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ABSTRACT 
In all stages of VLSI chip design, routing estimation is 
required to account for the effect of interconnects. We 
propose a fast Steiner tree construction algorithm, which is 
3-180 times faster for 10-300 point Steiner trees, and within 
2.5% of the length of the Batched-1-Steiner tree. The 
proposed method can be used as a fast net length estimation 
tool in VLSI CAD applications, e.g. in the inner cycle of a 
floorplanning/placement engine. 
 
Categories & Subject Descriptors  
B.7.2 [Integrated Circuits]: Design Aids - Layout, Placement and 
Routing. 

 

General Terms: Algorithms 
 

Keywords: Steiner trees, Routing, Interconnect estimation 
 

1. INTRODUCTION 
In VLSI integrated circuits, electrically equivalent points are 
usually connected by routing the wires in Manhattan 
geometries, i.e. the wires are routed in horizontal and 
vertical directions. The most common solution to the 
rectilinear trees are the Steiner tree algorithms. The problem 
of finding a minimum total length routing tree referred to as 
the Minimum Rectilinear Steiner Tree (MRST) is NP-
complete [1] . The shortest non-rectilinear tree is the 
minimum spanning tree (MST), which is the starting point 
for most of the Steiner algorithms that have been published.  
In all stages of VLSI chip design, routing estimation is 
required to account for the effect of interconnects. For 
example, routing is estimated to calculate signal delay due to 
resistance and capacitance of wires for better circuit design, 
or to estimate the routing feasibility by analyzing congestion 
in the placement phase. All placement algorithms include the 
net cost as a key factor in their optimization algorithm. 
Although the available Steiner tree solutions provide a good 

estimate of the wire length for a net, their slow runtime 
makes them un-usable for many applications. Some 
applications use half perimeter [2] as the estimation of net 
lengths, which is a fast but inaccurate method when the 
number of points to be connected is more than 3. In this 
paper, we present two variations of a novel algorithm. One 
option of the algorithm has a runtime that is upto 180X 
faster and the tree length is 2.5% more than the Batched-1-
Steiner algorithm [4] . The second variation has a faster 
runtime (250X), but the tree length is 4% more. In real 
circuits, it is common to have about 5% of the nets having at 
least 10 nodes. Our method can be used to quickly and more 
accurately estimate the wire length of these nets.  

2. RELATED WORK 
There has been extensive research and published work [3] 
[4] [5] [6] [9] [10] [11] on generating minimum length 
Steiner trees. A Steiner tree is a rectilinear tree for a given 
set of vertices and some additional vertices to create the 
minimum length spanning tree. These additional vertices are 
known as “Steiner points”.  
Various graph-based methods [3] [4] [5] [6] [9] have been 
proposed to find the Steiner points. They all use the earlier 
works of Hanan [7] to identify the Steiner points. The basic 
concept of these algorithms is to find the “gain in tree cost”, 
i.e. the length of the MST with the added point is less than 
the tree without the added point. Some of them are the 
Iterative-1-Steiner (I1S) heuristic by Kahng et al [3] and the 
edge based heuristic [9] by Borah et. al., etc. The cost of the 
tree is the sum of the length of all the edges in the tree. The 
reduction in the tree cost is obtained by adding the Steiner 
points in the tree. A fast implementation of the I1S algorithm 
is the Batched-1-Steiner algorithm by Griffith et. al. [4] , 
which is widely accepted as the best heuristic Steiner tree 
algorithm and is thus used for comparing the results 
obtained from the proposed algorithm. The authors in [8] 
presented a hybridized Genetic Algorithm for finding near-
optimal trees. A thorough survey of the various algorithms 
for computing optimal Steiner trees can be found in [12] .     
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3. PROPOSED ALGORITHM 
  

A new ultra fast algorithm is proposed to create Steiner 
trees. The input to the new algorithm is a Minimum 
Spanning Tree (MST) on the set of vertices. For each vertex, 
the proposed algorithm identifies a group of edges that can 
have overlapping rectilinear edges, such that the tree length 
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of the rectilinear sub-tree of these edges is smaller than the 
sum of their rectilinear translations. This is illustrated in 
Figure 1. The amount of overlap is defined as the gain in the 
length of the tree as shown. Therefore, for a tree with two 
edges, e1 and e2, if the rectilinear lengths of two edges are 
L(e1) and L(e2) respectively, then the tree length is L(e1) + 
L(e2) – (L(e1) ∩ L(e2)), where L(e1) ∩ L(e2) is the overlap 
between the rectilinear connections of e1 and e2.  
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Figure 1: Gain definition 

Sub-groups of edges are identified from the set of non-
rectilinear edges that have non-zero gain. These groups are 
translated into rectilinear edges in a descending order of the 
gain. The two methods are based on Maximum Gain 
Analysis (MGA) and Favored Direction Analysis (FDA). 
Both methods analyze the global relative location of the 
points connected by the edges of the MST to create the 
rectilinear tree.  

