadence Design Systems, Inc., Chelmsford, MA
Arturo Salz - Synopsys, Inc., Mountain View, CA

3A.1 Fast Cycle-Accurate Behavioral Simulation for Pipelined Processors using Early Pipeline Evaluation ... 138
In-Cheol Park, Sehyeon Kang, Yongseok Yi

3A.2 A Framework for Constrained Functional Verification .. 142
Jun Yuan, Carl Pixley, Adnan Aziz, Ken Albin

3A.3 Generator-Based Verification .. 146
Yunshan Zhu, James H. Kukula

3A.4 Efficient Generation of Monitor Circuits for GSTE Assertion Graphs 154
Alan J. Hu, Jeremy Casas, Jin Yang

Session 3B Delay and Signal Modeling for Timing Analysis
Moderators: David J. Hathaway - IBM Corp., Essex Junction, VT
Timothy Burks - Magma Design Automation, Cupertino, CA

3B.1 Weibull Based Analytical Waveform Model .. 161
Chirayu S. Amin, Florentin Dartu, Yehea I. Ismail
3B.2 Equivalent Waveform Propagation for Static Timing Analysis .. 169
Masanori Hashimoto, Yuji Yamada, Hidetoshi Onodera

3B.3 Timing Analysis in Presence of Power Supply and Ground Voltage Variations...................... 176
Rubil Ahmadi, Farid N. Najm

3B.4 Vectorless Analysis of Supply Noise Induced Delay Variation .. 184
Sanjay Pant, David Blaauw, Vladimir Zolotov, Savithri Sundareswaran, Rajendran Panda

Session 3C Software Techniques for Energy and Performance Optimization in Embedded Systems
Moderators: Wen-Mei W. Hwu - Univ. of Illinois, Urbana, IL
Rainer Leupers - RWTH Aachen Univ. of Tech., Aachen, Germany

3C.1 Array Composition and Decomposition for Optimizing Embedded Applications 193
Guilin Chen, Mahmut Kandemir, Ugur Sezer, Avanti Nadgir

3C.2 Code Placement with Selective Cache Activity Minimization for Embedded Real-Time Software Design... 197
Junhyung Um, Taewhan Kim

3C.3 Energy Optimization of Distributed Embedded Processors by Combined Data Compression and Functional Partitioning ... 201
Jinfeng Liu, Pai H. Chou

Ying Zhang, Krishnendu Chakrabarty, Vishnu Swaminathan

Session 3D Optimization of Global Interconnects
Moderators: Martin D. F. Wong - Univ. of Illinois, Urbana, IL
Atsushi Takahashi - Tokyo Institute of Tech., Tokyo, Japan

3D.1 Retiming for Wire Pipelining in System-On-Chip ... 215
Chuan Lin, Hai Zhou

3D.2 Retiming with Interconnect and Gate Delay ... 221
Chris Chu, Evangeline F. Y. Young, Dennis K. Y. Tong, Sampath Dechu

3D.3 Performance Optimization of Latency Insensitive Systems through Buffer Queue Sizing of Communication Channels ... 227
Ruibing Lu, Cheng-Kok Koh

3D.4 Clock Scheduling and Clocktree Construction for High Performance ASICs 232
Stephan Held, Bernhard Korte, Jens Maßberg, Matthias Ringe, Jens Vygen
Session 4A Numerical Methods for Analog Optimization and Analysis
Moderators: Eric Bracken - Ansoft Corp., Pittsburgh, PA
Joel R. Phillips - Cadence Berkeley Labs., San Jose, CA

4A.1 Initial Sizing of Analog Integrated Circuits by Centering within Topology-Given Implicit Specifications ... 241
Guido Stehr, Michael Pronath, Frank Schenkel, Helmut Graeb, Kurt Antreich

Piet Vanassche, Georges G. Gielen, Willy Sansen

4A.3 Efficient Iterative Time Preconditioners for Harmonic Balance RF Circuit Simulation 251
Fabrice Veersé

Session 4B CAD Algorithms for Emerging Technologies
Moderators: Bernard Courtois - TIMA Labs., Grenoble, France
Michael R. Butts - Cadence Design Systems, Inc., Portland, OR

4B.1 Fredkin/Toffoli Templates for Reversible Logic Synthesis ... 256
Dmitri Maslov, Gerhard W. Dueck, David M. Miller

4B.2 Evaluation of Placement Techniques for DNA Probe Array Layout ... 262
Andrew B. Kahng, Ion Mandoiu, Sherief Reda, Xu Xu, Alex Z. Zelikovsky

4B.3 Physical and Reduced-Order Dynamic Analysis of MEMS ... 270
Sudipto K. DE, Narayan Aluru

Session 4C Design Techniques for Customized Processors
Moderators: Radu Marculescu - Carnegie Mellon Univ., Pittsburgh, PA
Tony Givargis - Univ. of California, Irvine, CA

4C.1 Fast, Accurate Static Analysis for Fixed-Point Finite Precision Effects in DSP Designs......... 275
Claire F. Fang, Rob A. Rutenbar, Tsuhan Chen

4C.2 A Scalable Application-Specific Processor Synthesis Methodology ... 283
Fei Sun, Srivaths Ravi, Anand Raghunathan, Niraj K. Jha

4C.3 INSIDE: INstruction Selection/Identification & Design Exploration for Extensible Processors ... 291
Newton Cheung, Sri Parameswaran, Joerg Henkel

Session 4D New Improvements in Placement
Moderators: Kia Bazargan - Univ. of Minnesota, Minneapolis, MN
Satil Raje - Hier Design Inc., Santa Clara, CA

4D.1 An Enhanced Multilevel Algorithm for Circuit Placement .. 299
Tony F. Chan, Jason Cong, Tim Kong, Joseph R. Shinnerl, Kenton Sze

4D.2 Fractional Cut: Improved Recursive Bisection Placement .. 307
Ameya Agnihotri, Mehmet C. YILDIZ, Ateen Khatkhathe, Ajita Mathur, Satoshi Ono,
Patrick H. Madden
Session 5A: Optimizations for Verification Engines

Moderators: Aarti Gupta - NEC Labs., Princeton, NJ
Eugene Goldberg - Cadence Berkeley Labs., Berkeley, CA

1. **SATORI -- A Fast Sequential SAT Engine for Circuits**
 - Madhu Iyer, Ganapathy Parthasarathy, Kwang Ting (Tim) Cheng
 - Page: 320

2. **CAMA: A Multi-Valued Satisfiability Solver**
 - Cong Liu, Andreas Kuehlmann, Matthew W. Moskewicz
 - Page: 326

