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ABSTRACT
Coefficient-based method is introduced for the parametric
faults detection in analog circuits. By use of pseudo Monte-
Carlo simulation we can greatly speed up the calculation
of bounds of CUT transfer function’s coefficients. We can
estimate transfer function’s actual numeric coefficients with
system identification method. There is no need for a apri-
ori knowledge of the symbolic transfer function. Finally we
show that it is possible to determine whether any given CUT
is faulty.

Categories and Subject Descriptors
B.7.3 [Hardware]: Integrated Circuits—Reliability,Testing

General Terms
Measurement

Keywords
Fault detection, Parametric faults, Monte-Carlo simulation,
System identification

1. INTRODUCTION
The compactness of analog integrated circuits presents se-

rious problems of accessibility. This makes analog testing
very difficult. With the assumption of no internal node-
probing, fault detection which is based on the prediction
from the measurements on circuit under test (CUT) may be
one of the solutions.

In this paper, we propose a coefficient-based method in
which we use system identification method to predict the
coefficients of CUT’s transfer function. With the compar-
ison between the estimated coefficient and its pre-defined
bounds, we can detect if there is a parameteric fault in CUT.

Transfer function is widely used as a vehicle in analog
testing [2],[5],[7], [8]. Let H(s) be the transfer function [3]
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of the CUT. Since the CUT is linear and time-invariant, its
transfer function can be expressed as

H(s) = K
sm +

�m−1
i=0 ais

i

sn +
�n−1

i=0 bisi
, n ≥ m (1)

The coefficients of the transfer function, i.e. K, ai and
bi depend upon the circuit parameters pi. As a result, the
value of the coefficients of the good-machine are enclosed
within their individual hyper-cubes. Whenever one or more
of these coefficient values slip outside their hyper-cube we
get a different transfer function that reflects the existence of
a detectable fault [9].

This paper is organized as follows: In Section II, we pro-
pose a pseudo-Monte Carlo simulation method to speed up
the calculation of the bounds of transfer function’s coeffi-
cients with the supports of lemma and theorems. In Section
III, we present the steps of how to estimate the numeric
transfer function’s coefficients. In Section IV, we elabo-
rate on how to use coefficient-based method to detect faults.
Conclusion is in Section V.

2. WHEN SYMBOLIC EXPRESSIONS ARE
UNATTAINABLE

How can we determine if a circuit is faulty or fault-free
when the symbolic transfer function is unattainable? This
is likely to be the case when large analog circuits are being
analyzed. In this case system identification method may be
utilized to solve the problem.

Given that the netlist of the CUT is known (i.e. the model
of the fault-free circuit), a nominal numeric transfer function
may be calculated. The LNAPTF(Linear Networks Analy-
sis Program for Transfer Function) software [4] may be used
to obtain this numeric transfer function. Furthermore, the
numeric upper and lower bounds of all transfer function
coefficients may be obtained from a Monte-Carlo simula-
tion. To obtain these numeric upper and lower bounds, the
LNAPTF software is repeatedly invoked, the circuit param-
eters values are randomly chosen from their fault-free range
([pin(1 − α), pin(1 + α)], for all i). Upon completion of this
Monte-Carlo simulation, all the numeric values of ai,min and
ai,max and bj,min and bj,max (see Eq. 1) are known to some
degree of confidence1. In order to speed up the Monte Carlo
simulation, we proposed the following lemma and theorems.

1Determined by the number of iterations of the Monte-Carlo
simulation process
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Figure 1: A low-pass filter

Lemma 1: Any coefficient of the transfer function of ana-
log linear circuits can be written in the format of N

D
,where N

and D are in the format of SOP(sum of products) of circuit
parameters.

Example 1: Consider the low-pass filter of Fig.1. The cir-
cuit parameters are R1 = R2 = 2.26kΩ, C1 = 0.02µF, C2 =
0.01µF . The circuit transfer function, assuming the opera-
tional amplifier has an infinite gain, is given by:

H(s) =
Vo(s)

Vi(s)
=

1
R1R2C1C2

s2 + R1+R2
C1R1R2

s + 1
R1R2C1C2

We show this example to verify Lemma 1.

Theorem 1. In the coefficients of the transfer function of
any analog linear circuit, no parameter (circuit parameter)
can have a degree greater than one.

Theorem 2. The minimum and maximum of the trans-
fer function’s coefficients y = y(X1, X2, ..., Xn) occur on the
extreme ends of the parameter values (any parameter’s de-
gree is no more than one)

Remarks: With Lemma 1, Theorem 1 and Theorem 2, we
know any coefficient’s bounds will occur on the boundary
value of each circuit parameter. Therefore we only need
feed the combination of boundary values of each parameter
into LNAPTF instead of randomly choosing the circuit pa-
rameters from their fault-free range ([pin(1−α), pin(1+α)],
for all i). Therefore we call our Monte-Carlo simulation as
pseudo Monte-Carlo simulation.