3.1 Maximum Gain Analysis 
The MGA computes, for each vertex, the maximum overlap 
(i.e. gain) that can be achieved from the edges incident on 
the vertex. The subset of edges that would give the 
maximum gain is found by computing the horizontal and 
vertical overlaps for all edges incident on each of the 
vertices. To compute the gain in a given direction, consider 
the m vertices connected to a vertex v0 that have an Eastern 
orientation. Let the m+1 vertices be ordered such that x0 < x1 
< … < xm, where xi is the x-coordinate of vi. First, v0 is 
connected to v1 by a rectilinear connection such that (x1, y0) 
is the bend point in the connection. The remaining vertices, 
i.e. v2 to vm, can now be connected to v0 by starting at (x1, 
y0), thus making use of the existing connection between v0 
and v1. This results in reducing the length of each of the 
rectilinear connections between v0 and vi (2 ≤ i ≤ m) by (x1 – 
x0) for a gain of (m-1)(x1 – x0). Next, (x1, y0) is connected to 
v2 by the rectilinear connection with bend (x2, y0). The 
remaining vertices, i.e. v3 to vm can then be connected to v0 
by starting at (x2, y0), thus making use of the existing 
connection between v0 and v2. This will result in reducing the 
length of each of the rectilinear connections between v0 and 
vi (3 ≤ i ≤ m) by (x2 – x1), for an additional gain of (m-2)(x2 – 
x1). This computation can be extended for all vertices such 
that:   

   Total gain from all connections = ∑
−

=
−− −

1

1
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Lemma 1: The gain in a given direction is the sum of the 
length of all edges minus the length of the longest edge.  
Proof: For m = 2, the gain is x1 - x0.   (1) 

For m = 3, the gain is (x1 - x0)(3-1) + (x2 - x1)(3-2) = 
2x1 – 2x0 + x2 – x1  

 = x1 – 2x0 + x2  
 = (x1 – x0) + (x2 –x0)   (2) 

For m = 4, the gain  
= (x1-x0)(4-1) + (x2- x1)(4-2) + (x3-x2)(4-3)  

 = 3x1 – 3x0 + 2x2 – 2x1 + x3 –x2 = x1 – 3x0 + x2 + x3  

 = (x1 – x0) + (x2 – x0) + (x3 – x0)  (3) 
Note that (xi – x0) is the horizontal length of edge between v0 
and vi. From (1) (2) and (3), a pattern can be observed. For 3 
edges (i.e. m = 3), the gain is sum of the horizontal length of 
the shortest 2 edges. For 4 edges (i.e. m = 4), the gain is sum 
of the length of the shortest 3 edges.  Therefore, for m edges, 
the gain is sum of the length of the shortest (m-1) edges, 
which is equivalent to the sum of the length of all edges 
minus the length of the longest edge.   Q.E.D. 
An example of gain computation is shown in Figure 2. From 
lemma 1, it becomes unnecessary to sort the vertices based 
on their coordinates. Since only vertex v1 has more than 1 
edge incident on it, gains are computed for this vertex only. 
The example shows that the gain in East direction, EG(v1), is 
due to the overlap between the connections from v1 to v2, v3 
and v4. This is computed as follows: 
EG(v1) = (x2-x1)+(x3-x1)+(x4-x1)-max((x2-x1),(x3-x1),(x4-x1)) 
 = (16-8)+(20-8)+(14-8)-max((16-8),(20-8),(14-8)) 
 =  (8) + (12) + (6) – max(8, 12, 6) = 26 – 12 = 14 
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v 3 ( 1 6 , 1 4 )

v4 ( 1 4 ,  1 0 )

V G ( v 1 )  =  ( 0 ,1 4 , 6 , 0 )

