

A Novel Ultra-Fast Heuristic for VLSI CAD Steiner Trees
Bharat Krishna
Intel Corporation

 2200 Mission College Blvd.
Santa Clara, CA 95052

bharat.krishna@intel.com

C.Y. Roger Chen
Syracuse University

Dept. of Elec. & Comp. Engineering
Syracuse, NY 13244

crchen@syr.edu

Naresh K. Sehgal
 Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052

naresh.k.sehgal@intel.com

ABSTRACT
In all stages of VLSI chip design, routing estimation is
required to account for the effect of interconnects. We
propose a fast Steiner tree construction algorithm, which is
3-180 times faster for 10-300 point Steiner trees, and within
2.5% of the length of the Batched-1-Steiner tree. The
proposed method can be used as a fast net length estimation
tool in VLSI CAD applications, e.g. in the inner cycle of a
floorplanning/placement engine.

Categories & Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Layout, Placement and
Routing.

General Terms: Algorithms

Keywords: Steiner trees, Routing, Interconnect estimation

1. INTRODUCTION
In VLSI integrated circuits, electrically equivalent points are
usually connected by routing the wires in Manhattan
geometries, i.e. the wires are routed in horizontal and
vertical directions. The most common solution to the
rectilinear trees are the Steiner tree algorithms. The problem
of finding a minimum total length routing tree referred to as
the Minimum Rectilinear Steiner Tree (MRST) is NP-
complete [1] . The shortest non-rectilinear tree is the
minimum spanning tree (MST), which is the starting point
for most of the Steiner algorithms that have been published.
In all stages of VLSI chip design, routing estimation is
required to account for the effect of interconnects. For
example, routing is estimated to calculate signal delay due to
resistance and capacitance of wires for better circuit design,
or to estimate the routing feasibility by analyzing congestion
in the placement phase. All placement algorithms include the
net cost as a key factor in their optimization algorithm.
Although the available Steiner tree solutions provide a good

estimate of the wire length for a net, their slow runtime
makes them un-usable for many applications. Some
applications use half perimeter [2] as the estimation of net
lengths, which is a fast but inaccurate method when the
number of points to be connected is more than 3. In this
paper, we present two variations of a novel algorithm. One
option of the algorithm has a runtime that is upto 180X
faster and the tree length is 2.5% more than the Batched-1-
Steiner algorithm [4] . The second variation has a faster
runtime (250X), but the tree length is 4% more. In real
circuits, it is common to have about 5% of the nets having at
least 10 nodes. Our method can be used to quickly and more
accurately estimate the wire length of these nets.

2. RELATED WORK
There has been extensive research and published work [3]
[4] [5] [6] [9] [10] [11] on generating minimum length
Steiner trees. A Steiner tree is a rectilinear tree for a given
set of vertices and some additional vertices to create the
minimum length spanning tree. These additional vertices are
known as “Steiner points”.
Various graph-based methods [3] [4] [5] [6] [9] have been
proposed to find the Steiner points. They all use the earlier
works of Hanan [7] to identify the Steiner points. The basic
concept of these algorithms is to find the “gain in tree cost”,
i.e. the length of the MST with the added point is less than
the tree without the added point. Some of them are the
Iterative-1-Steiner (I1S) heuristic by Kahng et al [3] and the
edge based heuristic [9] by Borah et. al., etc. The cost of the
tree is the sum of the length of all the edges in the tree. The
reduction in the tree cost is obtained by adding the Steiner
points in the tree. A fast implementation of the I1S algorithm
is the Batched-1-Steiner algorithm by Griffith et. al. [4] ,
which is widely accepted as the best heuristic Steiner tree
algorithm and is thus used for comparing the results
obtained from the proposed algorithm. The authors in [8]
presented a hybridized Genetic Algorithm for finding near-
optimal trees. A thorough survey of the various algorithms
for computing optimal Steiner trees can be found in [12] .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

19
3. PROPOSED ALGORITHM

A new ultra fast algorithm is proposed to create Steiner
trees. The input to the new algorithm is a Minimum
Spanning Tree (MST) on the set of vertices. For each vertex,
the proposed algorithm identifies a group of edges that can
have overlapping rectilinear edges, such that the tree length

