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ABSTRACT 
Concerned by the wall that Moore’s Law is expected to hit in the 
next decade, the integrated circuit community is turning to 
emerging nanotechnologies for continued device improvements. 
While significant advancements in nanotechnology devices have 
been achieved, much work is required to integrate these 
technologies into the existing design methodologies. Given that 
the physical design paradigm of each nanotechnology will be 
significantly different than that of traditional silicon circuits, the 
underlying cost functions used in optimization algorithms 
throughout the design abstraction hierarchy must be altered. 
Because nanotechnologies are not as well developed and 
understood as silicon devices, abstraction will initially result in 
less accurate models. However, if models are developed and 
augmented as nanotechnologies continue to evolve, the transition 
from CMOS-based design to nano-based design will be relatively 
seamless. 
This paper details the logic-level abstraction process for area 
minimization for one promising nanotechnology – quantum 
cellular automata (QCA). The model abstracts relative area costs, 
including interconnect area, for QCA devices, and it is integrated 
within existing multi-level logic synthesis techniques. Results 
validate the proposed approach of designing nano-based circuits 
with the traditional abstraction-based design methodology. 
Categories and Subject Descriptors 
B. 6. 1 [Logic Design]:  Design Styles 

General Terms 
Algorithms, Design 
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1. INTRODUCTION 
The logic density of integrated circuits has been rapidly 
increasing for the last few decades. However, due to physical 
restrictions, the limit of transistor sizes will soon be reached, 
forcing researchers to explore novel physical design paradigms in 
the form of various nanotechnologies. Given the significant 
structural and functional differences between nanotechnologies 
and traditional silicon-based CMOS circuits, the current design 
process will have to be changed for nano-based design. 

It would be greatly beneficial to maintain the general design 
methodologies used today, with any nano-induced changes being 
as transparent to designers and design tools as possible. To 
account for the physical design paradigm differences between 
CMOS and various nanotechnologies, current design 
methodologies must be examined to identify the necessary, but 
ideally minimal, changes that must be made for nano-based 
design without affecting the overall design flow. 

This paper examines changes to the logic-level area minimization 
process for one emerging nanotechnology – quantum cellular 
automata (QCA). While the logic minimization algorithms remain 
the same (i.e. minimizing the number of gates and gate inputs), 
overall area minimization, which includes finding the optimal 
number of logic levels for a function, can vary for CMOS and 
QCA. The primary change centers around a novel cost model for 
QCA logic and interconnect. When this model is incorporated into 
traditional logic synthesis techniques, the benefits of QCA-
dependent logic synthesis are achieved while keeping the design 
methodology changes completely transparent to the designer and 
tools. 

In the development of this model, many assumptions were made 
about QCA’s structure and functionality due to the lack of 
knowledge the exists about this and other emerging physical 
design paradigms relative to the well-understood realm of CMOS 
abstraction. The continued development and understanding of 
nanotechnologies will undoubtedly lead to more accurate models, 
but this paper lays the groundwork for a minimal perturbation 
approach for incorporating nanotechnologies into the existing 
abstraction-based design methodology via physical-design-
dependent models. 

2. BACKGROUND AND MOTIVATION 
2.1 QCA Structures 
The basic unit in quantum cellular automata is a cell that contains 
four possible positions for electrons, which are called quantum 
dots. Each cell has electrons occupying two of its four dots. These 
two electrons repel each other and thus must be located in 
opposite corners of the cell – top left and bottom right, or top 
right and bottom left. As shown in Figure 1, the former 
configuration represents a logical ‘0’, and the latter represents a 
logical ‘1’. 

These cells can then be aligned in rows and columns to form logic 
structures [5]. Consider the five cell cross structure in Figure 2, 
which is designed to perform the logic function Out=A+B. Not 
only do the electrons in each cell repel each other, but the 
repulsion propagates to adjacent cells. Therefore, inputs A, B, and 
Prog are affecting the configuration of the center and Out cells. In 
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this case, the majority of the inputs are set to ‘1’, so the center and 
Out cells are forced into the ‘1’ position, which is the proper 
result of A+B. Note that if A were set to ‘0’, the majority of 
inputs would force Out to ‘0’. Similarly, if Prog were set to ‘0’ 
(making the cross structure an AND gate), Out would be forced to 
‘0’. 

‘0’ ‘1’  
Figure 1. Logical representations of QCA cells 
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Figure 2. 2-input QCA OR Gate 

These basic gates can be used to form complex circuitry. While 
early work focused on the development of basic logic gates [3], 
recent advances have explored the design of QCA-based circuits 
as complex as microprocessors [4]. While the work to date on 
QCA circuit design was done manually, future QCA-based design 
must be automated to handle the tremendous complexity of 
modern circuits. Therefore, accurate models are required to 
abstract the design process. 