Figure 2: Example of Gain Calculation w.r.t vertex v1
 

Similarly, the gain in the South direction (SG(v1)) is 6. From 
this, it is determined that the maximum gain realizable for v1 
is 8 and is possible when the edges with an East direction 
component are converted. The edges that do not overlap 
with any other edge are identified as “no-impact” edges. 
Thus, the gain is computed for vertices with 2 or more 
edges. The vertex with the maximum gain is selected and all 
edges incident on it that have a component in the maximum 
gain direction are converted into rectilinear shapes. The 
process is repeated until all edges are converted into 
Manhattan edges.  
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3.1.1 Definitions 
Let V be the set of vertices and E be the set of edges in the 
MST. Let eij be the edge connecting vi and vj, where vi , vj ∈  
V and eij ∈  E. The vertex gain VG(vi) is modeled as a vector 
of 4 elements, enumerated as the four geographical 
directions, i.e. {North, East, South, West}. Each element in 
the set is the gain in the respective direction for the vertex.  
VG(vi): the gains in 4 geographical directions w.r.t. vi. See 

example in Figure 2. 
MG(vi) = MAX

Vvi∈
 (VG(vi)) 

MGD(vi) = the direction of MG(vi) 
GMG = MAX

Vvi∈
(MG(vi)), is the global maximum gain. 

3.1.2 Pseudo Code for MGA algorithm 
The first step is to compute the MG and MGD pairs for all 
the vertices in the given MST. The second step is to find the 
vertex with the global maximum gain and translate all edges 
that contribute to the GMG to rectilinear edges. The MG for 
all the vertices affected by the rectilinearization is updated 
by subtracting the respective contribution of the converted 
edges. These steps are repeated until all edges are 
rectilinearized. After this step completes, only the no impact 
edges remain as non-rectilinear and these are rectilinearized 
trivially. The pseudo code for the flow is given in Figure 3.  

 
 
Proc RectilinearizeWithMGA { 
 Compute MG for each vertex; 
 While (non-rectilinear edges){ 
  Find the vertex with maximum gain //i.e. GMG 
  Translate all edges which contribute to MG; 
  Update MG and MGD of all affected vertices; 
 } 
 Convert no impact edges; 
endProc; 

Figure 3: Pseudo code for the MGA algorithm 

3.1.3 Runtime Complexity of MGA 
A tree of n nodes has n-1 edges. The computation of MG 
step for all vertices involves computing the rectilinear length 
of 2(n-1) edges, which is O(n). As each rectilinear edge is 
created just once, the time to create all the edges is also 
O(n). To find the MG vertex in the first loop, the set of 
vertices is sorted in O(nlogn). The successive loops update 
the VG of the affected vertices only, and the MG vertex can 
be found in O(1) from the pre-sorted list. Therefore, the 
overall algorithm using MGA is of O(nlogn). 
A step-by-step example describing the flow of the algorithm 
is illustrated in Figure 4. An input MST with calculated VGs 
for each of the vertices is shown in Figure 4(a). In the first 
iteration, v1 is identified as having the global maximum gain 
in the Southern direction. All edges incident on v1 and 
connecting to pairing vertices in the South are translated to 
rectilinear edges. The converted non-rectilinear edges are 
shown as dotted lines. The VGs are updated for the affected 

vertices (i.e. v1, v2 and v3) by subtracting the contribution of 
the converted edges. The resulting picture is shown in 
Figure 4(b). In the next iteration, vertex v2 is found to have 
the global maximum gain in the Eastern direction.  
Therefore, all the edges incident on v2 and connecting to 
pairing vertices in the East are translated to rectilinear edges 
and the VGs are updated for the affected vertices resulting in 
the picture shown in Figure 4(c). At this point all the edges 
have been converted to rectilinear paths and the algorithm 
stops. 

 

VG(v1) = (0,0,5,0)
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(a) An example with calculated VGs 
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(b) The results after 1st iteration 
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(c) The final Steiner Tree after 2nd iteration 

Figure 4: A step-by-step example using MGA  

3.2 Favored Direction Analysis 
The Favored Direction Analysis (FDA) identifies a vertex 
where the maximum number of edges favors a certain 
direction. For a large number of points, this method is less 
computation intensive and is therefore faster. In FDA, the 
number of edges overlapping is computed, not the actual 
amount of overlap as in MGA. 

3.2.1 Definitions 
Let V be the set of vertices and E be the set of edges in the 
MST. Let eij be the edge connecting vi and vj, where vi , vj ∈  
V and eij ∈  E. The relative location (RL) of a vertex with 
respect to another vertex is defined as a vector of 4 
elements, enumerated as the four geographical directions, 
i.e. {North, East, South, West}. Each element is set to 1 if 
the pair point is in that global location else it is 0. Therefore,  
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RL(vi , vj): the relative location of vj w.r.t. vi. see Figure 5. 
RL(vj , vi): the relative location of vi w.r.t. vj. see Figure 5. 
SRL(vi) = ∑

∈ Eeij

(RL(vi , vj)), is a vector of 4 elements, each 

indicating the number of pairing points that exist in 
each of the geographical locations relative to vi. See 
example in Figure 6. 