2

of the rectilinear sub-tree of these edges is smaller than the
sum of their rectilinear translations. This is illustrated in
Figure 1. The amount of overlap is defined as the gain in the
length of the tree as shown. Therefore, for a tree with two
edges, e1 and e2, if the rectilinear lengths of two edges are
L(e1) and L(e2) respectively, then the tree length is L(e1) +
L(e2) – (L(e1) ∩ L(e2)), where L(e1) ∩ L(e2) is the overlap
between the rectilinear connections of e1 and e2.

v 0
v 2

v1

ga in fo r v 2 & v 3
ga in fo r v 3

v4

v3

ga
in

 fo
r v

4

Figure 1: Gain definition

Sub-groups of edges are identified from the set of non-
rectilinear edges that have non-zero gain. These groups are
translated into rectilinear edges in a descending order of the
gain. The two methods are based on Maximum Gain
Analysis (MGA) and Favored Direction Analysis (FDA).
Both methods analyze the global relative location of the
points connected by the edges of the MST to create the
rectilinear tree.

3.1 Maximum Gain Analysis
The MGA computes, for each vertex, the maximum overlap
(i.e. gain) that can be achieved from the edges incident on
the vertex. The subset of edges that would give the
maximum gain is found by computing the horizontal and
vertical overlaps for all edges incident on each of the
vertices. To compute the gain in a given direction, consider
the m vertices connected to a vertex v0 that have an Eastern
orientation. Let the m+1 vertices be ordered such that x0 < x1
< … < xm, where xi is the x-coordinate of vi. First, v0 is
connected to v1 by a rectilinear connection such that (x1, y0)
is the bend point in the connection. The remaining vertices,
i.e. v2 to vm, can now be connected to v0 by starting at (x1,
y0), thus making use of the existing connection between v0
and v1. This results in reducing the length of each of the
rectilinear connections between v0 and vi (2 ≤ i ≤ m) by (x1 –
x0) for a gain of (m-1)(x1 – x0). Next, (x1, y0) is connected to
v2 by the rectilinear connection with bend (x2, y0). The
remaining vertices, i.e. v3 to vm can then be connected to v0
by starting at (x2, y0), thus making use of the existing
connection between v0 and v2. This will result in reducing the
length of each of the rectilinear connections between v0 and
vi (3 ≤ i ≤ m) by (x2 – x1), for an additional gain of (m-2)(x2 –
x1). This computation can be extended for all vertices such
that:

 Total gain from all connections = ∑
−

=
−− −

1

1
)(*)(1

m

i
imxx ii

Lemma 1: The gain in a given direction is the sum of the
length of all edges minus the length of the longest edge.
Proof: For m = 2, the gain is x1 - x0. (1)

For m = 3, the gain is (x1 - x0)(3-1) + (x2 - x1)(3-2) =
2x1 – 2x0 + x2 – x1

 = x1 – 2x0 + x2
 = (x1 – x0) + (x2 –x0) (2)

For m = 4, the gain
= (x1-x0)(4-1) + (x2- x1)(4-2) + (x3-x2)(4-3)

 = 3x1 – 3x0 + 2x2 – 2x1 + x3 –x2 = x1 – 3x0 + x2 + x3

 = (x1 – x0) + (x2 – x0) + (x3 – x0) (3)
Note that (xi – x0) is the horizontal length of edge between v0
and vi. From (1) (2) and (3), a pattern can be observed. For 3
edges (i.e. m = 3), the gain is sum of the horizontal length of
the shortest 2 edges. For 4 edges (i.e. m = 4), the gain is sum
of the length of the shortest 3 edges. Therefore, for m edges,
the gain is sum of the length of the shortest (m-1) edges,
which is equivalent to the sum of the length of all edges
minus the length of the longest edge. Q.E.D.
An example of gain computation is shown in Figure 2. From
lemma 1, it becomes unnecessary to sort the vertices based
on their coordinates. Since only vertex v1 has more than 1
edge incident on it, gains are computed for this vertex only.
The example shows that the gain in East direction, EG(v1), is
due to the overlap between the connections from v1 to v2, v3
and v4. This is computed as follows:
EG(v1) = (x2-x1)+(x3-x1)+(x4-x1)-max((x2-x1),(x3-x1),(x4-x1))
 = (16-8)+(20-8)+(14-8)-max((16-8),(20-8),(14-8))
 = (8) + (12) + (6) – max(8, 12, 6) = 26 – 12 = 14

(2 , 8)

(8 , 1 2) v 1

v 2

v 5

(2 0 , 5)

v 3 (1 6 , 1 4)

v4 (1 4 , 1 0)

V G (v 1) = (0 ,1 4 , 6 , 0)

Figure 2: Example of Gain Calculation w.r.t vertex v1

Similarly, the gain in the South direction (SG(v1)) is 6. From
this, it is determined that the maximum gain realizable for v1
is 8 and is possible when the edges with an East direction
component are converted. The edges that do not overlap
with any other edge are identified as “no-impact” edges.
Thus, the gain is computed for vertices with 2 or more
edges. The vertex with the maximum gain is selected and all
edges incident on it that have a component in the maximum
gain direction are converted into rectilinear shapes. The
process is repeated until all edges are converted into
Manhattan edges.