3. **The Compositional Far Side of Image Computation**
 - Chao Wang, Gary D. Hachtel, Fabio Somenzi
 - Page: 334

Session 5B: System Design Concepts

Moderators: Vijaykrishnan Narayanan - Penn State Univ., University Park, PA
Yatin Hoskote - Intel Corp., Portland, OR

1. **Cache Optimization For Embedded Processor Cores: An Analytical Approach**
 - Arijit Ghosh, Tony Givargis
 - Page: 342

2. **Fault-Tolerant Techniques for Ambient Intelligent Distributed Systems**
 - Diana Marculescu, Nicholas H. Zamora, Phillip Stanley-Marbell, Radu Marculescu
 - Page: 348

 - Rami Beidas, Jianwen Zhu
 - Page: 356

Session 5C: Analog Design and Methodology

Moderators: Kenneth Kundert - Cadence Design Systems, Inc., San Jose, CA
Georges G. Gielen - Katholieke Univ., Leuven, Belgium

1. **Amplification of Ultrawideband Signals**
 - Won Namgoong, Jongrit Lerdworatawee
 - Page: 363

2. **A Statistical Approach to Estimate the Dynamic Non-Linearity Parameters of Pipeline ADCs**
 - Mohammad Taherzadeh-Sani, Reza Lotfi, Omid Shoaei
 - Page: 367

3. **Systematic Design for Power Minimization of Pipelined Analog-to-Digital Converters**
 - Reza Lotfi, Mohammad Taherzadeh-Sani, Mohammad Yaser Azizi, Omid Shoaei
 - Page: 371

4. **A Framework for Designing Reusable Analog Circuits**
 - Dean Liu, Stefanos Sidiropoulos, Mark Horowitz
 - Page: 375
Session 5D Routing
Moderators: Hai Zhou - Northwestern Univ., Evanston, IL
Charles Chiang - Synopsys, Inc., Mountain View, CA

5D.1 A Fast Crosstalk- and Performance-Driven Multilevel Routing System
Tsung-Yi Ho, Yao-Wen Chang, Sao-Jie Chen, and D. T. Lee

5D.2 A Min-Cost Flow Based Detailed Router for FPGAs
Seokjin Lee, Yongseok Cheon, Martin D. F. Wong

5D.3 Length-Matching Routing for High-Speed Printed Circuit Boards
Muhammet Mustafa Ozdal, Martin D. F. Wong

5D.4 Analytical Bound for Unwanted Clock Skew Due to Wire Width Variation
Anand K. Rajaram, Bing Lu, Wei Guo, Rabi N. Mahapatra, Jiang Hu

Session 6A Automatic Abstraction for Formal Verification
Moderators: James H. Kukula - Synopsys, Inc., Hillsboro, OR
Ken McMillan - Cadence Berkeley Labs., Berkeley, CA

6A.1 Improving Ariadne's Bundle by Following Multiple Threads in Abstraction
Refinement
Chao Wang, Bing Li, HoonSang Jin, Gary D. Hachtel, Fabio Somenzi

6A.2 Iterative Abstraction using SAT-based BMC with Proof Analysis
Aarti Gupta, Malay Ganai, Zijiang Yang, Pranav Ashar

6A.3 Efficient Verification of Hazard-Freedom in Gate-Level Timed Asynchronous Circuits
Curtis A. Nelson, Chris J. Myers, Tomohiro Yoneda

Session 6B Embedded Tutorial: System Level Design and Verification using a Synchronous Lan
Moderators: Nikil Dutt - Univ. of California, Irvine, CA
Joerg Henkel - NEC Labs., Princeton, NJ

6B.1 Embedded Tutorial: System Level Design and Verification using a Synchronous Language
Gérard Berry, Michael Kishinevshy, Satnam Singh

Session 6C Nonlinear Modelling of Analog and Optical Systems
Moderators: Jaijeet Roychowdhury - Univ. of Minnesota, Minneapolis, MN
Mustafa Celik - Magma Design Automation, Cupertino, CA

6C.1 Noise Analysis for Optical Fiber Communication Systems
Alper Demir

6C.2 Analog Macromodeling using Kernel Methods
Joel R. Phillips, João Pedro Afonso, Arlindo Oliveira, L. Miguel Silveira
6C.3 A Hybrid Approach to Nonlinear Macromodel Generation for Time-Varying Analog Circuits... 454
Peng Li, Xin Li, Yang Xu, Lawrence T. Pileggi

Session 6D Timing and Tradeoffs in Placement
Moderators: Igor L. Markov - Univ. of Michigan, Ann Arbor, MI
Rajeev Jayaraman - Xilinx Inc., San Jose, CA

6D.1 Incremental Placement for Timing Optimization ... 463
Wonjoon Choi, Kia Bazargan

6D.2 A Trade-off Oriented Placement Tool.. 467
Huaiyu Xu, Maogang Wang, Bo-Kyung Choi, Majid Sarrafzadeh

6D.3 Optimality and Stability Study of Timing-Driven Placement Algorithms......................... 472
Jason Cong, Michail Romesis, Min Xie

Session 7A Simulation at the Nanometer Scale
Moderators: Kenneth Kundert - Cadence Design Systems, Inc, San Jose, CA
Narayan Aluru - Univ. of Illinois, Urbana, IL

7A.1 A Probabilistic-Based Design Methodology for Nanoscale Computation......................... 480
R. Iris Bahar, Joseph Mundy, Jie Chen

7A.2 Modeling of Ballistic Carbon Nanotube Field Effect Transistors for Efficient Circuit Simulation... 487
Arijit Raychowdhury, Saibal Mukhopadhyay, Kaushik Roy

7A.3 Circuit Simulation of Nanotechnology Devices with Non-Monotonic I-V Characteristics .. 491
Jiayong Le, Lawrence T. Pileggi, Anirudh Devgan

7A.4 A CAD Framework for Co-Design and Analysis of CMOS-SET Hybrid Integrated Circuits.. 497
Santanu Mahapatra, Kaustav Banerjee, Florent Pegeon, Adrian M. Ionescu

Session 7B Energy Issues in Systems Design
Moderators: Wolfgang Nebel - Oldenburg Univ. and OFFIS, Oldenburg, Germany
Marcello Lajolo - NEC Labs., Princeton, NJ

7B.1 A Game Theoretic Approach to Dynamic Energy Minimization in Wireless Transceivers .. 504
Ali Iranli, Hanif Fatemi, Massoud Pedram