FD(vi) = MAX
Vvi∈

(SRL(vi)), is the direction favored by most 

of the edges incident on vi  and is referred to as the 
Favored Direction for vi. 

 

R L (v 1 ,  v 2 )  =  (0 ,1 ,1 ,0 )

R L (v 2 ,  v 1 )  =  (1 ,0 ,0 ,1 )

v 1

v 2

v 3

R L (v 1 ,  v 3 )  =  (0 ,0 ,1 ,1 )

R L (v 3 ,  v 1 )  =  (1 ,1 ,0 ,0 )

Figure 5: Example of Relative Location (RL) 

S R L (v 3 )  =  ( 1 ,1 ,0 ,0 )

S R L ( v 1 )  =  (0 ,1 ,2 ,1 )
v 1

v 2

v 3

S R L ( v 2 )  =  ( 1 ,0 ,0 ,1 )

Figure 6: Ex. of Summed Relative Locations (SRL) 

3.2.2 Pseudo Code for FDA Algorithm 
The rectilinearization process is an iterative algorithm. It 
first computes SRL for all the vertices in the given MST. 
Next, it finds a vertex that has a favored direction and 
translates all the edges that contributed to the SRL into 
rectilinear connections. The SRL for all the vertices affected 
by the rectilinearization is updated by subtracting the 
respective contribution of the converted edges. The process 
is repeated until all the edges are translated. If a vertex with 
a favored direction cannot be found, a vertex with the 
maximum SRL (which is not unique) is picked and the edges 
in one of the directions are translated. The pseudo code for 
the flow is given in Figure 7. 

 
Proc RectilinerizeWithFDA { 
 Compute SRL for each vertex; 
 While (non-rectilinear edges){ 
  Find a vertex with FD; 
  If (found){ 
   Translate all edges which contribute to FD; 
   Update SRL of all affected vertices; 
  } else { 
   Find a vertex with maximum SRL; 
   Translate all edges which contribute to FD; 
   Update SRL of all affected vertices; 
  } 
 } 
endProc; 

Figure 7: Pseudo code for the FDA algorithm 

3.2.3 Runtime Complexity for FDA 
A tree of n nodes has n-1 edges. The computation of SRL 
step for all vertices involves calculating the relative 
directions of 2(n-1) edges, which is O(n). As each rectilinear 
edge is created just once, the time to create all the edges is 
also O(n). To find the maximum FD vertex in the first loop, 
the set of vertices is sorted in O(nlogn). The successive 
loops update the SRL of the affected vertices only, and the 
maximum FD vertex can be found in O(1) from the pre-
sorted list. Therefore, the overall algorithm using FDA is of 
O(nlogn). 
A step-by-step example describing the flow of the FDA 
algorithm is illustrated in Figure 8. An input MST with the 
calculated SRL for each of the vertices is shown in Figure 
8(a). In the first iteration, v1 is identified as having an FD of 
South. Therefore, all edges incident on v1 that connect to a 
pairing vertex in the South are translated to rectilinear edges. 
The resulting picture is shown in Figure 8(b). The converted 
non-rectilinear edges are shown as dotted lines. The SRLs 
are updated for the affected vertices (i.e. v1, v2 and v3) by 
subtracting the contribution of the converted edges. 

 

SRL(v1) = (0,1,2,1)
v1

v2

v3

v4
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SRL(v3) = (1,1,0,0)
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SRL(v2) = (2,2,1,1)

 
(a) An example MST with computed SRLs 
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(b) The example tree after 1st iteration 

SRL(v1) = (0,0,0,0)
v1
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v3

v4
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SRL(v3) = (0,0,0,0)

SRL(v4) = (0,0,0,0)

SRL(v5) = (0,0,0,0)

SRL(v2) = (0,0,0,0)

 
(c) The final Steiner tree after 2nd iteration 

Figure 8: A step-by-step example using FDA 
In the next iteration, vertex v2 is found to have an FD of 
East. All the edges incident on v2 that connect to a pairing 
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vertex in the East are translated to rectilinear edges and the 
SRLs are updated for the affected vertices resulting in the 
picture shown in Figure 8(c). At this point, all the edges 
have been converted to rectilinear paths and the algorithm 
stops. 

4. RESULTS 
Both flavors of the proposed Steiner tree algorithm, 
Maximum Gain Analysis (MGA) and Favored Direction 
Analysis (FDA), were implemented. The Steiner trees 
generated by the proposed algorithms are compared to the 
Batched-1-Steiner (B1S) [4] implementation. All 
experiments are run on an IBM AIX workstation. The 
metrics used for comparison are runtime and tree length. The 
data presented is calculated by averaging the runtime and 
tree length for 1000 randomly generated testcases in each 
category. The runtime results are summarized in Table 1.  

