
Modeling QCA for Area Minimization in Logic Synthesis
Nadine Gergel

University of Virginia, Dept. of ECE
351 McCormick Road

PO Box 400743
Charlottesville, VA 22904

(434) 924-7504
neg3c@virginia.edu

Shana Craft
University of Virginia, Dept. of ECE

351 McCormick Road
PO Box 400743

Charlottesville, VA 22904
(434) 924-3446

scc9e@virginia.edu

John Lach
University of Virginia, Dept. of ECE

351 McCormick Road
PO Box 400743

Charlottesville, VA 22904
(434) 924-6086

jlach@virginia.edu

ABSTRACT
Concerned by the wall that Moore’s Law is expected to hit in the
next decade, the integrated circuit community is turning to
emerging nanotechnologies for continued device improvements.
While significant advancements in nanotechnology devices have
been achieved, much work is required to integrate these
technologies into the existing design methodologies. Given that
the physical design paradigm of each nanotechnology will be
significantly different than that of traditional silicon circuits, the
underlying cost functions used in optimization algorithms
throughout the design abstraction hierarchy must be altered.
Because nanotechnologies are not as well developed and
understood as silicon devices, abstraction will initially result in
less accurate models. However, if models are developed and
augmented as nanotechnologies continue to evolve, the transition
from CMOS-based design to nano-based design will be relatively
seamless.
This paper details the logic-level abstraction process for area
minimization for one promising nanotechnology – quantum
cellular automata (QCA). The model abstracts relative area costs,
including interconnect area, for QCA devices, and it is integrated
within existing multi-level logic synthesis techniques. Results
validate the proposed approach of designing nano-based circuits
with the traditional abstraction-based design methodology.
Categories and Subject Descriptors
B. 6. 1 [Logic Design]: Design Styles

General Terms
Algorithms, Design

Keywords
Nanotechnology, Logic Synthesis, QCA, CAD, Interconnect

1. INTRODUCTION
The logic density of integrated circuits has been rapidly
increasing for the last few decades. However, due to physical
restrictions, the limit of transistor sizes will soon be reached,
forcing researchers to explore novel physical design paradigms in
the form of various nanotechnologies. Given the significant
structural and functional differences between nanotechnologies
and traditional silicon-based CMOS circuits, the current design
process will have to be changed for nano-based design.

It would be greatly beneficial to maintain the general design
methodologies used today, with any nano-induced changes being
as transparent to designers and design tools as possible. To
account for the physical design paradigm differences between
CMOS and various nanotechnologies, current design
methodologies must be examined to identify the necessary, but
ideally minimal, changes that must be made for nano-based
design without affecting the overall design flow.

This paper examines changes to the logic-level area minimization
process for one emerging nanotechnology – quantum cellular
automata (QCA). While the logic minimization algorithms remain
the same (i.e. minimizing the number of gates and gate inputs),
overall area minimization, which includes finding the optimal
number of logic levels for a function, can vary for CMOS and
QCA. The primary change centers around a novel cost model for
QCA logic and interconnect. When this model is incorporated into
traditional logic synthesis techniques, the benefits of QCA-
dependent logic synthesis are achieved while keeping the design
methodology changes completely transparent to the designer and
tools.

In the development of this model, many assumptions were made
about QCA’s structure and functionality due to the lack of
knowledge the exists about this and other emerging physical
design paradigms relative to the well-understood realm of CMOS
abstraction. The continued development and understanding of
nanotechnologies will undoubtedly lead to more accurate models,
but this paper lays the groundwork for a minimal perturbation
approach for incorporating nanotechnologies into the existing
abstraction-based design methodology via physical-design-
dependent models.

2. BACKGROUND AND MOTIVATION
2.1 QCA Structures
The basic unit in quantum cellular automata is a cell that contains
four possible positions for electrons, which are called quantum
dots. Each cell has electrons occupying two of its four dots. These
two electrons repel each other and thus must be located in
opposite corners of the cell – top left and bottom right, or top
right and bottom left. As shown in Figure 1, the former
configuration represents a logical ‘0’, and the latter represents a
logical ‘1’.