193

3.1.1 Definitions
Let V be the set of vertices and E be the set of edges in the
MST. Let eij be the edge connecting vi and vj, where vi , vj ∈
V and eij ∈ E. The vertex gain VG(vi) is modeled as a vector
of 4 elements, enumerated as the four geographical
directions, i.e. {North, East, South, West}. Each element in
the set is the gain in the respective direction for the vertex.
VG(vi): the gains in 4 geographical directions w.r.t. vi. See

example in Figure 2.
MG(vi) = MAX

Vvi∈
 (VG(vi))

MGD(vi) = the direction of MG(vi)
GMG = MAX

Vvi∈
(MG(vi)), is the global maximum gain.

3.1.2 Pseudo Code for MGA algorithm
The first step is to compute the MG and MGD pairs for all
the vertices in the given MST. The second step is to find the
vertex with the global maximum gain and translate all edges
that contribute to the GMG to rectilinear edges. The MG for
all the vertices affected by the rectilinearization is updated
by subtracting the respective contribution of the converted
edges. These steps are repeated until all edges are
rectilinearized. After this step completes, only the no impact
edges remain as non-rectilinear and these are rectilinearized
trivially. The pseudo code for the flow is given in Figure 3.

Proc RectilinearizeWithMGA {
 Compute MG for each vertex;
 While (non-rectilinear edges){
 Find the vertex with maximum gain //i.e. GMG
 Translate all edges which contribute to MG;
 Update MG and MGD of all affected vertices;
 }
 Convert no impact edges;
endProc;

Figure 3: Pseudo code for the MGA algorithm

3.1.3 Runtime Complexity of MGA
A tree of n nodes has n-1 edges. The computation of MG
step for all vertices involves computing the rectilinear length
of 2(n-1) edges, which is O(n). As each rectilinear edge is
created just once, the time to create all the edges is also
O(n). To find the MG vertex in the first loop, the set of
vertices is sorted in O(nlogn). The successive loops update
the VG of the affected vertices only, and the MG vertex can
be found in O(1) from the pre-sorted list. Therefore, the
overall algorithm using MGA is of O(nlogn).
A step-by-step example describing the flow of the algorithm
is illustrated in Figure 4. An input MST with calculated VGs
for each of the vertices is shown in Figure 4(a). In the first
iteration, v1 is identified as having the global maximum gain
in the Southern direction. All edges incident on v1 and
connecting to pairing vertices in the South are translated to
rectilinear edges. The converted non-rectilinear edges are
shown as dotted lines. The VGs are updated for the affected

vertices (i.e. v1, v2 and v3) by subtracting the contribution of
the converted edges. The resulting picture is shown in
Figure 4(b). In the next iteration, vertex v2 is found to have
the global maximum gain in the Eastern direction.
Therefore, all the edges incident on v2 and connecting to
pairing vertices in the East are translated to rectilinear edges
and the VGs are updated for the affected vertices resulting in
the picture shown in Figure 4(c). At this point all the edges
have been converted to rectilinear paths and the algorithm
stops.

VG(v1) = (0,0,5,0)
v1

v2

v3

v4

v5

VG(v3) = (0,0,0,0)

VG(v4) = (0,0,0,0)

VG(v5) = (0,0,0,0)

VG(v2) = (4,2,0,0)

(5,10)

(10,4)

(3,5)

(13,8)

(12,2)

(a) An example with calculated VGs

VG(v1) = (0,0,0,0)
v1

v2

v3

v4

v5

VG(v3) = (0,0,0,0)

VG(v4) = (0,0,0,0)

VG(v5) = (0,0,0,0)

VG(v2) = (0,2,0,0)

(5,10)

(10,4)

(3,5)

(13,8)

(12,2)

(b) The results after 1st iteration
VG(v1) = (0,0,0,0)

v1

v2

v3

v4

v5

VG(v3) = (0,0,0,0)