7B.2 Communication-Aware Task Scheduling and Voltage Selection for Total Systems Energy Minimization.. 510
Girish V. Varatkar, Radu Marculescu

7B.3 LRU-SEQ: A Novel Replacement Policy for Transition Energy Reduction in Instruction Caches .. 518
Praveen G. Kalla, Xiaobo Sharon Hu, Joerg Henkel
7B.4 Compiler-Based Register Name Adjustment for Low-Power Embedded Processors

Peter Petrov, Alex Orailoglu

Session 7C

Constraint Driven High-Level Synthesis

Moderators: Michael Kishinevsky - Intel Corp., Hillsboro, OR
Barry Pangrle - Synopsys, Inc., Mountain View, CA

7C.1 Gradual Relaxation Techniques with Applications to Behavioral Synthesis

Zhiru Zhang, Yiping Fan, Miodrag Potkonjak, Jason Cong

7C.2 Architectural Synthesis Integrated with Global Placement for Multi-Cycle Communication

Jason Cong, Yiping Fan, Guoling Han, Xun Yang, Zhiru Zhang

7C.3 Binding, Allocation and Floorplanning in Low Power High-Level Synthesis

Ansgar Stammermann, Domenik Helms, Milan Schulte, Arne Schulz, Wolfgang Nebel

7C.4 A High-Level Interconnect Power Model for Design Space Exploration

Pallav Gupta, Lin Zhong, Niraj K. Jha

Session 7D

Optimal Interconnect Synthesis and Analysis

Moderators: Leon Stok - IBM Corp., Yorktown Heights, NY
John P. Fishburn - Consultant, Murray Hill, NJ

7D.1 A Probabilistic Approach to Buffer Insertion

Vishal Khandelwal, Azadeh Davoodi, Akash Nanavati, Ankur Srivastava

7D.2 Simultaneous Analytic Area and Power Optimization for Repeater Insertion

Giuseppe S. Garcea, Nick P. van der Meijs, Ralph H. J. M. Otten

7D.3 Full-Chip Interconnect Power Estimation and Simulation Considering Concurrent Repeater and Flip-Flop Insertion

Weiping Liao, Lei He

7D.4 Power-Optimal Simultaneous Buffer Insertion/Sizing and Wire Sizing

Ruiming Li, Dian Zhou, Jin Liu, Xuan Zeng

Session 8A

Memory Testing

Moderators: Yervant Zorian - Virage Logic, Fremont, CA
Adit Singh - Auburn Univ., Montgomery, AL

8A.1 Dynamic Data-bit Memory Built-In Self-Repair

Michael Nicolaidis, Nadir Achouri, Slimane Boutouba

8A.2 FAME: A Fault-Pattern Based Memory Failure Analysis Framework

Kuo-Liang Cheng, Chih-Wea Wang, Jih-Nung Lee, Yung-Fa Chou, Chih-Tsun Huang, Cheng-Wen Wu

8A.3 Hardware/Software Co-Testing of Embedded Memories in Complex SoCs

Bai Hong Fang, Qiang Xu, Nicola Nicolicci
Session 8B Statistical Static Timing - I
Moderators: Louis Scheffer - Cadence Design Systems, Inc., San Jose, CA
Duncan M. (Hank) Walker - Texas A&M Univ., College Station, TX

8B.1 Block-Based Static Timing Analysis with Uncertainty ... 607
Anirudh Devgan, Chandramouli Kashyap

8B.2 TAU: Timing Analysis Under Uncertainty .. 615
Sarvesh Bhardwaj, Sarma B. Vrudhula, David Blaauw

8B.3 Statistical Timing Analysis Considering Spatial Correlations Using a Single PERT-like Traversal... 621
Hongliang Chang, Sachin S. Sapatnekar

Session 8C Power-Aware Design
Moderators: Tanay Karnik - Intel Corp., Hillsboro, OR
Bora Nikolic - Univ. of California, Berkeley, CA

8C.1 Leakage Power Optimization Techniques for Ultra Deep Sub-Micron Multi-Level Caches ... 627
Nam S. Kim, David Blaauw, Trevor N. Mudge

8C.2 Dynamic Fault-Tolerance and Metrics for Battery Powered, Failure-Prone Systems 633
Phillip Stanley-Marbell, Diana Marculescu

8C.3 Dynamic Platform Management for Configurable Platform-Based System-on-Chips............ 641
Krishna Sekar, Kanishka Lahiri, Sujit Dey

Session 8D Interconnect Reduction
Moderators: Chung-Kuan Cheng - Univ. of California at San Diego, La Jolla, CA
Eli Chiprout - Intel Corp., Chandler, AZ

8D.1 A General s-Domain Hierarchical Network Reduction Algorithm ... 650
Sheldon X.-D. Tan

8D.2 Branch Merge Reduction of RLCM Networks.. 658
Bernard N. Sheehan

8D.3 A Sum-Over-Paths Impulse-Response Moment-Extraction Algorithm for IC-Interconnect Networks: Verification, Coupled RC Lines .. 665
Yannick L. Le Coz, Dhivya Krishna, Dusan M. Petranovic, William M. Loh, Peter Bendix

Session 9A Embedded Tutorial: Mixed Signal DFT: A Concise Overview
Moderators: Erik Larsson - Linköping Univ., Linköping, Sweden
Süleyman Özev - Duke Univ., Durham, NC

9A.1 Embedded Tutorial: Mixed Signal DFT: A Concise Overview.. 672
Bozena Kaminska, Karim Arabi
Session 9B Embedded Tutorial: Manufacturing-Aware Physical Design
Moderators: Sani R. Nassif - IBM Corp., Austin, TX
Sachin S. Sapatnekar - Univ. of Minnesota, Minneapolis, MN
9B.1 Embedded Tutorial: Manufacturing-Aware Physical Design .. 681
Andrew B. Kahng, Puneet Gupta

Session 9C Cool Topics in Logic Synthesis
Moderators: Olivier R. Coudert - Monterey Design Systems, Inc., Sunnyvale, CA
Diana Marculescu - Carnegie Mellon Univ., Pittsburgh, PA
9C.1 A Heuristic to Determine Low Leakage Sleep State Vectors for CMOS Combinational
Circuits ... 689
Rahul M. Rao, Frank Liu, Jeffrey L. Burns, Richard B. Brown
9C.2 Algorithm for Achieving Minimum Energy Consumption in CMOS Circuits Using
Multiple Supply and Threshold Voltages at the Module Level .. 693
Yuvraj S. Dhillon, Abdulkadir U. Diril, Abhijit Chatterjee, Hsien-Hsin S. Lee
9C.3 On the Interaction between Power-Aware FPGA CAD Algorithms ... 701
Julien Lamoureux, Steven J. E. Wilton
9C.4 A Theory of Non-Deterministic Networks ... 709
Alan Mishchenko, Robert K. Brayton

