
Mixing ATPG and Property Checking for Testing HW/SW
Interfaces ∗

Alessandro Fin
University of Verona
Strada le Grazie, 2
37134 Verona, Italy

fin@sci.univr.it

Franco Fummi
University of Verona
Strada le Grazie, 2
37134 Verona, Italy

fummi@sci.univr.it

Graziano Pravadelli
University of Verona
Strada le Grazie, 2
37134 Verona, Italy

pravadelli@sci.univr.it

ABSTRACT
A critical part of the design of HW/SW systems concerns
the definition of the HW/SW interface. Such interfaces do
not directly map a functionality of the system description,
but they are inferred by the characteristics of the selected
programmable device (CPUs, DSPs, ASIPs, etc.). Their
addition to the design can modify the behavior of the orig-
inal system, thus their verification is a hard task. The pro-
posed verification methodology joins functional verification
and property checking in order to avoid their respective lim-
itations. The methodology is focused on SystemC descrip-
tions that can be automatically synthesized. This is par-
ticularly important since commercial model checking tools
work on structural hardware descriptions, which can be ob-
tained by performing rapid prototyping of both HW and SW
parts of SystemC models. The proposed approach has been
verified on the SystemC model that is the reference synthe-
sis example of one of the most powerful SystemC synthesis
environment.

Categories and Subject Descriptors
H.8.1 [Harware]: Testing

General Terms
Design, Verification

Keywords
ATPG, Fault simulation, Model Cecking

1. INTRODUCTION
Basic tasks of designing HW/SW systems concern their

modeling and verification. By adopting the SystemC phi-
losophy, the modeling activity can be performed by using

∗Research activity partially supported by the European
Community IST-2001-34607 project: SYMBAD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’03, April 28–29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0006 ...$5.00.

a unique description language (C++), which can represent
both software and hardware modules [1].

Hardware

HW / SW Interface

Programmable
Device

M3 M4

M1

M2

M5

Functionaly Partitioned Design

M3

M4

M2

M5

M1

Unpartitioned
Design

Functional
partitioning

Hw/Sw
partitioning

Hw/Sw Partitioned Design

Static Design
Specifications

Performance
Design

Specifications
&

Profiling
Informations

Functional
Equivalence

Checking

Functional
Equivalence

Checking

Figure 1: Design flow with HW/SW interface defi-
nition.

Under this assumption, the design flow becomes a continu-
ous refinement of an initial system description (see Figure 1).
Such a description is partitioned, at first, into components,
which are then characterized as HW or SW parts by adopt-
ing, for instance, performance estimation metrics [2]. This
characterization (last step in Figure 1) introduces in the de-
sign new parts so called as interfaces [3]. Verification of
interfaces is a particularly hard task [4], since they do not
directly map a functionality of the system modeled by the
initial description.

This paper is focused on the definition of a verification
methodology able to validate the insertion of interfaces into
a system description partitioned between HW and SW com-
ponents. The aim of the proposed verification methodol-

303

ogy is to combine functional verification based on simulation
with model checking. This joined approach is performed in
order to improve the fault coverage achieved by using a func-
tional ATPG on the HW/SW interface of a digital device.
Undetected faults are analyzed in depth by using model
checking in order to characterize their functional interpreta-
tion either as hard to verify configurations or as dangerous
design errors. The methodology is applied to synthesizable
SystemC descriptions, thus a rapid hardware synthesis of
the software part allows to apply standard model checking
tools (e.g., SMV [5] and RuleBase [6]) working on structural
hardware descriptions only. This allows to characterize un-
detected faults of the HW/SW interface.

2. METHODOLODY
The low cost and the flexibility of programmable devices

as CPUs and DSPs allow the definition of modern digital de-
signs as a mix of hardware and software modules. The crit-
ical functionalities are developed as ad-hoc hardware com-
ponents, whereas the general functionalities run on a pro-
grammable device. This approach decreases the cost and
the development time of the new design, since it uses fully
tested programmable devices, from chip vendors, and devel-
opers have to focus their effort only on the required ad-hoc
hardware components. Adopting a system level design lan-
guage, e.g. SystemC, for the initial design description, the
development of the software modules require a minor effort.