3. HOW TO ESTIMATE TRANSFER FUNC-
TION

3.1 Selection of input signal
In order to compute the actual (numeric) transfer func-

tion of the CUT, we excite the circuit with a frequency-rich
input. In parameter estimation, we need the input signal
to have a big frequency range. Suppose we do not know
the specification of the system before parameter estimation
and if we select a fixed frequency by random which is not
suitable to the system, there can be a negative effect on
the parameter estimation result. In our experiment, we use
pulse as our input signal.

3.2 Noice estimation
If systems were deterministic, in the sense that all the in-

puts could be specified exactly and all the outputs could be
measured with an unlimited precision. In [3], ”If no noise
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Figure 2: Lowpass filter: Simulated outputs and
true measurements

exists in measurements, then the identification problem is
not difficult, however, in practice, noise often arises in mea-
surements.”, so it is important to estimate the measurment
noise before the parameter estimation. Normally measure-
ment noise is simulated by adding Gaussian distributed ran-
dom numbers to the simulated test response.

3.3 Estimating the actual transfer function
The circuit response to the pulse input is measured and

sampled over a given period of time. The input and the
(measured) sampled outputs are inputed to a system iden-
tification tool, such as the one existing inside MATLAB [1].
We have used an ARX-based code to assist in computing
the estimated transfer function.

The ARX [6] model predicts the next output ŷ(t) from
the previous measured data of the output (y(t − 1), y(t −
2), ..., y(t−k)) and the input data (u(t−1), u(t−2), ...u(t−
k)). The output error between the predicted output calcu-
lated from the ARX model and the measured output from
the real system always exists. Fitting the model to the sys-
tem is in fact a minimization problem of this error by select-
ing the model parameters. LSE(Least Square Estimation) is
used in the the minimization of this error. Finally we obtain
the estimated parameters which lead to the minimization of
the error.

Example 2: Conside second-order low-pass filter of Fig. 1.
The true transfer function is 9.789e008

s2+4.425e004s+9.789e008
and the

estimated transfer function is −177.4s+1.026e009
s2+4.697e004s+1.025e009

In continuous time domain, the distance of a pole or zero
from the imaginary axis determine the effect on the over-
all system response. In this case, compared with poles,
zeros are much far away from imaginary axis, therefore it
can be ignored as: the estimated transfer has a zero at
1.026e009/177.4, which is very far from the imaginary axis ,
therefore can be ignored: -177.4s + 1.026e009 ∼= 1.026e009

The simulation results show the estimated time response
(Fig.2) and frequency response(Fig. 3) are very close to the
actual ones.

Notice this is a typical situation when system identifi-
cation method is used to estimate analog linear circuits.
This identification procedure, however, introduces new coef-
ficients which do not exist in Hn(s). The reason is when we
use ARX model, we need to know the order of the circuit.
Usually a circuit’s order means the order of the denominator
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Figure 3: Comparsion of frequency and phase re-
sponses

of its transfer function. When we use ARX model, we need
to give the order of the denominator as well as the numera-
tor’s. In our example above, we assume we do not know the
exact order of the numerator, so we simply give the same
order to the numerator as the denominator. That is why
in the above case, one new coefficient was introduced in the
numerator.

Remarks: For the case of parametric faults, we are able to
assume that we know the exact structure(especially the or-
ders of the numerator ) of the analog circuits. The reason is
that parametric faults referring to small changes in a circuit
usually do not affect the circuit’s connectivity. Parametric
faults will not increase the order of the numerator and de-
nominator. Let’s consider two special conditions. One is
the missing term condition, which means one or more coeffi-
cients missing because of the parametric faults. In order to
use system identification methods, we regard the missed co-
efficients as they change to zero and we can pretend they are
still there. The other condition is one or more coefficients
changing to infinity. This is a complex case.

Here is a second-order system

H(s) =
ds + e

as2 + bs + c
(2)

(1)If a changes to infinity, the poles of the system ap-
proach to the orginal point, the output will be zero

(2)If b changes to infinity, the poles of the system ap-
proach to the infinity also, the output will be zero.

(3)If c changes to infinity, the poles of the system approach
to the infinity also, the output will be zero.

(4)If d changes to infinity, the zeros of the system ap-
proach to the original point, the output will be infinity.

(5)If e changes to infinity, the zeros of the system approach
to the infinity, the output will be infinity.

From this example, we can see that if one of the coeffi-
cients changes to infinity, the output will be either infinity
or zero. For the infinity case, it is out of the scope of any
measurement devices and it will result in device saturation.
System identification method can only handle bounded in-
puts and bounded outputs. It can not handle the cases when
the output is infinity or zero. So when we detect parametric
faults with system identification methods, we can preclude
the coefficient’s ”infinity” case. Therefore when we post-
process the estimated ”raw” transfer function of CUT, we
can simply match the coefficients in the estimated ”raw”
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Figure 4: Leapforg filter
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Figure 5: Leapfrog filter: comparison of fre-
quency and phase between estimated one (after
post-processing) and nominal one

numerator with the coefficients in the nominal numerator.
The extra coefficients which do not exist in the nominal nu-
merator will be ignored.