Session 9D Graph Algorithmic Approaches to EDA Problems
Moderators: Dwight D. Hill - Synopsys, Inc., Mountain View, CA
Igor L. Markov - Univ. of Michigan, Ann Arbor, MI
9D.1 Stable Multiway Circuit Partitioning for ECO .. 718
Yongseok Cheon, Seokjin Lee, Martin D. F. Wong
9D.2 Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum
Subdomain Degree Minimization ... 726
Navaratnasothie Selvakumaran, George Karypis
9D.3 An Algorithmic Approach for Generic Parallel Adders .. 734
Jianhua Liu, Shuo Zhou, Haikun Zhu, Chung-Kuan Cheng
9D.4 FROSTY: A Fast Hierarchy Extractor for Industrial CMOS Circuits .. 741
Lei Yang, C.-J. Richard Shi

Session 10A Parametric Considerations in Test Schemes
Moderators: Andre Ivanov - Univ. of British Columbia, Vancouver, Canada
Kwang-Ting (Tim) Cheng - Univ. of California, Santa Barbara, CA
10A.1 Path Delay Estimation using Power Supply Transient Signals: A Comparative Study
using Fourier and Wavelet Analysis ... 748
Abhishek Singh, Jitin Tharian, Jim Plusquellic
10A.2 Layout-Aware Scan Chain Synthesis for Improved Path Delay Fault Coverage
Puneet Gupta, Andrew B. Kahng, Ion I. Mandoiu, Puneet Sharma

10A.3 Static Verification of Test Vectors for IR Drop Failure
Aman A. Kokrady, C. P. Ravikumar

10A.4 ATPG for Noise-Induced Switch Failures in Domino Logic
Rahul Kundu, Ronald D. (Shawn) Blanton

Session 10B Power-Grid and Substrate Analysis
Moderators: Kenneth L. Shepard - Columbia Univ., New York, NY
David Blaauw - Univ. of Michigan, Ann Arbor, MI

10B.1 Statistical Verification of Power Grids Considering Process-Induced Leakage Current Variations
Imad A. Ferzli, Farid N. Najm

10B.2 A Methodology for the Computation of an Upper Bound on Noise Current Spectrum of CMOS Switching Activity
Alessandra Nardi, Haibo Zeng, Joshua L. Garrett, Luca Daniel, Alberto L. Sangiovanni-Vincentelli

10B.3 SuPREME: Substrate and Power-delivery Reluctance-Enhanced Macromodel Evaluation
Tsung Hao Chen, Clement Luk, Charlie Chung-Ping Chen

10B.4 SILCA: Fast-Yet-Accurate Time-Domain Simulation of VLSI Circuits with Strong Parasitic Coupling Effects
Zhao Li, C.-J. Richard Shi

Session 10C Hot Topics in Logic Synthesis
Moderators: Michel Berkelaar - Magma Design Automation, Eindhoven, The Netherlands
Yusuke Matsunaga - Kyushu Univ., Fukuoka, Japan

10C.1 Multi-Domain Clock Skew Scheduling
Kaushik Ravindran, Andreas Kuehlmann, Ellen M. Sentovich

10C.2 Clock Period Minimization of Non-Zero Clock Skew Circuits
Shih-Hsu Huang, Yow-Tyng Nieh

10C.3 Minimum-Area Sequential Budgeting for FPGA
Chao-Yang Yeh, Malgorzata Marek-Sadowska

10C.4 ILP Models for the Synthesis of Asynchronous Control Circuits
Josep Carmona, Jordi Cortadella
Session 10D Interconnect Modeling

Moderators: Nick van der Meijjs - Delft Univ. of Tech., Delft, The Netherlands
Sharad Kapur - Integrand Software, Hoboken, NJ

10D.1 Passive Synthesis of Compact Frequency-Dependent Interconnect Models via Quadrature Spectral Rules ... 827
Traianos Yioultsis, Anne Woo, Andreas C. Cangellaris

10D.2 Analytic Modeling of Interconnects for Deep Sub-Micron Circuits.. 835
Dinesh Pamunuwa, Shauki Elassaad, Hannu Tenhunen

10D.3 A New Surface Integral Formulation for Wideband Impedance Extraction of 3-D Structures 843
Ben Song, Zhenhai Z. Zhu, John D. Rockway, Jacob K. White

10D.4 Switch-Factor Based Loop RLC Modeling for Efficient Timing Analysis................................ 848
Yu Cao, Xiao-dong Yang, Xuejue Huang, Dennis Sylvester

Session 11A Test Data Reduction Techniques

Moderators: Alex Orailoglu - Univ. of California at San Diego, La Jolla, CA
Vivek Chickermane - IBM Corp., Endicott, NY

11A.1 On Compacting Test Response Data Containing Unknown Values .. 855
Chen Wang, Sudhakar M. Reddy, Irith Pomeranz , Janusz Rajski, Jerzy Tyszer

11A.2 Adjustable Width Linear Combinational Scan Vector Decompression 863
C. V. Krishna, Nur A. Touba

11A.3 On Application of Output Masking to Undetectable Faults in Synchronous Sequential Circuits with Design-for-Testability Logic ... 867
Irith Pomeranz, Sudhakar M. Reddy

Moderators: Giovanni De Micheli - Stanford Univ., Stanford CA
Massoud Pedram - Univ. of Southern California, Los Angeles, CA

Rajesh K. Gupta, Sandeep K. Shukla, Sandy Irani

Session 11C Embedded Tutorial: Large-Scale Circuit Placement: Gap and Promise

Moderators: William H. Joyner, Jr. - SRC, Research Triangle Park, NC
Yoji Kajitani - Univ. of Kitakyushu, Fukuoka, Japan

11C.1 Embedded Tutorial: Large-Scale Circuit Placement: Gap and Promise.................................. 883
Jason Cong, Tim Kong, Joseph R. Shinnerl, Min Xie, Xin Yuan

11C.2 Embedded Tutorial: Multi-Million Gate FPGA Physical Design Challenges.......................... 891
Maogang Wang, Abhishek Ranjan, Salil Raje
Session 11D Statistical Static Timing - II

Moderators: Nagib Z. Hakim - Intel Corp., Santa Clara, CA
 Sani R. Nassif - IBM Corp., Austin, TX

