
Matrix Datapath Architecture for an Iterative 4x4 MIMO
Noise Whitening Algorithm

Geoff Knagge
University of Newcastle

68 Waterloo Road
North Ryde, NSW 2113

Australia

knagge@lucent.com

David Garrett
Sivarama Venkatesan

∗
Chris Nicol

Bell Labs Research (Lucent Technologies)
68 Waterloo Road

North Ryde, NSW 2113
Australia

garrettd,sivarama,chrisn@lucent.com

ABSTRACT
This paper describes a power, speed and area efficient VLSI
implementation of a noise whitening algorithm for a 4x4
MIMO channel. The architecture combines innovative use
of Hermitian matrices to streamline the iterative calcula-
tions, with a 4x1 matrix row-column multiplier as the core
component. The optimisations in the datapath reduce the
power and latency needed to implement the algorithm. The
Booth recoded complex multipliers use logic sharing to re-
duce power and complexity, and incorporate low-power sleep
logic that does not increase the critical path. The design
has been successfully synthesised in a 0.18µm, 1.8V CMOS
technology, and has the potential to be adapted to other
applications requiring matrix multiplication.

Categories and Subject Descriptors
B.6 [Logic Design]: Design Styles; C.1 [Processor Ar-
chitectures]

General Terms
Design

Keywords
Noise Whitening,MIMO,Booth recoding,matrix multipliction

1. INTRODUCTION
Multiple-input multiple-output (MIMO) techniques are

of significant research interest due to their capability to
dramatically increase the data rate achievable over a wire-

∗Based at Bell Labs Research, NJ, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’03, April 28–29, 2003, Washington DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0006 ...$5.00.

less channel without requiring additional transmit power or
bandwidth [1, 2].

A block diagram of a detector for a MIMO system with
M transmit antennas and N receive antennas is shown in
figure 1. When the channel is highly frequency-selective, a
linear space-time equaliser may be deployed at the front end
of the receiver, in order to mitigate the spatial and tempo-
ral self-interference introduced by the channel. In order to
obtain even better spatial separation of the transmitted sig-
nals, it may further be necessary to pass the output of the
space-time equaliser through a maximum-likelihood (ML)
detector. It is usually convenient to build the ML detector
under the assumption that the noise at its input is spatially
white. However, the equaliser preceding the ML detector
colours the noise at the receiver input. Ignoring the colour-
ing of the noise at the input of the ML detector can result
in significantly degraded performance. It is therefore impor-
tant to have a “noise whitening” stage between the equaliser
and the ML detector, as shown in figure 1.

N receive
antennae

M transmit
estimates

M channels M independant
channels

ML
Detector

Noise
Whitener

Space-time
Equaliser

Figure 1: The proposed noise whitener attempts
to counteract the filtering effect imposed on the
AWGN channel noise

The standard method of noise whitening is based on the
Cholesky decomposition of the covariance of the noise at
the output of the equaliser. However, this method requires
arithmetic divisions and square roots, operations that are
preferable to avoid in hardware due to their complexity.

To circumvent the need for divisions and square roots, an
iterative algorithm based on Newton’s method has recently
been devised to perform the noise whitening [3]. This paper
describes an efficient hardware architecture for implemen-
tation of this algorithm, and presents an indication of the
power, speed and area parameters for implementation in a
4x4 MIMO detector.

The rest of the paper is organised as follows. Section 2
introduces the algorithm used to solve the noise whitening

153

problem. Since the algorithm is heavily based on multipli-
cation, section 3 describes our design of a power and speed
efficient multiplier circuit with sleep capabilities. However,
we are concerned with the multiplication of matrices, and
section 4 considers various architectures before describing
our chosen technique and optimisations used in its imple-
mentation. Section 5 reveals how our noise whitener imple-
ments this, and section 6 provides results that indicate the
speed, power, and area parameters of its implementation.

2. NOISE WHITENING ALGORITHM
The algorithm uses an iterative process to determine the

noise whitening matrix, which is then used to filter the vec-
tors of values being output from the equaliser. The key fea-
ture of this algorithm that provides scope for innovation in
its implementation is that it uses Hermitian matrices. That
is, most of the data is manipulated in matrices that are the
conjugate transpose of themselves.

The spatial covariance of the noise at the ouput of the
equaliser can be expressed as K = WWH , where W is a
matrix of equaliser coefficients. The noise whitening prob-
lem is then to find a matrix Q such that QKQH = I, the
identity matrix. Such a Q is guaranteed to exist because K
is necessarily Hermitian and positive-definite.

In the system of interest, the number of transmit and
receive antennas were both equal to 4, and the size of the
W matrix was 4x128, so that the K matrix and the desired
Q matrix are both 4x4.