2.1 Hw/Sw partitioning
System level design languages (e.g. SystemC) and soft-

ware languages (e.g. C++, C) can be adopted to describe
the whole system at early stage of development (see Fig-
ure 1). Design specifications and profiling sessions allow to
identify the critical sections of the design. Designers have
to refine these results in order to choose which functionali-
ties will become a hardware module. The general adopted
methodology is to develop as hardware modules the most
time consuming functionalities [2].

2.2 Test set inheritance
Every time a design description, at an identified abstrac-

tion level, is converted to the description at the lower level,
there is the need of a validation phase. This test is performed
by applying the whole set of test patterns, identified at the
higher abstraction level, on the new description at the lower
level (see the leftmost part of Figure 1). Moreover, this set
of test patterns is extended at each development phase with
some new level-specific test vectors that are simulated on the
previous-level representation to identify correct responses.

2.3 Interface extraction
The HW/SW partitioning step requires the definition of

an interface between hardware and software functionalities.
The goal of the defined interface is to rebuild the data and
control dependencies between hardware and software func-
tionalities. Several alternatives can be considered with re-
spect to this functional constraint:

• parallel interface with polling;

• serial interface with polling;

• parallel interface with interrupt;

• serial interface with interrupt.

2.4 Interface verification
The interface is a new hardware component of the devel-

oped architecture. It could not be completely sketeched in
the initial design specification, because it depends on the
adopted implementation details. Thus, it has to be accu-
rately tested and verified. Test sets, previously generated
for the design before the HW/SW partitioning, represent
an excellent initial test set to check the new design defini-
tion. These test sequences can test the main feature of the
interface, but the full interface verification can require a spe-
cific test generation phase. The proposed methodology for
HW/SW interface verification consists of the following three
steps as reported in Figure 2:

• ATPG on the unpartitioned design;
• fault Simulation and ATPG on the HW/SW parti-

tioned design;
• interface fault coverage improvement by using model

checking.
This verification methodology focuses the use of the pow-

erful, but computational expensive, model checking analysis,
to the only hard to detect faults, which can really repre-
sent design errors. Moreover, this is a general methodology,
which can be efficiently applied to test all kind of interfaces
(HW/SW, HW/HW, data format transfer, etc.)

Unpartitioned
Design

Hw/Sw

Partitioning

Hw/Sw
Module

ATPG &
Error

Simulation

Software
Module

Coverage

Hw/Sw
Interface
Coverage

Hardware
Module

Coverage

Coverage
Threshold

Formal
Method

Procedures

Extracted

Formal
Properties

GOAL:

Tested

Interface

Design
ATPG

Test
Sequences

... ...

Figure 2: HW/SW interface verification methodol-
ogy.

3. FUNCTIONAL TPG
Every time a design description, at an identified abstrac-

tion level, is converted to the description at a lower level,
a validation phase is mandatory. This task is usually per-
formed by using a simulation-based approach whenever for-
mal verification techniques cannot be applied. This test is

304

performed by applying the whole set of test patterns, iden-
tified at the higher abstraction level, on the new description
at the lower level. Moreover, this set of test patterns is
extended at each development phase with some new level-
specific test vectors that are simulated on the previous-level
representation to identify correct responses. By using a com-
mon description language covering all phases of a design
hierarchy, this testing strategy could be repeated from the
system level to the structural level. SystemC could be this
common description language.

The proposed testing strategy is based on the bit-coverage
fault model [7], which shows a high correlation between
faults modeled on descriptions of different abstraction levels.
This fault model has been used to correlate test patterns be-
tween the behavioral, RT and gate-level for hardware com-
ponents only. In this paper, a similar approach is applied to
embedded systems, thus testing both hardware and software
parts. Each bit of each variable, condition and input/output
port is set stuck-at zero or one to obtain erroneous SystemC
descriptions that are compared to the fault-free description
in order to identify functional test patterns.

The current implementation of the TPG is based on a ge-
netic engine. The test generation algorithm evolves a pop-
ulation of test sequences. The fitness of the generated se-
quences is proportional to the sequence fault coverage. Two
operators have been developed for intra-sequence and inter-
sequence crossover. A classic mutation operator can flip
each bit of the generated test sequences.

Test sequences are applied to both fault-free design and
faulty design. The output checker compares the output com-
ing from two designs. A fault is detected every time the
former comparison on primary output fails. Each detected
fault is dropped from the fault list and any new generated
test sequence is applied on all the undetected faults. Each
bit-fault in the design is identified by a unique fault code.
An extra input port is added to the original design module
to control the simulation of the target fault.