11D.1 Statistical Timing Analysis for Intra-Die Process Variations with Spatial Correlations........ 900
 Aseem Agarwal, David Blaauw, Vladimir Zolotov

11D.2 A Statistical Gate-Delay Model Considering Intra-Gate Variability .. 908
 Kenichi Okada, Kento Yamaoka, Hidetoshi Onodera

11D.3 Statistical Clock Skew Analysis Considering Intra-Die Process Variation............................... 914
 Aseem Agarwal, David Blaauw, Vladimir Zolotov
Author Index

<table>
<thead>
<tr>
<th>A</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ababei, Cristinel</td>
<td>81</td>
</tr>
<tr>
<td>Abadir, Magdy</td>
<td>113</td>
</tr>
<tr>
<td>Achouri, Nadir</td>
<td>588</td>
</tr>
<tr>
<td>Adya, Saurabh N.</td>
<td>311</td>
</tr>
<tr>
<td>Afonso, Joao Pedro</td>
<td>446</td>
</tr>
<tr>
<td>Agarwal, Aseem</td>
<td>900, 914</td>
</tr>
<tr>
<td>Agnihotri, Ameya</td>
<td>307</td>
</tr>
<tr>
<td>Ahmadi, Rubil</td>
<td>176</td>
</tr>
<tr>
<td>Albin, Ken</td>
<td>142</td>
</tr>
<tr>
<td>Aluru, Narayan</td>
<td>270</td>
</tr>
<tr>
<td>Amin, Chirayu S.</td>
<td>161</td>
</tr>
<tr>
<td>Antreich, Kurt</td>
<td>241</td>
</tr>
<tr>
<td>Arabi, Karim</td>
<td>672</td>
</tr>
<tr>
<td>Ardelea, Alexandre</td>
<td>120</td>
</tr>
<tr>
<td>Ashar, Pranav</td>
<td>416</td>
</tr>
<tr>
<td>Aziz, Adnan</td>
<td>142</td>
</tr>
<tr>
<td>Azizi, Mohammad Yaser</td>
<td>371</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahar, Iris</td>
<td>480</td>
</tr>
<tr>
<td>Banerjee, Kaustav</td>
<td>497</td>
</tr>
<tr>
<td>Bazargan, Kia</td>
<td>81, 463</td>
</tr>
<tr>
<td>Becer, Murat</td>
<td>120</td>
</tr>
<tr>
<td>Beidas, Rami</td>
<td>356</td>
</tr>
<tr>
<td>Bendix, Peter</td>
<td>665</td>
</tr>
<tr>
<td>Bernstein, Kerry</td>
<td>129</td>
</tr>
<tr>
<td>Berry, Gerard</td>
<td>433</td>
</tr>
<tr>
<td>Bhargwaj, Sarvesh</td>
<td>615</td>
</tr>
<tr>
<td>Blaauw, David. 120, 184, 615, 627, 900, 914</td>
<td></td>
</tr>
<tr>
<td>Blanton, Ronald D.</td>
<td>765</td>
</tr>
<tr>
<td>Boutobza, Slimane</td>
<td>588</td>
</tr>
<tr>
<td>Brayton, Robert K.</td>
<td>709</td>
</tr>
<tr>
<td>Brown, Richard B.</td>
<td>689</td>
</tr>
<tr>
<td>Burns, Jeffrey L.</td>
<td>689</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cangellaris, Andreas C.</td>
<td>827</td>
</tr>
<tr>
<td>Cao, Yu</td>
<td>848</td>
</tr>
<tr>
<td>Carmona, Josep</td>
<td>818</td>
</tr>
<tr>
<td>Casas, Jeremy</td>
<td>154</td>
</tr>
<tr>
<td>Chakrabarty, Krishnendu</td>
<td>21, 95, 209</td>
</tr>
<tr>
<td>Chan, Tony F.</td>
<td>299</td>
</tr>
<tr>
<td>Chang, Hongliang</td>
<td>621</td>
</tr>
<tr>
<td>Chang, Yao-Wen</td>
<td>382</td>
</tr>
<tr>
<td>Chatterjee, Abhijit</td>
<td>693</td>
</tr>
<tr>
<td>Chen, Charlie Chung-Ping</td>
<td>786</td>
</tr>
<tr>
<td>Chen, Guilin</td>
<td>193</td>
</tr>
<tr>
<td>Chen, Hongyu</td>
<td>13</td>
</tr>
<tr>
<td>Chen, Jie</td>
<td>480</td>
</tr>
<tr>
<td>Chen, Sao-Jie</td>
<td>382</td>
</tr>
<tr>
<td>Chen, Tszuhan</td>
<td>275</td>
</tr>
<tr>
<td>Chen, Tsung Hao</td>
<td>786</td>
</tr>
<tr>
<td>Cheng, Chung-Kuan</td>
<td>13, 734</td>
</tr>
<tr>
<td>Cheng, Kuo-Liang</td>
<td>595</td>
</tr>
<tr>
<td>Cheng, Kwang-Ting (Tim)</td>
<td>320</td>
</tr>
<tr>
<td>Cheon, Yongseok</td>
<td>388, 718</td>
</tr>
<tr>
<td>Cheung, Newton</td>
<td>291</td>
</tr>
<tr>
<td>Choi, Bo-Kyung</td>
<td>54, 467</td>
</tr>
<tr>
<td>Choi, Wonjoon</td>
<td>463</td>
</tr>
<tr>
<td>Chou, Pai-H</td>
<td>201</td>
</tr>
<tr>
<td>Chou, Yung-Fa</td>
<td>595</td>
</tr>
<tr>
<td>Chrzanowska-Jeske, Malgorzata E.</td>
<td>100</td>
</tr>
<tr>
<td>Chu, Chris</td>
<td>221</td>
</tr>
<tr>
<td>Chuang, Ching-Te</td>
<td>129</td>
</tr>
<tr>
<td>Cong, Jason</td>
<td>299, 472, 529, 536, 883</td>
</tr>
<tr>
<td>Cortadella, Jordi</td>
<td>818</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel, Luca</td>
<td>778</td>
</tr>
<tr>
<td>Darte, Florentin</td>
<td>161</td>
</tr>
<tr>
<td>Davoodi, Azadeh</td>
<td>560</td>
</tr>
<tr>
<td>DE, Sudipto K</td>
<td>270</td>
</tr>
<tr>
<td>Dechu, Sampath</td>
<td>221</td>
</tr>
<tr>
<td>Demir, Alper</td>
<td>441</td>
</tr>
<tr>
<td>Devgan, Anirudh</td>
<td>491, 607</td>
</tr>
<tr>
<td>Dey, Sujit</td>
<td>641</td>
</tr>
<tr>
<td>Dhillon, Yuvraj S.</td>
<td>693</td>
</tr>
<tr>
<td>Diril, Abdulkadir U</td>
<td>693</td>
</tr>
<tr>
<td>Dueck, Gerhard W.</td>
<td>256</td>
</tr>
<tr>
<td>Dutt, Nikil</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egorov, Yury</td>