VG(v4) = (0,0,0,0)

VG(v5) = (0,0,0,0)

VG(v2) = (0,0,0,0)

(5,10)

(10,4)

(3,5)

(13,8)

(12,2)

(c) The final Steiner Tree after 2nd iteration

Figure 4: A step-by-step example using MGA

3.2 Favored Direction Analysis
The Favored Direction Analysis (FDA) identifies a vertex
where the maximum number of edges favors a certain
direction. For a large number of points, this method is less
computation intensive and is therefore faster. In FDA, the
number of edges overlapping is computed, not the actual
amount of overlap as in MGA.

3.2.1 Definitions
Let V be the set of vertices and E be the set of edges in the
MST. Let eij be the edge connecting vi and vj, where vi , vj ∈
V and eij ∈ E. The relative location (RL) of a vertex with
respect to another vertex is defined as a vector of 4
elements, enumerated as the four geographical directions,
i.e. {North, East, South, West}. Each element is set to 1 if
the pair point is in that global location else it is 0. Therefore,

194

RL(vi , vj): the relative location of vj w.r.t. vi. see Figure 5.
RL(vj , vi): the relative location of vi w.r.t. vj. see Figure 5.
SRL(vi) = ∑

∈ Eeij

(RL(vi , vj)), is a vector of 4 elements, each

indicating the number of pairing points that exist in
each of the geographical locations relative to vi. See
example in Figure 6.

FD(vi) = MAX
Vvi∈

(SRL(vi)), is the direction favored by most

of the edges incident on vi and is referred to as the
Favored Direction for vi.

R L (v 1 , v 2) = (0 ,1 ,1 ,0)

R L (v 2 , v 1) = (1 ,0 ,0 ,1)

v 1

v 2

v 3

R L (v 1 , v 3) = (0 ,0 ,1 ,1)

R L (v 3 , v 1) = (1 ,1 ,0 ,0)

Figure 5: Example of Relative Location (RL)

S R L (v 3) = (1 ,1 ,0 ,0)

S R L (v 1) = (0 ,1 ,2 ,1)
v 1

v 2

v 3

S R L (v 2) = (1 ,0 ,0 ,1)

Figure 6: Ex. of Summed Relative Locations (SRL)

3.2.2 Pseudo Code for FDA Algorithm
The rectilinearization process is an iterative algorithm. It
first computes SRL for all the vertices in the given MST.
Next, it finds a vertex that has a favored direction and
translates all the edges that contributed to the SRL into
rectilinear connections. The SRL for all the vertices affected
by the rectilinearization is updated by subtracting the
respective contribution of the converted edges. The process
is repeated until all the edges are translated. If a vertex with
a favored direction cannot be found, a vertex with the
maximum SRL (which is not unique) is picked and the edges
in one of the directions are translated. The pseudo code for
the flow is given in Figure 7.

Proc RectilinerizeWithFDA {
 Compute SRL for each vertex;
 While (non-rectilinear edges){
 Find a vertex with FD;
 If (found){
 Translate all edges which contribute to FD;
 Update SRL of all affected vertices;
 } else {
 Find a vertex with maximum SRL;
 Translate all edges which contribute to FD;
 Update SRL of all affected vertices;
 }
 }
endProc;

Figure 7: Pseudo code for the FDA algorithm

3.2.3 Runtime Complexity for FDA
A tree of n nodes has n-1 edges. The computation of SRL
step for all vertices involves calculating the relative
directions of 2(n-1) edges, which is O(n). As each rectilinear
edge is created just once, the time to create all the edges is
also O(n). To find the maximum FD vertex in the first loop,
the set of vertices is sorted in O(nlogn). The successive
loops update the SRL of the affected vertices only, and the
maximum FD vertex can be found in O(1) from the pre-
sorted list. Therefore, the overall algorithm using FDA is of
O(nlogn).
A step-by-step example describing the flow of the FDA
algorithm is illustrated in Figure 8. An input MST with the
calculated SRL for each of the vertices is shown in Figure
8(a). In the first iteration, v1 is identified as having an FD of
South. Therefore, all edges incident on v1 that connect to a
pairing vertex in the South are translated to rectilinear edges.
The resulting picture is shown in Figure 8(b). The converted
non-rectilinear edges are shown as dotted lines. The SRLs
are updated for the affected vertices (i.e. v1, v2 and v3) by
subtracting the contribution of the converted edges.