The used fault injection method differs from the origi-
nal version presented in [8], since it is performed directly
on SystemC code instead of on the in-memory intermediate
representation of the design. This fault injection schema
produces only one erroneous SystemC design, which simu-
lates all the erroneous behaviors by driving the error port.

Finally, three halt conditions can be set for the GA test
generation engine:

• fault coverage threshold attainment (the default value
is 100%);

• maximum generation time threshold;

• maximum number of generated sequences.

These conditions, in conjunction with the fitness function,
allow to control the evolution of the GA TPG.

4. PROPERTY CHECKING
The application of the ATPG phase of the proposed method-

ology generally produces quite high fault coverage, however,
some faults remain undetected, particularly on the HW/SW
interface due to the verification problems described in the in-
troduction. Are these faults hards to detect or redundants?
In this work, we propose to use model checking in order to
investigate the nature of these undetected faults.

Two kinds of formal properties can be written in order to
resolve the ambiguity about the nature of undetected faults:

Specific design dependent properties. They are gener-
ated with respect to the specification and the expected func-
tionality of the system to prove the correctness of the design
under test. This kind of properties is suitable to prove the
overall correctness of an implementation with respect to the
corresponding specification. Indeed, we want just to focus
the attention on some particular faults, those not detected
by the ATPG.
General output comparison properties (OCP). They
depend only on the primary outputs of the system and not
on its functionality, thus no knowledge of the system behav-
ior is required and automatic generation becomes feasible.
The main idea is the same used for fault simulation. We as-
sume the presence of a stuck-at fault in the faulty description
of the system and we compare its outputs with the ones ob-
tained by the fault-free system. The model checker should
refutes a simple property as one represented in Figure 3 in
order to generate a test pattern identifying the analyzed
fault. Figure 3 represents the main file written to prove the
OCP property by using the Cadence SMV Model Checker [5]
on the VD iq design (see Section 5). This kind of proper-
ties could be very hard to be proved, because the model
checker must manage a finite state machine (FSM) with a
very high number of states to complete the verification of
general output comparison properties.
#include "VD iq.smv"

MODULE main() {
-- port declarations
-- fault-free system instantiation
-- faulty system instantiation
-- error port activates fault 2938
error port := 2938;
-- formula to be proved
OCP: assert G((po 1=po 1 e)&...&(po N=po N e));
}

Figure 3: Example of OCP property. po i are primary
outputs of the fault-free system, po i e are primary
outputs of the faulty system

In despite of computational complexity problems, general
output comparison properties are more suitable for our pur-
pose, than specific design dependent properties since the
possibility of an easy automatic generation make them more
attractive. In order to overcame complexity problem, a
good choice is represented by Bounded Model Check-
ing. BMC is a technique that uses a SAT solver to search for
counterexamples of a bounded length. Finding counterex-
amples in this way is sometimes significantly faster than
using symbolic model checking. We used the zchaff [9] SAT
solver joined with the SMV model checker since it allows
to solve problems with more than one million variables and
ten million clauses.

5. EXPERIMENTAL RESULTS
The proposed methodology has been applied to an inverse

quantizer of the MPEG decoder described in [10]. This sys-
tem is the synthesis reference example of SystemC Compiler.
Figure 4 shows the example architecture, which is composed
of three main modules.

The profiling analysis indicates the inverse quantization

submodule as the most critical part of the whole design. In
fact, from a performance point of view, it requires the ma-

305

Design configuration SystemC code line VHDL code line PI# PO# Proc.#

Unpartitioned 557 17565 67 22 2
Partitioned 884 27534 67 22 4

Table 1: Characteristics of the example.

Design Configuration Fault# ATPG F.C.% ATPG Time Fault Sim. F.C.% Total F.C.% Seq.# Vect.#

Unpartitioned 3262 59.1 5405 s. - 59.1 47 30936
Partitioned 3364 60.8 7329 s. 54.2 62.1 46 32110

Table 2: ATPG and fault simulation results.