<td>120</td>
</tr>
<tr>
<td>Elassaad, Shauki</td>
<td>835</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan, Yiping</td>
<td>529, 536</td>
</tr>
<tr>
<td>Fang, Bai Hong</td>
<td>599</td>
</tr>
<tr>
<td>Fang, Claire F</td>
<td>275</td>
</tr>
<tr>
<td>Fatemi, Hanif</td>
<td>504</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Ferzli, Imad A</td>
<td>770</td>
</tr>
<tr>
<td>Ganai, Malay</td>
<td>416</td>
</tr>
<tr>
<td>Garcea, Giuseppe S</td>
<td>568</td>
</tr>
<tr>
<td>Garcia-Ortiz, Alberto</td>
<td>107</td>
</tr>
<tr>
<td>Garrett, Joshua L</td>
<td>778</td>
</tr>
<tr>
<td>Gavrilov, Sergey</td>
<td>120</td>
</tr>
<tr>
<td>Ghosh, Arijit</td>
<td>342</td>
</tr>
<tr>
<td>Gielen, Georges G</td>
<td>247</td>
</tr>
<tr>
<td>Givargis, Tony</td>
<td>342</td>
</tr>
<tr>
<td>Glebov, Alexey</td>
<td>120</td>
</tr>
<tr>
<td>Glesner, Manfred</td>
<td>107</td>
</tr>
<tr>
<td>Goplen, Brent A</td>
<td>86</td>
</tr>
<tr>
<td>Graeb, Helmut</td>
<td>241</td>
</tr>
<tr>
<td>Guo, Wei</td>
<td>401</td>
</tr>
<tr>
<td>Gupta, Aarti</td>
<td>416</td>
</tr>
<tr>
<td>Gupta, Pallav</td>
<td>551</td>
</tr>
<tr>
<td>Gupta, Puneet</td>
<td>681, 754</td>
</tr>
<tr>
<td>Gupta, Rajesh K</td>
<td>874</td>
</tr>
<tr>
<td>Hachtel, Gary D</td>
<td>334, 408</td>
</tr>
<tr>
<td>Han, Guoling</td>
<td>536</td>
</tr>
<tr>
<td>Hashimoto, Masanori</td>
<td>169</td>
</tr>
<tr>
<td>Hassoun, Soha</td>
<td>58</td>
</tr>
<tr>
<td>He, Lei</td>
<td>574</td>
</tr>
<tr>
<td>Held, Stephan</td>
<td>232</td>
</tr>
<tr>
<td>Helms, Domenik</td>
<td>544</td>
</tr>
<tr>
<td>Henkel, Joerg</td>
<td>291, 518</td>
</tr>
<tr>
<td>Ho, Tsung-Yi</td>
<td>382</td>
</tr>
<tr>
<td>Horowtiz, Mark</td>
<td>375</td>
</tr>
<tr>
<td>Hu, Alan J</td>
<td>154</td>
</tr>
<tr>
<td>Hu, Jiang</td>
<td>401</td>
</tr>
<tr>
<td>Hu, Xiaobo Sharon</td>
<td>518</td>
</tr>
<tr>
<td>Hua, Shaoxiong</td>
<td>26</td>
</tr>
<tr>
<td>Huang, Chao</td>
<td>46</td>
</tr>
<tr>
<td>Huang, Chih-Tsun</td>
<td>595</td>
</tr>
<tr>
<td>Huang, Shih-Hsu</td>
<td>809</td>
</tr>
<tr>
<td>Huang, Xuejue</td>
<td>848</td>
</tr>
<tr>
<td>Ionescu, Adrian M</td>
<td>497</td>
</tr>
<tr>
<td>Irani, Sandy</td>
<td>874</td>
</tr>
<tr>
<td>Iranli, Ali</td>
<td>504</td>
</tr>
<tr>
<td>Irwin, Mary Jane</td>
<td>2</td>
</tr>
<tr>
<td>Ismail, Yehea I</td>
<td>161</td>
</tr>
<tr>
<td>Iyer, Madhu</td>
<td>320</td>
</tr>
<tr>
<td>Jeske, Marcin</td>
<td>100</td>
</tr>
<tr>
<td>Jha, Niraj K</td>
<td>30, 46, 283, 551</td>
</tr>
<tr>
<td>Jin, HoonSang</td>
<td>408</td>
</tr>
<tr>
<td>Joshi, Rajiv V</td>
<td>129</td>
</tr>
<tr>
<td>Kabulepa, Lukusa</td>
<td>107</td>
</tr>
<tr>
<td>Kahng, Andrew B</td>
<td>13, 262, 681, 754</td>
</tr>
<tr>
<td>Kalla, Praveen G</td>
<td>518</td>
</tr>
<tr>
<td>Kaminska, Bozena</td>
<td>672</td>
</tr>
<tr>
<td>Kandemir, Mahmut</td>
<td>2, 193</td>
</tr>
<tr>
<td>Kang, Sehyeon</td>
<td>138</td>
</tr>
<tr>
<td>Karypis, George</td>
<td>726</td>
</tr>
<tr>
<td>Kashyap, Chandramouli</td>
<td>607</td>
</tr>
<tr>
<td>Khandelwal, Vishal</td>
<td>560</td>
</tr>
<tr>
<td>Khatkhate, Ateen</td>
<td>307</td>
</tr>
<tr>
<td>Khouri, Kamal</td>
<td>113</td>
</tr>
<tr>
<td>Kim, Nam S</td>
<td>627</td>
</tr>
<tr>
<td>Kim, Taewhan</td>
<td>197</td>
</tr>
<tr>
<td>Kishinevshy, Michael</td>
<td>433</td>
</tr>
<tr>
<td>Koh, Cheng-Kok</td>
<td>8, 227</td>
</tr>
<tr>
<td>Kokrady, Aman A</td>
<td>760</td>
</tr>
<tr>
<td>Kong, Tim</td>
<td>299, 883</td>
</tr>
<tr>
<td>Korte, Bernhard</td>
<td>232</td>
</tr>
<tr>
<td>Krishna, C. V</td>
<td>863</td>
</tr>
<tr>
<td>Krishna, Dhivya</td>
<td>665</td>
</tr>
<tr>
<td>Kuehlmann, Andreas</td>
<td>326, 801</td>
</tr>
<tr>
<td>Kukula, James H</td>
<td>146</td>
</tr>
<tr>
<td>Kundu, Rahul</td>
<td>765</td>
</tr>
<tr>
<td>Lahiri, Kanishka</td>
<td>641</td>
</tr>
<tr>
<td>Lamoureux, Julien</td>
<td>701</td>
</tr>
<tr>
<td>Le Coz, Yannick L</td>
<td>665</td>
</tr>
<tr>
<td>Le, Jiayong</td>
<td>491</td>
</tr>
<tr>
<td>Lee, D. T.</td>
<td>382</td>
</tr>
<tr>
<td>Lee, Hsien-Hsin S</td>
<td>693</td>
</tr>
<tr>
<td>Lee, Jih-Nung</td>
<td>595</td>
</tr>
<tr>
<td>Lee, Seokjin</td>
<td>388, 718</td>
</tr>
<tr>
<td>Lerdworateawee, Jongrit</td>
<td>363</td>
</tr>
<tr>
<td>Li, Bing</td>
<td>408</td>
</tr>
<tr>
<td>Li, Lin</td>
<td>2</td>
</tr>
<tr>
<td>Li, Peng</td>
<td>454</td>
</tr>
<tr>
<td>Li, Ruiming</td>
<td>581</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Li, Xin</td>
<td>454</td>