SRL(v1) = (0,1,2,1)
v1

v2

v3

v4

v5

SRL(v3) = (1,1,0,0)

SRL(v4) = (0,0,1,1)

SRL(v5) = (1,0,0,1)

SRL(v2) = (2,2,1,1)

(a) An example MST with computed SRLs

SRL(v1) = (0,0,0,0)
v1

v2

v3

v4

v5

SRL(v3) = (0,0,0,0)

SRL(v4) = (0,0,1,1)

SRL(v5) = (1,0,0,1)

SRL(v2) = (1,2,1,0)

(b) The example tree after 1st iteration

SRL(v1) = (0,0,0,0)
v1

v2

v3

v4

v5

SRL(v3) = (0,0,0,0)

SRL(v4) = (0,0,0,0)

SRL(v5) = (0,0,0,0)

SRL(v2) = (0,0,0,0)

(c) The final Steiner tree after 2nd iteration

Figure 8: A step-by-step example using FDA
In the next iteration, vertex v2 is found to have an FD of
East. All the edges incident on v2 that connect to a pairing

195

vertex in the East are translated to rectilinear edges and the
SRLs are updated for the affected vertices resulting in the
picture shown in Figure 8(c). At this point, all the edges
have been converted to rectilinear paths and the algorithm
stops.

4. RESULTS
Both flavors of the proposed Steiner tree algorithm,
Maximum Gain Analysis (MGA) and Favored Direction
Analysis (FDA), were implemented. The Steiner trees
generated by the proposed algorithms are compared to the
Batched-1-Steiner (B1S) [4] implementation. All
experiments are run on an IBM AIX workstation. The
metrics used for comparison are runtime and tree length. The
data presented is calculated by averaging the runtime and
tree length for 1000 randomly generated testcases in each
category. The runtime results are summarized in Table 1.

Table 1: Runtime Comparison
Test
case

No of
points

B1S
runtime

(sec)

FDA
runtime

(sec)

FDA
Speed

Up

MGA
runtime

(sec)

MGA
Speed

Up
St1 10 0.02 0.005 4.00 0.006 3.33
St4 20 0.125 0.013 9.62 0.016 7.81
St5 40 0.897 0.038 23.61 0.05 17.94
St50 50 1.69 0.05 33.80 0.07 24.14
St100 100 13.23 0.19 69.63 0.24 55.13
St200 200 95.6 0.7 136.57 0.9 106.22
St300 300 349.8 1.4 249.86 1.9 184.11

The results show that the runtime of the proposed algorithm
increases linearly with the number of points in the tree. Also,
the absolute runtime of the proposed FDA algorithm is 250x
faster than that of the Batched-1-Steiner. It is also seen that
while both the proposed algorithms scale linearly with the
number of points, the MGA has a runtime approximately
1.3x that of the FDA algorithm.

Table 2: Tree Length Comparison

Test
case

No of
points

B1Steiner
average

tree
length

FDA
average

tree
length

FDA %
tree

length
increase

MGA
average

tree
length

MGA
% tree
length

increase
St1 10 2702.45 2792.23 3.32 2757.65 2.04
St4 20 3813.44 3952.85 3.66 3898.36 2.23
St5 40 5339.06 5545.49 3.87 5469.48 2.44
St50 50 5922.35 6147.13 3.80 6073.24 2.55
St100 100 8264.94 8582.78 3.85 8462.55 2.39
St200 200 11545.56 12000.84 3.94 11830.74 2.47
St300 300 14058.97 14631.66 4.07 14419.97 2.57
The tree length comparison results are shown in Table 2.
With 1000 testcases used in each category, the average tree
length is worse by about 2.5% using MGA and 4% for FDA
computed trees.

The tree length comparison shows that the MGA algorithm
produces trees that are closer to the B1S Steiner trees. But
this comes at the cost of increased runtime, as the MGA is
about 50% slower than the FDA algorithm. A chart
comparing the speed up and accuracy in results is shown in
Figure 9. It is clear that the FDA provides higher speedup
but lesser accurate results compared to the MGA method.