2.2 Input Dependence 
When using CMOS transistors to build integrated circuits, the 
addition of an input to an OR or AND gate simply increases the 
number of transistors by two. However, the same relation does not 
hold for QCA, as the area per input increases with the number of 
inputs. For example, consider a 2-input and a 4-input OR gate. 
While the number of transistors in a 4-input CMOS OR gate is 
twice that of a 2-input OR gate (excluding the inverter), the 
number of QCA cells goes from five (as shown in Figure 2) to 
eighteen (as shown in Figure 3) [2]. 
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Figure 3. 4-input QCA OR Gate 

This provides a major difference between the logic-level area 
models for the two physical design paradigms. Thus, when 
minimizing area for QCA, the number of gate inputs must be 
considered differently than in CMOS. Before considering 
interconnect, a 4-input OR function should be implemented in a 
series of three 2-input OR gates in QCA (for a total of fifteen 
cells). Such an example shows that the model for finding the 
optimal number of logic levels for a given function (i.e. the 
implementation that requires the least area) is different for QCA 
and CMOS. 

2.3   Interconnect Dependence 
QCA interconnect is formed using the same base cells, arranging 
them so that the signal propagates and drives subsequent logic 
gate inputs. The shaded blocks in Figure 4 are interconnect cells, 
connecting the outputs of one level of gates to the inputs of the 
succeeding level. 
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Figure 4. 4-level, 16-input QCA gate 

Given that the base QCA interconnect and logic cells are the 
same, QCA interconnect has a tremendous impact on the size of 
the circuit. It is easy to see in Figure 4 that the number of 
interconnect cells is far from trivial in the overall area. Therefore, 
interconnect must be included in the model for logic-level area 
minimization. While the exact amount of interconnect will not be 
known until post-layout, estimates based on averages can be 
abstracted up to the logic-level. Such interconnect consideration is 
not currently involved in most CMOS logic-level models, 
providing another key difference between the two physical design 
paradigms1. 

3. QCA LOGIC-LEVEL AREA MODEL 
This section details the development of the QCA logic-level gate 
and interconnect area models to be integrated within existing 
logic synthesis area minimization algorithms. These models are 
based on the current understanding of the QCA physical design 
paradigm. Given the immaturity of the field, the models are likely 
to change with increased understanding. However, these models 
and their seamless integration into the existing design 
methodology demonstrate the possibility of abstraction-based 
nano design. 

It is also important to note that the relative area of various 
implementations is more important than individual magnitudes for 
search-based optimization algorithms, as “best” is a relative term. 
Therefore, while these models do provide individual magnitudes, 
it is the relative analysis that impacts area minimization. As a 
result, changes to the models will not necessarily yield different 
implementations, as relative area rankings will not be affected by 
across-the-board percentage magnitude adjustments. 

                                                                 
1 However, shrinking CMOS device sizes are increasing the 

relative area impact of interconnect. Therefore, including 
interconnect in the area model for CMOS logic synthesis could 
provide significant benefits. 
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3.1 QCA Gate Area 
As stated above, the QCA gate area model is a function of the 
number of gate inputs, but the function differs greatly from 
CMOS. To derive this function, the minimum AND/OR gate area 
was established for gates up to thirteen inputs. This required 
exploring many different implementations of the same gate. For 
example, the optimal implementation of an n-input QCA gate 

may actually be two 
2
n

-input gates followed by one 2-input gate 

or some other variation. In such cases, internal signal interconnect 
area is also considered. 
The following assumptions were made: 

• QCA cells placed at least one cell apart do not affect each 
other’s electron configuration or induce any propagation. 

• Only the number of cells is counted, not the total area that is 
used. This is because the area estimations are to be used to 
compare relative areas, not to determine absolute area. 

To determine the intra-gate interconnect cost associated with 
chaining cells, tree structures were generated, and a cost was 
derived for each level of interconnect. Consider the 4-level, 16-
input gate shown in Figure 4, with the internal interconnect cells 
shaded. This implementation is actually eight 2-input gates (Level 
1) → four 2-input gates (Level 2) → two 2-input gates (Level 3) 
→ one 2-input gate (Level 4). Note that the internal signal 
interconnect cost is level-dependent. The internal signals going to 
gate Levels 2, 3, and 4 require two, three, and seven cells, 
respectively. 
This model was used to determine the cost of a variety of gate 
implementations with any number of inputs. It was found that the 
minimum cost implementations of 2-, 3-, and 4-input gates are 
five, ten, and eighteen cells respectively [2, 5]. Figure 5 shows the 
possible configurations for a 5-input gate. There could be more 
than one gate configuration for a given number of inputs that have 
the same area, but this should not affect final layouts. Combining 
gate area costs with the level-dependent internal signal 
interconnect cost model, the optimal implementation of the 5-
input gate was one 3-input gate → one 3-input gate. This 
approach was repeated until cost models were developed for QCA 
gates with up to thirteen inputs. 