</tr>
<tr>
<td>Li, Zhao</td>
<td>793</td>
</tr>
<tr>
<td>Liao, Weiping</td>
<td>574</td>
</tr>
<tr>
<td>Lim, Sung K.</td>
<td>74</td>
</tr>
<tr>
<td>Lin, Chuan</td>
<td>215</td>
</tr>
<tr>
<td>Liu, Cong</td>
<td>326</td>
</tr>
<tr>
<td>Liu, Dean</td>
<td>375</td>
</tr>
<tr>
<td>Liu, Frank</td>
<td>689</td>
</tr>
<tr>
<td>Liu, Jianhua</td>
<td>734</td>
</tr>
<tr>
<td>Liu, Jin</td>
<td>581</td>
</tr>
<tr>
<td>Liu, Jinfeng</td>
<td>201</td>
</tr>
<tr>
<td>Loh, William M.</td>
<td>665</td>
</tr>
<tr>
<td>Lotfi, Reza</td>
<td>367, 371</td>
</tr>
<tr>
<td>Lu, Bing</td>
<td>401</td>
</tr>
<tr>
<td>Lu, Ruibing</td>
<td>8, 227</td>
</tr>
<tr>
<td>Luk, Clement</td>
<td>786</td>
</tr>
<tr>
<td>Luo, Jiong</td>
<td>30</td>
</tr>
<tr>
<td>Madden, Patrick H.</td>
<td>307</td>
</tr>
<tr>
<td>Mahapatra, Rabi N.</td>
<td>401</td>
</tr>
<tr>
<td>Mahapatra, Santanu</td>
<td>497</td>
</tr>
<tr>
<td>Mamidipaka, Mahesh N.</td>
<td>113</td>
</tr>
<tr>
<td>Mandoiu, Ion</td>
<td>13, 262, 754</td>
</tr>
<tr>
<td>Marculescu, Diana</td>
<td>348, 633</td>
</tr>
<tr>
<td>Marculescu, Radu</td>
<td>348, 510</td>
</tr>
<tr>
<td>Marek-Sadowska, Malgorzata</td>
<td>813</td>
</tr>
<tr>
<td>Markov, Igor L.</td>
<td>311</td>
</tr>
<tr>
<td>Maslov, Dmitri</td>
<td>256</td>
</tr>
<tr>
<td>Maßberg, Jens</td>
<td>232</td>
</tr>
<tr>
<td>Mathur, Ajita</td>
<td>307</td>
</tr>
<tr>
<td>Memik, Seda Ogrenci</td>
<td>54</td>
</tr>
<tr>
<td>Miller, David M.</td>
<td>256</td>
</tr>
<tr>
<td>Mishechenko, Alan</td>
<td>709</td>
</tr>
<tr>
<td>Moskewicz, Matthew W.</td>
<td>326</td>
</tr>
<tr>
<td>Mudge, Trevor N.</td>
<td>627</td>
</tr>
<tr>
<td>Mukhopadhyay, Saibal</td>
<td>487</td>
</tr>
<tr>
<td>Mundy, Joseph</td>
<td>480</td>
</tr>
<tr>
<td>Murgan, Tudor</td>
<td>107</td>
</tr>
<tr>
<td>Myers, Chris J.</td>
<td>424</td>
</tr>
<tr>
<td>Nadezhin, Dmitry</td>
<td>120</td>
</tr>
<tr>
<td>Nadgir, Avanti</td>
<td>193</td>
</tr>
<tr>
<td>Najm, Farid N.</td>
<td>176, 770</td>
</tr>
<tr>
<td>Namgoong, Won</td>
<td>363</td>
</tr>
<tr>
<td>Nanavati, Akash</td>
<td>560</td>
</tr>
<tr>
<td>Nardi, Alessandra</td>
<td>778</td>
</tr>
<tr>
<td>Nebel, Wolfgang</td>
<td>544</td>
</tr>
<tr>
<td>Nelson, Curtis A.</td>
<td>424</td>
</tr>
<tr>
<td>Nicolaidis, Michael</td>
<td>588</td>
</tr>
<tr>
<td>Nicolici, Nicola</td>
<td>599</td>
</tr>
<tr>
<td>Nieh, Yow-Tyng</td>
<td>809</td>
</tr>
<tr>
<td>Okada, Kenichi</td>
<td>908</td>
</tr>
<tr>
<td>Oliveira, Arlindo</td>
<td>446</td>
</tr>
<tr>
<td>Ono, Satoshi</td>
<td>307</td>
</tr>
<tr>
<td>Onodera, Hidetoshi</td>
<td>169, 908</td>
</tr>
<tr>
<td>Orailoglu, Alex</td>
<td>91, 523</td>
</tr>
<tr>
<td>Otten, Ralph H.J.M.</td>
<td>568</td>
</tr>
<tr>
<td>Ozdal, Muhammet Mustafa</td>
<td>394</td>
</tr>
<tr>
<td>Ozev, Sule</td>
<td>95</td>
</tr>
<tr>
<td>Pamunuwa, Dinesh</td>
<td>835</td>
</tr>
<tr>
<td>Panda, Rajendran</td>
<td>120, 184</td>
</tr>
<tr>
<td>Pant, Sanjay</td>
<td>184</td>
</tr>
<tr>
<td>Parameswaran, Sri</td>
<td>291</td>
</tr>
<tr>
<td>Park, In-Cheol</td>
<td>138</td>
</tr>
<tr>
<td>Parthasarathy, Ganapathy</td>
<td>320</td>
</tr>
<tr>
<td>Patel, Ajay</td>
<td>120</td>
</tr>
<tr>
<td>Pedram, Massoud</td>
<td>504</td>
</tr>
<tr>
<td>Pegeon, Florent</td>
<td>497</td>
</tr>
<tr>
<td>Petranovic, Susan M.</td>
<td>665</td>
</tr>
<tr>
<td>Petrov, Peter</td>
<td>523</td>
</tr>
<tr>
<td>Phillips, Joel R.</td>
<td>446</td>
</tr>
<tr>
<td>Pileggi, Lawrence T.</td>
<td>454, 491</td>
</tr>
<tr>
<td>Pixley, Carl</td>
<td>142</td>
</tr>
<tr>
<td>Plusquellic, Jim</td>
<td>748</td>
</tr>
<tr>
<td>Pomeranz, Irith</td>
<td>855, 867</td>
</tr>
<tr>
<td>Potkonjak, Miodrag</td>
<td>529</td>
</tr>
<tr>
<td>Pronath, Michael</td>
<td>241</td>
</tr>
<tr>
<td>Puri, Ruchir</td>
<td>129</td>
</tr>
<tr>
<td>Qu, Gang</td>
<td>26</td>
</tr>
<tr>
<td>Raghunathan, Anand</td>
<td>46, 283</td>
</tr>
<tr>
<td>Rajaram, Anand K.</td>
<td>401</td>
</tr>
<tr>
<td>Raje, Salil</td>
<td>891</td>
</tr>
<tr>
<td>Rajsie, Janusz</td>
<td>855</td>
</tr>
<tr>
<td>Ranjan, Abhishek</td>
<td>891</td>
</tr>
<tr>
<td>Rao, Rahul M.</td>
<td>689</td>
</tr>
</tbody>
</table>
Ravi, Srivaths 46, 283
Ravikumar, C. P..................................... 760
Ravindran, Kaushik 801
Raychowdhury, Arijit 487
Reda, Sherief 262
Reddy, Sudhakar M. 855, 867
Ringe, Matthias 232
Rockway, John D. 843
Romesis, Michail 472
Roy, Kaushik .. 487
Roy, Sumit .. 39
Rutenbar, Rob A. 275