Table 1: Runtime Comparison 
Test 
case 

 
No of 
points 

B1S 
runtime 

(sec) 

FDA 
runtime 

(sec) 

FDA 
Speed 

Up 

MGA 
runtime 

(sec) 

MGA 
Speed 

Up 
St1 10 0.02 0.005 4.00 0.006 3.33 
St4 20 0.125 0.013 9.62 0.016 7.81 
St5 40 0.897 0.038 23.61 0.05 17.94 
St50 50 1.69 0.05 33.80 0.07 24.14 
St100 100 13.23 0.19 69.63 0.24 55.13 
St200 200 95.6 0.7 136.57 0.9 106.22
St300 300 349.8 1.4 249.86 1.9 184.11

The results show that the runtime of the proposed algorithm 
increases linearly with the number of points in the tree. Also, 
the absolute runtime of the proposed FDA algorithm is 250x 
faster than that of the Batched-1-Steiner. It is also seen that 
while both the proposed algorithms scale linearly with the 
number of points, the MGA has a runtime approximately 
1.3x that of the FDA algorithm.  

Table 2: Tree Length Comparison 

Test 
case  

No of 
points 

B1Steiner 
average 

tree 
length 

FDA 
average 

tree 
length 

FDA % 
tree 

length 
increase 

MGA 
average 

tree 
length 

MGA 
% tree 
length 

increase
St1 10 2702.45 2792.23 3.32 2757.65 2.04 
St4 20 3813.44 3952.85 3.66 3898.36 2.23 
St5 40 5339.06 5545.49 3.87 5469.48 2.44 
St50 50 5922.35 6147.13 3.80 6073.24 2.55 
St100 100 8264.94 8582.78 3.85 8462.55 2.39 
St200 200 11545.56 12000.84 3.94 11830.74 2.47 
St300 300 14058.97 14631.66 4.07 14419.97 2.57 
The tree length comparison results are shown in Table 2. 
With 1000 testcases used in each category, the average tree 
length is worse by about 2.5% using MGA and 4% for FDA 
computed trees.   

The tree length comparison shows that the MGA algorithm 
produces trees that are closer to the B1S Steiner trees. But 
this comes at the cost of increased runtime, as the MGA is 
about 50% slower than the FDA algorithm. A chart 
comparing the speed up and accuracy in results is shown in 
Figure 9. It is clear that the FDA provides higher speedup 
but lesser accurate results compared to the MGA method.  

 

Figure 9: Speedup vs. accuracy comparison between 
MGA and FDA 

Figure 10 shows the Steiner tree generated by the Batched-
1-Steiner implementation from [4] for 200 points. The 
runtime for the example is 95 sec and the tree length is 
11058 units. For the same set of points, Figure 11 shows the 
Steiner tree generated by the MGA based algorithm 
proposed here. The length of this tree is 11360 units (2.7% 
more) but the runtime to generate it is only 0.9 sec (106x 
faster). Figure 12 shows the Steiner tree generated by the 
FDA based algorithm proposed here. The length of this tree 
is 11465 units (3.6% more) but the runtime to compute it is 
only 0.7 sec (136x faster). 

5. CONCLUSION 
We presented two variations of a novel and ultra fast 
algorithm to generate Steiner trees. Many Steiner tree 
algorithms have been proposed in literature, but the existing 
solutions are very slow for use in VLSI CAD applications.  
The Maximum Gain Analysis (MGA) algorithm presented 
here compares well to Batched-1-Steiner implementation 
with the tree cost (or total edge length) being at most 2.5% 
more while the runtime is upto 180x faster for trees with 300 
points. As the runtime of the proposed algorithm is 
O(nlogn), the runtime speedup is dependent on the number 
of points connected by the tree, but the increase in average 
net length is independent of the number of points.  
The proposed Steiner tree algorithm can be used to quickly 
and accurately estimate the wire length of a net in VLSI 
CAD applications. The fast runtime and accurate net length 
estimation make the algorithm very usable in a variety of 
intermediate physical design steps where the net lengths are 
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estimated repeatedly in all iterations of an algorithm, e.g. 
placement algorithm.   
 

Figure 10: Steiner Tree by Batched-1-Steiner for 
200 points (Runtime = 97 sec) 

Figure 11: Steiner Tree by MGA for 200 points 
(Runtime = 0.9 sec) 

Figure 12: Steiner Tree by FDA for 200 points 
(Runtime = 0.7 sec) 
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