 
Figure 5. Various implementations of a 5-input QCA gate 
Figure 6 shows the approximated gate area function, 

( ) 5.86 −×= IA , where A is the number of QCA cells in the 
optimal area configuration and I is the number of gate inputs for 
that configuration. The standard deviation of this linear function 
from the actual data points is about 8.5%. 
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Figure 6. QCA gate area model         

        
3.2   QCA Interconnect Area 
As with intra-gate interconnect area, gate-to-gate interconnect 
area cost is level-dependent. Starting with Level 2 connections 
(i.e. inputs to Level 2 gates), the fanin interconnect costs were 
determined for gates with two to ten inputs. As one would expect, 
the relationship between interconnect area and number of inputs is 
nearly linear, as show in Figure 7. The approximate function for 
the cost model is ( ) 16.893.4 −×= IA . 
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Figure 7. Level 2 interconnect costs 

This process was extended for up to six levels of logic. The 
results are shown in Table 1. The following 2-variable formula 
was derived from this data to form the basis of the interconnect 

cost model: 7.03.0 +××= LILA , where L is the fan-in gate 
level. The standard deviation of this function from the actual data 
points is about 14%. 

Table 1. Interconnect costs for up to 6 levels with 10 inputs 

inputs level 2 level 3 level 4 level 5 level 6
2 4 6 14 30 62
3 7 17 33 61 127
4 10 24 58 120 246
5 13 41 67 185 375
6 22 54 130 276 562
7 27 77 173 373 749
8 32 96 238 494 1074
9 37 135 331 615 1255
10 41 160 366 782 1582

QCA cells for fan-in interconnect

 

4. COST MODEL IMPLICATIONS 
While the cost model magnitudes will likely change as 
understanding of the QCA physical design paradigm increases, 
the models provide reasonably accurate relative size data, which 
is all that is necessary when searching for the minimum area 
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implementation at the logic level. For example, the local search 
heuristics that are traditionally used in logic synthesis use cost 
functions to find the best implementation of a function in a 
defined neighborhood. This search does not rely on absolute 
values but rather relative comparisons. Consider the following 
generic local search pseudocode: 

local_search(solution) 
{ 
  next_sol=solution; 
  best_cost=cost(next_sol) 
  for each (temp_sol=move(solution, radius)) 
  { 
    temp_cost=cost(temp_sol); 
    if (temp_cost<best_cost) { 
      next_sol=temp_sol; 
      best_cost=temp_cost; 
    } 
  } 
  if (next_sol=solution) BREAK; 
  else local_search(next_sol); 
} 

Each recursive call to the algorithm starts with a new base 
solution. The “cost” subroutine evaluates each solution based on a 
defined cost function. “move” finds all of the possible solutions 
within the base solution’s neighborhood, the size of which is 
defined by “radius”. For area minimization purposes, valid moves 
are increasing or decreasing the number of logic levels. The “for 
each” loop continues until all of the neighborhood’s solutions 
have been evaluated and the best (based on the cost model) 
solution emerges, providing the base solution for the next 
recursive call. 

This algorithm forms the basis for many CMOS-based logic 
synthesis tools, and it need not be altered for QCA-based design. 
The only change is in the “cost” subroutine. Instead of the well-
known cost models used in CMOS designs, the combined gate 
and interconnect area models detailed in Section 3 will be 
invoked. Thus, the general flow of the algorithm (and the overall 
design methodology) remains unchanged, and the switch to QCA-
based design is transparent to the designers and tools at this level 
of abstraction. 

Table 2 shows the application of this algorithm to several simple 
functions using three different area models in the “cost” 
subroutine: standard CMOS gate area model, QCA with 
interconnect, and QCA without interconnect. 

Table 2. Minimum area implementations 

2-level function CMOS QCA w/ int QCA w/o int
abcd+efgh+ijk l+m nop 2 2 2
abcd+afgh+ijk l+m nop 2 2 2
abcd+afgh+ajk l+m nop 4 2 4
abcd+afgh+ajk l+anop 3 3 3
abcd+abgh+ajkl+anop 5 3 5
abcd+abgh+abkl+anop 5 3 5
abcd+abgh+abkl+abop 3 3 3
abcd+abch+abkl+abop 4 4 4
abcd+abch+abcl+abop 4 4 4
abcd+abch+abcl+abcp 2 2 2

levels in m inim um  cost im plem entation

 
This data shows that the CMOS and QCA results are quite similar 
up to about four levels of logic, at which point CMOS can still 
provide area efficient implementations but the QCA area starts to 
explode. It is therefore reasonable to assume that highly complex 

functions that would be implemented in a large number of levels 
for CMOS are more area efficient in fewer levels for QCA. We 
cannot back these model-based findings with experimental data 
because QCA devices have not yet been physically realized. 

It is also interesting to note that the minimum cost QCA 
implementations based on the area model without interconnect are 
exactly the same as the CMOS implementations, revealing the 
tremendous importance that interconnect plays in QCA-based 
circuit area. As mentioned in Section 2.3, shrinking CMOS device 
sizes are causing an increase in the relative area of interconnect. 
As a result, significant area savings could be achieved using 
interconnect-conscious CMOS logic synthesis. 

5. CONCLUSIONS 
This paper introduced the first logic-level area models for QCA-
based area minimization. Integrating these and other 
nanotechnology models into the traditional abstraction-based 
design methodology will help make the transition to nano-based 
design as transparent to circuit designers and tools as possible. As 
the development and understanding of nanotechnologies 
continues, these models will become more accurate, thus enabling 
effective abstraction-based design of nanotechnology circuits. 
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