These cells can then be aligned in rows and columns to form logic
structures [5]. Consider the five cell cross structure in Figure 2,
which is designed to perform the logic function Out=A+B. Not
only do the electrons in each cell repel each other, but the
repulsion propagates to adjacent cells. Therefore, inputs A, B, and
Prog are affecting the configuration of the center and Out cells. In

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00

60

this case, the majority of the inputs are set to ‘1’, so the center and
Out cells are forced into the ‘1’ position, which is the proper
result of A+B. Note that if A were set to ‘0’, the majority of
inputs would force Out to ‘0’. Similarly, if Prog were set to ‘0’
(making the cross structure an AND gate), Out would be forced to
‘0’.

‘0’ ‘1’
Figure 1. Logical representations of QCA cells

A

B

Prog Out

Figure 2. 2-input QCA OR Gate

These basic gates can be used to form complex circuitry. While
early work focused on the development of basic logic gates [3],
recent advances have explored the design of QCA-based circuits
as complex as microprocessors [4]. While the work to date on
QCA circuit design was done manually, future QCA-based design
must be automated to handle the tremendous complexity of
modern circuits. Therefore, accurate models are required to
abstract the design process.

2.2 Input Dependence
When using CMOS transistors to build integrated circuits, the
addition of an input to an OR or AND gate simply increases the
number of transistors by two. However, the same relation does not
hold for QCA, as the area per input increases with the number of
inputs. For example, consider a 2-input and a 4-input OR gate.
While the number of transistors in a 4-input CMOS OR gate is
twice that of a 2-input OR gate (excluding the inverter), the
number of QCA cells goes from five (as shown in Figure 2) to
eighteen (as shown in Figure 3) [2].

A

Prog2

B

C

D

OutProg3

Prog4

Prog1

Figure 3. 4-input QCA OR Gate

This provides a major difference between the logic-level area
models for the two physical design paradigms. Thus, when
minimizing area for QCA, the number of gate inputs must be
considered differently than in CMOS. Before considering
interconnect, a 4-input OR function should be implemented in a
series of three 2-input OR gates in QCA (for a total of fifteen
cells). Such an example shows that the model for finding the
optimal number of logic levels for a given function (i.e. the
implementation that requires the least area) is different for QCA
and CMOS.

2.3 Interconnect Dependence
QCA interconnect is formed using the same base cells, arranging
them so that the signal propagates and drives subsequent logic
gate inputs. The shaded blocks in Figure 4 are interconnect cells,
connecting the outputs of one level of gates to the inputs of the
succeeding level.

2
3

7

Figure 4. 4-level, 16-input QCA gate

Given that the base QCA interconnect and logic cells are the
same, QCA interconnect has a tremendous impact on the size of
the circuit. It is easy to see in Figure 4 that the number of
interconnect cells is far from trivial in the overall area. Therefore,
interconnect must be included in the model for logic-level area
minimization. While the exact amount of interconnect will not be
known until post-layout, estimates based on averages can be
abstracted up to the logic-level. Such interconnect consideration is
not currently involved in most CMOS logic-level models,
providing another key difference between the two physical design
paradigms1.

3. QCA LOGIC-LEVEL AREA MODEL
This section details the development of the QCA logic-level gate
and interconnect area models to be integrated within existing
logic synthesis area minimization algorithms. These models are
based on the current understanding of the QCA physical design
paradigm. Given the immaturity of the field, the models are likely
to change with increased understanding. However, these models
and their seamless integration into the existing design
methodology demonstrate the possibility of abstraction-based
nano design.

It is also important to note that the relative area of various
implementations is more important than individual magnitudes for
search-based optimization algorithms, as “best” is a relative term.
Therefore, while these models do provide individual magnitudes,
it is the relative analysis that impacts area minimization. As a
result, changes to the models will not necessarily yield different
implementations, as relative area rankings will not be affected by
across-the-board percentage magnitude adjustments.

1 However, shrinking CMOS device sizes are increasing the

relative area impact of interconnect. Therefore, including
interconnect in the area model for CMOS logic synthesis could
provide significant benefits.