Figure 9: Speedup vs. accuracy comparison between
MGA and FDA

Figure 10 shows the Steiner tree generated by the Batched-
1-Steiner implementation from [4] for 200 points. The
runtime for the example is 95 sec and the tree length is
11058 units. For the same set of points, Figure 11 shows the
Steiner tree generated by the MGA based algorithm
proposed here. The length of this tree is 11360 units (2.7%
more) but the runtime to generate it is only 0.9 sec (106x
faster). Figure 12 shows the Steiner tree generated by the
FDA based algorithm proposed here. The length of this tree
is 11465 units (3.6% more) but the runtime to compute it is
only 0.7 sec (136x faster).

5. CONCLUSION
We presented two variations of a novel and ultra fast
algorithm to generate Steiner trees. Many Steiner tree
algorithms have been proposed in literature, but the existing
solutions are very slow for use in VLSI CAD applications.
The Maximum Gain Analysis (MGA) algorithm presented
here compares well to Batched-1-Steiner implementation
with the tree cost (or total edge length) being at most 2.5%
more while the runtime is upto 180x faster for trees with 300
points. As the runtime of the proposed algorithm is
O(nlogn), the runtime speedup is dependent on the number
of points connected by the tree, but the increase in average
net length is independent of the number of points.
The proposed Steiner tree algorithm can be used to quickly
and accurately estimate the wire length of a net in VLSI
CAD applications. The fast runtime and accurate net length
estimation make the algorithm very usable in a variety of
intermediate physical design steps where the net lengths are

Speedup VS Accuracy

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Speedup

In
cr

ea
se

 in
 N

et
le

ng
th

 (%
)

FDA MGA

196

estimated repeatedly in all iterations of an algorithm, e.g.
placement algorithm.

Figure 10: Steiner Tree by Batched-1-Steiner for
200 points (Runtime = 97 sec)

Figure 11: Steiner Tree by MGA for 200 points
(Runtime = 0.9 sec)

Figure 12: Steiner Tree by FDA for 200 points
(Runtime = 0.7 sec)

REFERENCES
[1] Garry, M. R., and Johnson, D.S., "The Rectilinear

Steiner Tree Problem is NP-complete," SIAM Journal
on Applied Mathematics, Vol. 32, No. 4, pp 826-834,
1977.

[2] Gerez, S. H., “Algorithms for VLSI Design
Automation,” John Wiley & Sons Ltd., pp.105, 1999.

[3] Kahng, A., Robins, G., “A new class of Steiner tree
heuristics with good performance: the iterated 1-Steiner
approach,” IEEE International Conference on
Computer-Aided Design, Digest of Technical Papers,
pp. 428-431, 1990.

[4] Griffith, J., Robins, G., Salowe, J.S., Tongtong, Z.,
“Closing the gap: near-optimal Steiner trees in
polynomial time,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
Vol.13, pp. 1351-1365, 1994.

[5] Hwang, F.K., “An O(n log n) Algorithm for Suboptimal
Rectilinear Steiner trees,” IEEE Transactions on
Circuits and Systems, Vol. CAS26, pp. 75-77, Jan 1979.

[6] Ganley, J.L., Cohoon, J.P., “A faster dynamic
programming algorithm for exact rectilinear Steiner
minimal trees,” Proceedings of Fourth Great Lakes
Symposium on VLSI, pp. 238-241, 1994.

[7] Hanan, M., “On Steiner’s problem with rectilinear
distance,” SIAM Journal of Applied Mathematics, 14,
pp. 255-265, 1966.

[8] Saltouros, M., Theologou, M., Angelopoulos, M.,
Ricudis, C. S., “An efficient evolutionary algorithm for
(near-) optimal Steiner tree calculation: an approach to
routing of multipoint connections,” Proceedings of the
Third International Conference on Computational
Intelligence and Multimedia Applications, pp. 448-453,
1999.

[9] Borah, M., Owens, R.M., Irwin, M.J., “A fast and
simple Steiner routing heuristic [for VLSI],” Discrete
Applied Mathematics 90, pp 51-67, Jan. 1999.

[10] Areibi, S., Xie, M., Vannelli, A., “An efficient
rectilinear Steiner tree algorithm for VLSI global
routing,” Proceedings of the Canadian Conference on
Electrical and Computer Engineering, pp. 1067-1072,
2001.

[11] Mandoiu, I. I., Vazirani, V. V., Ganley, J. L., “A new
heuristic for rectilinear Steiner trees,” IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, pp. 1129-39, Oct. 2000.

[12] Ganley, J. L., “Computing optimal rectilinear Steiner
trees: a survey and experimental evaluation,” Discrete
Applied Mathematics 90, pp. 161-171, Jan. 1999.

197

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