Example 3: Conside a 4th-order leapfrog filter of Fig. 4.
The true transfer function is 2.5e15

s4+20000s3+2.25e08s2+1.5e012s+5e15
and the estimated ”raw” transfer function is

0.0008638s4+174.9s3−6.117e06s2−8.181e10s+2.545e15
s4+1.986e04s3+2.429e08s2+1.573e12s+5.102e15

After matching the coefficients of the ”raw” transfer func-
tion with the nominal transfer function, only 2.545e15 is left
in the numerator and all others are ignored. Finally we ob-
tain 2.545e15

s4+1.986e04s3+2.429e08s2+1.573e12s+5.102e15
The comparison of frequency and phase between the esti-

mated one (after coefficient matching) and the nominal one
is shown in Fig. 5. The result is good enough for identifi-
cation purpose. This example indicates that we can use the
coefficient matching method to speed up the post-processing
of the estimated ”raw” transfer function.

301



1

2

R1

C2

4

C1

R3

VCC

VEE
7

6

Opamp

R2

R4

8

R5

10k

10k

0.1uF

0.1uF 20k
19k

10k

Vi

Vo

Figure 6: Second order bandpass filter

Table 1: Parameter Combinations leading to the co-
efficients’ bounds

Coeff R1(Ω) R2(Ω) R3(Ω) R4(Ω) R5(Ω) C1(F) C2(F)
Kmin 10.5K 9.5K 19K 10.5K 18.05K 0.95e-7 1.05e-7
Kmax 9.5K 9.5K 19K 9.5K 19.95K 0.95e-7 0.95e-7
b1,min 10.5K 9.5K 21K 9.5K 19.95K 1.05e-7 0.95e-7
b1,max 9.5K 10.5K 19K 10.5K 18.05K 0.95e-7 1.05e-7
b2,min 9.5K 9.5K 19K 9.5K 18.05K 0.95e-7 0.95e-7
b2,max 10.5K 10.5K 21K 9.5K 18.05K 1.05e-7 1.05e-7

4. HOW TO DETECT FAULTS
All the information is now available for determining whether

or not the CUT is faulty. Once these actual coefficient val-
ues are known, we proceed to examine whether any one of
them slips outside its prescribed fault-free range (computed
earlier). If one, or more, of these coefficients is found to be
outside their fault-free bounds, the CUT is declared faulty;

Consider the band-pass filter of Fig. 6. Even though this
circuit is small, we will pretend not to know its symbolic
transfer function. We only use the knowledge that it is a
second order circuit. The nominal numeric transfer function
for this circuit is calculated by LNAPTF from its netlist
information.

Hn(s) =
2900s

s2 + 100s + 106
(3)

Choosing each parameter’s normal drift α = 0.05, the
Monte-Carlo simulation yields the following coefficients’ bounds
and also we verified the Theorem 2 that the each coefficient’s
bounds occur on its boundary values (see Tab. I):

Kmin = 2627, Kmax = 3083 (4)

b1,min = −200.75, b1,max = 377.1 (5)

b2,min = 8.885 × 105, b2,max = 1.13 × 106 (6)

Notice if the system is stable, then the coefficient b1 should
be positive. Otherwise the system is unstable. So we need
to modify the bound of the coefficient b1 to [0, 377.1].

The fault C1=.125µF (25% off on the up-side) has been
injected into the circuit. The CUT’s transfer function is
estimated as:

H(s) =
2893s − 67.28

s2 + 9.437s + 7.684 × 105
(7)

After post-processing with coefficient-matching of the Eq.
7, we obtain 2893s

s2+9.437s+7.684×105 . When we compare all the
estimated coefficients against their fault-free bounds, we dis-
cover that b2 is outside its fault-free range. The conclusion

Table 2:

Parameters Estimated transfer function Coefficients’ status Detect
R1 25% up 2320s

s2+11.784s+9e05
K out of bound

√

R2 20% up 2922s
s2+580.3s+9.267e05

b1 out of bound
√

R3 20% up 2893s
s2+66.67s+8.333e05

b2 out of bound
√

R4 10% down 2982s
s2−10.51s+1e06

b1 out of bound
√

R5 25% down 27663s
s2+436.7s+1.009e06

b1 out of bound
√

C1 25% up 2893s
s2+9.437s+7.684e05

b2 out of bound
√

C2 15% down 3408s
s2+37.14s+1.097e06

K out of bound
√

is that the CUT is faulty. There are some other detection
examples shown in the Tab. II.

5. CONCLUSIONS
We have shown that by the use of pseudo Monte-Carlo

simulation and system identification method it is possible
to determine whether any given CUT is faulty. There is
no need for a apriori knowledge of the symbolic transfer
function.

System identification method’s being applied in the fault
detection of analog circuits is a new topic, which is different
from its application in automatic control domain. One dif-
ference is whether we can assume that we know the exact
structure(the orders of numerator and denominator) of the
analog circuits or not. For the purpose of detecting para-
metric faults, the assumption stands.
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