61

3.1 QCA Gate Area
As stated above, the QCA gate area model is a function of the
number of gate inputs, but the function differs greatly from
CMOS. To derive this function, the minimum AND/OR gate area
was established for gates up to thirteen inputs. This required
exploring many different implementations of the same gate. For
example, the optimal implementation of an n-input QCA gate

may actually be two
2
n

-input gates followed by one 2-input gate

or some other variation. In such cases, internal signal interconnect
area is also considered.
The following assumptions were made:

• QCA cells placed at least one cell apart do not affect each
other’s electron configuration or induce any propagation.

• Only the number of cells is counted, not the total area that is
used. This is because the area estimations are to be used to
compare relative areas, not to determine absolute area.

To determine the intra-gate interconnect cost associated with
chaining cells, tree structures were generated, and a cost was
derived for each level of interconnect. Consider the 4-level, 16-
input gate shown in Figure 4, with the internal interconnect cells
shaded. This implementation is actually eight 2-input gates (Level
1) → four 2-input gates (Level 2) → two 2-input gates (Level 3)
→ one 2-input gate (Level 4). Note that the internal signal
interconnect cost is level-dependent. The internal signals going to
gate Levels 2, 3, and 4 require two, three, and seven cells,
respectively.
This model was used to determine the cost of a variety of gate
implementations with any number of inputs. It was found that the
minimum cost implementations of 2-, 3-, and 4-input gates are
five, ten, and eighteen cells respectively [2, 5]. Figure 5 shows the
possible configurations for a 5-input gate. There could be more
than one gate configuration for a given number of inputs that have
the same area, but this should not affect final layouts. Combining
gate area costs with the level-dependent internal signal
interconnect cost model, the optimal implementation of the 5-
input gate was one 3-input gate → one 3-input gate. This
approach was repeated until cost models were developed for QCA
gates with up to thirteen inputs.

Figure 5. Various implementations of a 5-input QCA gate
Figure 6 shows the approximated gate area function,

() 5.86 −×= IA , where A is the number of QCA cells in the
optimal area configuration and I is the number of gate inputs for
that configuration. The standard deviation of this linear function
from the actual data points is about 8.5%.

0

20

40

60

80

0 5 10 15

gate inputs

Q
C

A
 c

el
ls

Figure 6. QCA gate area model

3.2 QCA Interconnect Area
As with intra-gate interconnect area, gate-to-gate interconnect
area cost is level-dependent. Starting with Level 2 connections
(i.e. inputs to Level 2 gates), the fanin interconnect costs were
determined for gates with two to ten inputs. As one would expect,
the relationship between interconnect area and number of inputs is
nearly linear, as show in Figure 7. The approximate function for
the cost model is () 16.893.4 −×= IA .

0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10 12

gate inputs

Q
C

A
 c

el
ls

Figure 7. Level 2 interconnect costs

This process was extended for up to six levels of logic. The
results are shown in Table 1. The following 2-variable formula
was derived from this data to form the basis of the interconnect

cost model: 7.03.0 +××= LILA , where L is the fan-in gate
level. The standard deviation of this function from the actual data
points is about 14%.

Table 1. Interconnect costs for up to 6 levels with 10 inputs

inputs level 2 level 3 level 4 level 5 level 6
2 4 6 14 30 62
3 7 17 33 61 127
4 10 24 58 120 246
5 13 41 67 185 375
6 22 54 130 276 562
7 27 77 173 373 749
8 32 96 238 494 1074
9 37 135 331 615 1255
10 41 160 366 782 1582

QCA cells for fan-in interconnect

4. COST MODEL IMPLICATIONS
While the cost model magnitudes will likely change as
understanding of the QCA physical design paradigm increases,
the models provide reasonably accurate relative size data, which
is all that is necessary when searching for the minimum area

62

implementation at the logic level. For example, the local search
heuristics that are traditionally used in logic synthesis use cost
functions to find the best implementation of a function in a
defined neighborhood. This search does not rely on absolute
values but rather relative comparisons. Consider the following
generic local search pseudocode:

local_search(solution)
{
 next_sol=solution;
 best_cost=cost(next_sol)
 for each (temp_sol=move(solution, radius))
 {
 temp_cost=cost(temp_sol);
 if (temp_cost<best_cost) {
 next_sol=temp_sol;
 best_cost=temp_cost;
 }
 }
 if (next_sol=solution) BREAK;
 else local_search(next_sol);
}

Each recursive call to the algorithm starts with a new base
solution. The “cost” subroutine evaluates each solution based on a
defined cost function. “move” finds all of the possible solutions
within the base solution’s neighborhood, the size of which is
defined by “radius”. For area minimization purposes, valid moves
are increasing or decreasing the number of logic levels. The “for
each” loop continues until all of the neighborhood’s solutions
have been evaluated and the best (based on the cost model)
solution emerges, providing the base solution for the next
recursive call.