Simulation Property Checking Total

Faults Det. Faults Det. Untestable Faults Def. Properties Time Det. F.C.% Efficiency%
82 79 3 1 2 18 1132 s. 80 97.5 100

Table 3: Joint verification technique for the HW/SW interface.

jority of the resources. Thus, it is the best candidate to be-
come a hardware component, whereas the saturation and
the mismatch control modules will become two software
routines to be executed on the selected programmable de-
vice. Figure 5 shows the post synthesis architecture. Table 1
shows the features of both partitioned and unpartitioned ar-
chitectures.

Saturation
Mismatch
Control

F”[u][v] F”[u][v]Inverse
Quantization

Q[u][v]

W[u][v]

Quantization

Scale

Figure 4: System architecture.

Hardware

+/-
/**

*

f(input)

f(input)

f(input)

f(input) table

Inverse

Quantization

Arithmetic

Software

HW/SW

Interface
Saturation

Mismatch

Control

Figure 5: Post-synthesis architecture.

A parallel interface has been designed to allow the comu-
nication between HW and SW blocks. This interface model
introduces the lowest delay and it requires a very simple con-
trol logic to enable the data transfer from the HW blocks to
the SW ones.
The HW/SW partition increases both the number of Sys-
temC code lines and the number of processes. ATPG and
fault simulation results are presented in Table 2. The to-
tal fault coverage for both architectures highlights the com-
plexity of the considered example. The partitioned design
contains more faults than the unpartitioned architecture. It
includes the fault on the defined interface plus the faults on
the the added signals to connect the three functional blocks.

The joint methodology results for the interface test are
summarized in Table 3. The ATPG and the fault simulation
phases have not been able to detect 3 interface faults. The
property checking phase has been accomplished defining 18
properties. In order to manage the computational resources

required by SMV to elaborate the example, a property for
every output port has been written rather then a single gen-
eral rule. The defined properties generated test sequences
for 1 of the ATPG undetected faults. No counter example
has been found by SMV for the other two. One is related
to a constant value, while the last one identifies a design
error due to an unconnected signal. Note that, the SMV
process requires a larger amount of time with the respect to
the TPG process, thus the simple analysis with SMV of an
interface fault would be not feasible. This emphasizes the
efficiency of the proposed joint methodology.

6. ADDITIONAL AUTHORS
U.Rossi (ST Microelectronics, Via C. Olivetti 2, 20041

Agrate Brianza Italy, email: umberto.rossi@st.com and
F.Toto (ST Microelectronics, Via C. Olivetti 2, 20041 Agrate
Brianza Italy, email: franco.toto@st.com).

7. REFERENCES
[1] SystemC User’s Guide. Synopsys, CoWare, Frontier Design,

version 2.0, 2001.

[2] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich,
B. Tabbara, M. Chiodo, H. Hsieh, L. Lavagno,
A. Sangiovanni-Vincentelli and K. Suzuki. Hardware-Software
Co-Design of Embedded Systems, The POLIS Approach.
Kluwer Academic Publishers, April, 1997.

[3] J. Rowson and A. Sangiovanni-Vincentelli. Interface-Based
Design. ACM/IEEE Design Automation Conference (DAC),
pp. 178–183 97.

[4] D. Panigrahi, C. Taylor, and S. Dey. Interface based
Hardware/Software Validation of a System-on-Chip. IEEE High
Level Design Validation and Test Workshop (HLDVT), pp.
53–58 2000.

[5] K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[6] I. Beer, S. Ben-David, C. Eisner and A. Landver. RuleBase, an
Industry-Oriented Formal Verification Tool. ACM/IEEE Design
Automation Conference (DAC), pp.655–660 1996.

[7] F. Ferrandi, F. Fummi, L.Gerli, and D. Sciuto. Symbolic
Functional Vector Generation for VHDL Specifications. Proc.
IEEE Design Automation and Test in Europe Conference
(DATE), pp. 442–446, 1999.

[8] A. Fin, F. Fummi, and G. Pravadelli. AMLETO: A
Multi-Language Environment for Functional Test Generation.
Proc. IEEE International Test Conference (ITC), pp.
821–829, 2001.

[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik.
Chaff: Engineering an Efficient SAT Solver. ACM/IEEE Design
Automation Conference (DAC), pp. 530–535 2001.

[10] CoCentric SystemC Compiler Behavioral Modeling Guide.
Synopsys version 2000.11-SCC1, 2001.

306

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