The implemented iterative noise whitening algorithm is

Qn+1 =
Qn

2
∗ (3I− KQn

2)

To ensure convergence, the iterations start with Q0 = αI,

where α is any positive real number smaller than
�

1
trace(K)

.

It is easy to see that all the iterates Qn are Hermitian ma-
trices, since Q0 and K are themselves Hermitian.

After the final Qn is calculated after several iterations,
the noise whitening filtering operation can be done, by mul-
tiplying Qn by the non-whitened 4x1 matrix sample, s.

3. MULTIPLIER DESIGN
It is critical to have a complex number multiplier that

is size and power efficient, while meeting timing require-
ments. The multiplier used was based on radix-4 Booth
recoding and carry-save arithmetic, and optimised for speed
and power with a unique sleep logic technique. The multi-
plier also uses standand sign extension avoidance techniques
[4], which can be optimised for complex number multipliers.

3.1 Sleep Logic
The provision of a sleep function, to disable multipliers

when they are not required, can considerably reduce power
consumption. An obvious method is to simply gate the in-
puts, but this will increase its critical path delay.

Our solution is found by examining the Booth recoding
logic. The booth recoder generates three signals, X2, X0,
and NEG to tell the partial product generator to shift left,
zero the partial product, or take its complement. The logic
for these signals is seen in figure 2 and, making the rea-
sonably accurate assumption that each gate has a similar
propagation delay, it can be seen that all signals are gener-
ated simultaneously.

Figure 2 also shows the generation of the least significant
partial product bit, from which it can be seen that the enable
function is achieved by simply gating the Booth recoded
“X0” signal. It can also be seen that the critical path delay
does not depend on this gate, and so a sleep function has
been achieved without increasing that delay.

b(0)

b(1)

b(2)
X0

"Zero" Logic

"Neg" Logicb(0)

b(1)

b(2)

NEG

b(0)

b(1)

b(2)

"Shift" Logic

X2

multiplicand(0)

NEG

X0

Enable
X2

Partial
Product

bit(0)

Figure 2: Achievement of a multiplier sleep function
without increasing the critical path

3.2 Complex Multiplier
Reductions in gate counts, speed, and power usage for

the complex multipliers have been achieved through sharing
of common logic in the multipliers. Although a complex
multiplier is made of four real number multipliers, only two
booth recoders are required. In addition, much of the error
correction terms are constant, so it is possible to precompute
the sum of corresponding pairs of these and replace them
with a single term. By modifying the Booth recoding, our
multipliers multipliy by the conjugate of one of its inputs,
for reasons that are described in section 4.2.

It is theoretically possible to implement complex multi-
pliers with only three real number multipliers, such as those
described by [5], but these require use of carry propagate
additions or lookup tables, and provide little benefit for this
synthesisable design.

4. MATRIX MULTIPLICATION
The algorithm consists of two types of operation, being

the calculation of the whitening matrix for the current es-
timation of the channel, Qn+1 = Qn

2
∗ (3I− KQn

2), and
the final filtering operation result = Qns. The first can be
broken down into four calculations, or modes:

Qn+1 =
Qn

2
(

mode10� �� �

3I−
mode00� �� �
WWH

Mode01����
Q2

n)
� �� �

mode11

(1)

This shows that we have a total of three multiplications
of 4x4 matrices to perform on each iteration. The result of
the calculation of WWH is constant for each iteration, and
so can be precomputed as the matrix K.

4.1 Multiplication Tradeoffs
The principle operation of interest is the multiplication of

pairs of 4x4 matrices, and so it was necessary to determine
which of the range of possible matrix multiplication archi-
tectures was most suitable to this application. In addition

154

to minimising the circuit area used, the design needed to
work within a set time budget. Each output cell of the re-
sultant matrix is the multiplication of a corresponding row
and column from the inputs, requiring four multiplications.

At one extreme, a fully parallel approach could execute
in one clock cycle with 64 complex multipliers. Assuming a
synthesised 16bit complex multiplier uses around 0.09mm2,
this would use 5.8mm2 of silicon alone. Since it is econom-
ically desirable to reduce the area, this is not practical.

The other extreme is to only instantiate a single multi-
plier, and perform all calculations sequentially. To calculate
an entire matrix, we would require 4 ∗ 16 = 64 operations
(clock cycles). With ten iterations of three multiplications
per iteration, plus the calculation of K, this is around 4000
clock cycles to calculate the whitening matrix. For this ap-
plication, that is too slow.