This algorithm forms the basis for many CMOS-based logic
synthesis tools, and it need not be altered for QCA-based design.
The only change is in the “cost” subroutine. Instead of the well-
known cost models used in CMOS designs, the combined gate
and interconnect area models detailed in Section 3 will be
invoked. Thus, the general flow of the algorithm (and the overall
design methodology) remains unchanged, and the switch to QCA-
based design is transparent to the designers and tools at this level
of abstraction.

Table 2 shows the application of this algorithm to several simple
functions using three different area models in the “cost”
subroutine: standard CMOS gate area model, QCA with
interconnect, and QCA without interconnect.

Table 2. Minimum area implementations

2-level function CMOS QCA w/ int QCA w/o int
abcd+efgh+ijk l+m nop 2 2 2
abcd+afgh+ijk l+m nop 2 2 2
abcd+afgh+ajk l+m nop 4 2 4
abcd+afgh+ajk l+anop 3 3 3
abcd+abgh+ajkl+anop 5 3 5
abcd+abgh+abkl+anop 5 3 5
abcd+abgh+abkl+abop 3 3 3
abcd+abch+abkl+abop 4 4 4
abcd+abch+abcl+abop 4 4 4
abcd+abch+abcl+abcp 2 2 2

levels in m inim um cost im plem entation

This data shows that the CMOS and QCA results are quite similar
up to about four levels of logic, at which point CMOS can still
provide area efficient implementations but the QCA area starts to
explode. It is therefore reasonable to assume that highly complex

functions that would be implemented in a large number of levels
for CMOS are more area efficient in fewer levels for QCA. We
cannot back these model-based findings with experimental data
because QCA devices have not yet been physically realized.

It is also interesting to note that the minimum cost QCA
implementations based on the area model without interconnect are
exactly the same as the CMOS implementations, revealing the
tremendous importance that interconnect plays in QCA-based
circuit area. As mentioned in Section 2.3, shrinking CMOS device
sizes are causing an increase in the relative area of interconnect.
As a result, significant area savings could be achieved using
interconnect-conscious CMOS logic synthesis.

5. CONCLUSIONS
This paper introduced the first logic-level area models for QCA-
based area minimization. Integrating these and other
nanotechnology models into the traditional abstraction-based
design methodology will help make the transition to nano-based
design as transparent to circuit designers and tools as possible. As
the development and understanding of nanotechnologies
continues, these models will become more accurate, thus enabling
effective abstraction-based design of nanotechnology circuits.

6. REFERENCES
[1] Deng, X., Hanyu, T., and Kameyama, M., “Multiple-valued

logic network using quantum-device-oriented superpass
gates and its minimization,” IEE Proceedings- Circuits
Devices Systems, vol. 142, pp. 299-305, October 1995.

[2] Gin, A., Williams, S., Meng, H., and Tougaw, P.D.,
“Hierarchical design of quantum-dot cellular automata
devices,” Journal of Applied Physics, vol. 85, pp. 3713-
3720, April 1999.

[3] Lent, C.S., and Tougaw, P.D., “A device architecture for
computing with quantum dots,” Proceedings of the IEE, vol.
85, pp. 541-557, April 1997.

[4] Niemier, M.T., Kontz, M.J., and Kogge, P.M., “A design of
and design tools for a novel quantum dot based
microprocessor,” Deign Automation Conference, pp. 227-
232, June 2000.

[5] Tougaw, P.D., and Lent, C.S., “Logical devices implemented
using quantum cellular automata,” Journal of Applied
Physics, vol. 75, pp. 1818-1825, February 1994.

63

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