S

Sangiovanni-Vincentelli, Alberto L........ 778
Sansen, Willy 247
Sapatnekar, Sachin S........................... 86, 621
Sarrafzadeh, Majid 54, 467
Sassone, Peter G.................................... 74
Schenkel, Frank 241
Schulte, Milan 544
Schulz, Arne 544
Sehgal, Anuja 95
Sekar, Krishna 641
Selvakumaran, Navaratnasothie.......... 726
Sentovich, Ellen M. 801
Sezer, Ugur .. 193
Sharma, Puneet 754
Sheehan, Bernard N. 658
Shi, C.-J. Richard 741, 793
Shinnerl, Joseph R. 299, 883
Shoaei, Omid 367, 371
Shukla, Sandeep 874
Sidiroopoulos, Stefanos 375
Silveira, Miguel 446
Sinanoglu, Ozgur 91
Singh, Abhishek 748
Singh, Satnam 433
Somenzi, Fabio 334, 408
Song, Ben .. 843
Srivastava, Ankur 54, 560
Stammermann, Ansgar 544
Stanley-Marbell, Phillip 348, 633
Stehr, Guido 241
Sun, Fei .. 283
Sundareswaran, Savithri 184
Swahn, Brian 58

Swaminathan, Vishnu 21, 209
Sylvester, Dennis 848
Sze, Kenton 299

T

Taherzadeh-Sani, Mohammad 367, 371
Tan, Sheldon X.-D. 650
Tang, Xiaoping 66
Tehunen, Hannu 835
Tharian, Jitin 748
Tong, Dennis K.Y. 221
Toubia, Nur 863
Tyszer, Jerzy 855

U

Um, Junhyung 197

V

van der Meijs, Nick P 568
Vanassche, Piet 247
Varatkar, Girish V. 510
Veerse, Fabrice 251
Vijaykrishnan, N. 2
Villarrubia, Paul G. 311
Vrudhula, Sarma B. 615
Vygen, Jens 232

W

Wang, Benyi 100
Wang, Chao 334, 408
Wang, Chen 855
Wang, Chih-Wea 595
Wang, Maogang 467, 891
Wang, Qi ... 39
Wang, Qinke 13
White, Jacob K. 843
Wilton, Steven J. E. 701
Wong, Martin D. F. 66, 388, 394, 718
Woo, Anne 827
Wu, Cheng-Wen 595

X

Xia, Yu ... 100
Xiang, Hua 66
Xie, Min ... 472, 883
Xu, Huaiyu 467
Xu, Qiang 599
Xu, Xu ... 262
Xu, Yang ... 454

Y

Yamada, Yuji .. 169
Yamaoka, Kento .. 908
Yan, Le ... 30
Yang, Jin ... 154
Yang, Lei ... 741
Yang, Xiao-dong ... 848
Yang, Xun .. 536
Yang, Zijiang ... 416
Yao, Bo ... 13
Yeh, Chao-Yang .. 813
Yi, Yongseok .. 138
YILDIZ, Mehmet C. 307
Yioultsis, Traianos 827
Yoneda, Tomohiro .. 424
Young, Evangeline F.Y 221
Yuan, Jun .. 142
Yuan, Xin .. 883

Z

Zamora, Nicholas H 348
Zelikovsky, Alex .. 262
Zeng, Haibo .. 778
Zeng, Xuan .. 581
Zhang, Ying ... 209
Zhang, Zhiru ... 529, 536
Zhong, Lin .. 551
Zhou, Dian ... 581
Zhou, Hai ... 215
Zhou, Shuo .. 734
Zhu, Haikun .. 734
Zhu, Jianwen .. 356
Zhu, Yunshan ... 146
Zhu, Zhenhai Z .. 843
Zolotov, Vladimir 120, 184, 900, 914