It is therefore obvious that a compromise is required be-
tween excessive circuitry and excessive latency. The hybrid
approach considered here achieves this, and is effectively
a vector multiplier that is successively used sixteen times,
with only four multipliers, to produce the output matrix.
By using optimisations based on the presence of Hermitian
matrices, both the time and power usage of this architecture
can be further reduced.

The trade-offs between architectures can be seen in tables
1 and 2. The tables assume that the algorithm runs for 10
iterations, and that all necessary data is instantly available
to the parallel architectures. The non-parallel values make
the assumption, explained in secion 5.2, that two cycles are
needed to obtain values for the calculation of non-diagonal
outputs of K.

architecture complex cycles per cycle per
multipliers matrix algorithm

Full Parallel 64 (2048) 1 (1) 31
Parallel 64 1 (32) 62

Sequential 1 64/128 (3584) 11264
Hybrid 4 16/32 (896) 1536

Table 1: Characteristics of various matrix multipli-
cation architectures, with values in parentheses in-
dicating calculation of K = WW H.

architecture complex cycles per cycle per
multipliers matrix algorithm

Full Parallel 40 (1280) 1 (1) 31
Parallel 40 1 (20) 50

Sequential 1 40/80 (2048) 3648
Hybrid 4 16 (448) 928

Table 2: Benefits of using Hermitian optimisations

4.2 Memory optimisations
In order to realise the full speed potential of the chosen ar-

chitecture, we need to obtain four input values in one clock
cycle. To make this possible, matrices are stored with entire
rows in each memory location, with locations partitioned to
allow individual matrix cells to be written with respective
write enable signals (Table 3). The output addresses are
thus partitioned so that the two least significant bits deter-
mine the partition number, and the most significant bits are
the physical address.

Address Bits 31-0 63-32 95-64 127-96
00 A(1, 1) A(1, 2) A(1, 3) A(1, 4)
01 A(1, 2)∗ A(2, 2) A(2, 3) A(2, 4)
10 A(1, 3)∗ A(2, 3)∗ A(3, 3) A(3, 4)
11 A(1, 4)∗ A(2, 4)∗ A(3, 4)∗ A(4, 4)

Table 3: Memory locations can be partitioned so
that an entire matrix row of the Hermitian matrix
may be read in one operation.

To read a given row of the matrix, we now only need to
access the corresponding memory address. By realising that
the values each column of a Hermitian matrix is the conju-
gate of a corresponding row, all that is needed to multiply
by a column of the matrix is to read its corresponding row,
and multiply by the conjugate of the values read. Since the
multipliers were designed to multiply by the conjugate of
one input, this is efficiently achieved.

To generate a Hermitian matrix, it is only necessary to cal-
culate the upper triangle by multiplication, since the lower
triangle is simply its conjugate and can be formed by nega-
tion of the complex components. For a NxN matrix, this
means only

�N
n=1 n calculations are needed rather than N2.

This technique saves significant power, since the multiplica-
tion is the most power consuming part of the circuit. With
this technique, the output matrix is written in the order
depicted by figure 3.

Figure 3: Order in which the Hermitian matrices are
filled in. Dark squares represent the cells currently
being written, and light squares represent the cells
already calculated.

5. PROCESSOR ARCHITECTURE
With an efficient implementation stategy in place for the

noise whitener, a five stage pipeline can then developed.
These stages consist of address generation, a memory wait,
decoding of memory data, multiplication, and finalisation of
results. In this final stage, if the calculation being performed
is K = WWH , then the results are tallied until the entire
output cell has been calculated. When that is the case, and
for all other calculations, the result is resolved with a carry-
propagate adder and written to the memories.

5.1 State and address generation
The state of the whitener is simply a record of which of

the five calculations is being performed, consisting of the
two types of calculation and each of the modes shown in
equation 1.

The monitoring of our progress in a particular state is
done through incrementing the output address as is appro-
priate for our Hermitian output optimisations.

For the 4x4 matrices used here, the output address is sim-
ply the concatenation of a column number and a row num-
ber. Since the output is also Hermitian, we only need to
generate the addresses of the upper triangle and allow the
output stage to handle the other half of the output. In addi-
tion, with the technique used to store data in memories, no

155

additional logic is required to generate the read addresses
because these can be directly derrived from the row and
column number that form the output address. Mode 00,
however, does require an additional counter to address the
W memory.

Since the output stage needs to perform two write cy-
cles for non-diagonal entries, it is necessary to introduce a
pipeline stall for those entries. Such a stall is not necessary
for diagonal entries, and this can be detected when the row
and column numbers are equal. We save some clock cycles
with this optimisation in the calculation of K = WWH , but
the main benefit is that we save power because we do not
need to recalculate essentially the same values for the lower
triangle of the output matrix.

5.2 Mode 00: K = WWH

This calculation is the first that is done in the noise whiten-
ing initialisation, and we assume that W is preloaded. This
state is also where Q0 is initialised as a diagonal matrix with
the provided real value α.

We constrain the width of matrix W to be a multiple
of 4, so that it can fit neatly into the architecture. Since
the one matrix is used as both inputs for this calculation,
two reads are generally needed to obtain the required row
and column, remembering that the “column” is actually the
conjugate of the respective row. For the diagonals, only one
read is needed since the row and column are the same.

5.3 The filtering operation
This state is entered once the final Qn has been calculated

and is the same as any other, expect that the output is
written in four clock cycles to flip-flop outputs instead of a
memory, and is a four cell column vector.

5.4 Output of results
Since the architecture is optimised to minimise the amount

of power consuming calculations required, the output needs
to write to the upper and lower triangle of the Hermitian
result. This stage is also where the division by two and the
“3I − x” operation in carry-save form is done if necessary,
before being resolved with a carry propagate adder.

The Hermitian optimisation is a simple matter of saving
the results to a temporary register if the generated value is
not on a diagonal. On the next clock cycle, we can then take
the conjugate of the saved values, and write it to the lower
triangle by swapping the least and most significant halves of
the address. The pipeline stall introduced in the Read stage
will allow time for this to be done

6. HARDWARE PERFORMANCE
To demonstrate the feasibility of the algorithm’s imple-

mentation, and to show the benefits of the optimisations
described, the architecture was implemented with VHDL
and synthesised, with varying amounts of numerical preci-
sion, using a 0.18µm, CMOS process in the slow corner. The
target clock cycle of 8.2ns used is simply a value of interest,
as the 16 bit design has been shown to be synthesisable to
a clock cycle of under 6.5ns.

The results are in table 4, where power is averaged from
the loading of the W matrix until the last filtering opera-
tion. An indication of these power savings is easily gained by
considering the “maximum power” column power for each
configuration. The maximum power is the power dissipated

during the calculation of K = WWH , where the Hermi-
tian optimisations are of little significance. This uses over
100mW more than the rest of the iterative process, proving
the significant benefit of this technique.

The actual configuration used in any given application will
be a compromise between performance and size and power.
As table 4 shows, a lower numerical precision gives a smaller
and less power consuming circuit, but the performance of the
algorithm is degraded.

Bits Size Average Power Maximum Power
13 1.01mm2 119 mW 240 mW
14 1.07mm2 129 mW 260 mW
15 1.20mm2 159 mW 306 mW
16 1.27mm2 193 mW 341 mW

Table 4: Comparison of size and average power for
different amounts of numerical precision.

7. CONCLUSION
This paper has described the successful implementation of

a noise whitening algorithm that is targeted to MIMO ap-
plications and does not require VLSI-unfriendly operations
such as division. The major components, the multipliers,
have been optimised and designed with sleep logic, saving a
considerable amount of power. Architectural optimisations
exploit the Hermitian nature of the matrices used for multi-
plication, and save further power as well as speed and area.

While this architecture was designed specifically for noise
whitening of MIMO channels, it has the potential to be
adapted to many other MIMO algorithms requiring the use
of matrix multiplication. In fact, its application need not
restricted to MIMO, as noise whitening and matrix multi-
plication in general is required in numerous other applica-
tions. Nor is it restricted to multiplication of 4x4 matrices,
or square matrices. Multiplication of rectangular matrices
can be handled in a similar manner to the calculation of K.
The architecture is easily scalable to larger or smaller ma-
trices as long as the physical size and number of multipliers
remains practical.

8. REFERENCES
[1] G. J. Foschini and M. J. Gans, “On limits of wireless

communications in a fading environment when using
multiple antennas,” Wireless Personal
Communications, vol. 6, pp. 311–335, March 1998.

[2] I. E. Telatar, “Capacity of multi-antenna gaussian
channels,” European Trans. Telecomm., vol. 10,
pp. 585–596, November-December 1999.

[3] S. Venkatesan, L. Mailaender, and J. Salz, “Iterative
algorithms for noise whitening.” Bell Labs Technical
Memorandum, in preparation.

[4] C. R. Baugh and B. A. Wooley, “A two’s complement
parallel array multiplication algorithm,” IEEE
Transactions on Computers, vol. 22, pp. 1045–1047,
December 1973.

[5] Y. B. Mahdy, S. A. Ali, and K. M. Shaaban,
“Algorithm and two efficient implementations for
complex multiplier,” in Proceedings of ICECS,
pp. 949–953, 1999.

156

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

