
Post-Placement C-slow Retiming for the Xilinx Virtex
FPGA

Nicholas Weaver
∗

UC Berkeley
Berkeley, CA

Yury Markovskiy
UC Berkeley
Berkeley, CA

Yatish Patel
UC Berkeley
Berkeley, CA

John Wawrzynek
UC Berkeley
Berkeley, CA

ABSTRACT

C-slow retiming is a process of automatically increasing
the throughput of a design by enabling fine grained pipelin-
ing of problems with feedback loops. This transformation is
especially appropriate when applied to FPGA designs be-
cause of the large number of available registers. To demon-
strate and evaluate the benefits of C-slow retiming, we con-
structed an automatic tool which modifies designs targeting
the Xilinx Virtex family of FPGAs. Applying our tool to
three benchmarks: AES encryption, Smith/Waterman se-
quence matching, and the LEON 1 synthesized micropro-
cessor core, we were able to substantially increase the total
throughput. For some parameters, throughput is effectively
doubled.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Automatic syn-
thesys

General Terms

Performance

Keywords

FPGA CAD, FPGA Optimization, Retiming, C-slow
Retiming

∗Please address any correspondance to
nweaver@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03,February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. Introduction

Leiserson’s retiming algorithm[7] offers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and efficient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it offers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The effect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be sufficient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

185

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The
nodes represent logic delays, with the inputs and
outputs passing through mandatory, fixed regis-
ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is sufficient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but offer-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.
The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x − y ≤ k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w′ is calculated, with w′(e) = w(e)− r(u) + r(v).

An example of how retiming affects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no effect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

186

Condition Constraint

normal edge from u → v r(u)− r(v) ≤ w(e)
edge from u → v r(u)− r(v) ≤ w(e)− 1
must be registered
edge from u → v r(u)− r(v) ≤ 0 and
can never be registered r(v)− r(u) ≤ 0
Critical Paths r(u)− r(v) ≤ W (u, v)− 1
must be registered for all u, v such that D(u, v) > P

Table 1: The constraint system used by the retiming process.

IN OUT

1 1

1 1 22

Figure 3: The example in Figure 2 2-slowed.
This design now operates on 2 independent data
streams.

unchanged or switch to operate on the positive edge with
constraints to mandate the placement of registers.2

Initial register conditions can also be calculated if de-
sired, but this process is NP hard in the general case.
Cong and Wu[3] have an algorithm that computes ini-
tial states by restricting the design to forward retiming
only, so it propagates the information and registers for-
ward throughout the computation. This is because solving
initial states for all registers moved forward is straightfor-
ward, but backwards movement is NP hard3 as it reduces
to satisfiability.

An important question is how to deal with multiple
clocks. If the interfaces between the clock domains are reg-
istered by clocks from both domains, and with all signals
being unidirectional, each clock domain can be treated as
an independent block with all signals crossing the domain
treated as I/O. Due to the retiming-imposed constraints on
I/O, the logical view of each input will not change. How-
ever, constraints may be needed to insure that the physical
registers remain in position to prevent asynchronous con-
ditions from occurring on this interface.

3. C-slow retiming

C-slowing enhances retiming by simply replacing ev-
ery register with a sequence of C separate registers before
retiming occurs. The resulting design operates on C dis-
tinct execution tasks. Since all registers are duplicated,
the computation proceeds in a round-robin fashion. The
easiest way to utilize a C slowed block is to simply multi-

2For some cases, this may produce a set of unsolvable con-
straints, thus requiring that the memory remain a negative
edge device.
3And may not posses a valid solution for nonsensical cases.

IN OUT

1 1

1 1 22

Figure 4: The example in Figure 3 after retim-
ing. The combination of C-slowing and retiming
reduced the critical path from 5 to 2.

plex and demultiplex C separate data streams, but a more
sophisticated interface may be desired depending on the
application.

One possible interface is to register all inputs and out-
puts of a C-slowed block. Because of the additional edges
retiming creates to track I/Os and to insure a consistent
interface, every stream of execution presents all outputs at
the same time, with all inputs being registered on the next
cycle. If part of the design is C-slowed, but all operate on
the same clock, the resulting design can be retimed as a
complete whole while preserving all other semantics. We
use these observations later when discussing the effects of
C-slowing on a microprocessor core.

However, C-slowing imposes some more significant FPGA
design constraints, as summarized in Table 2. Register
clock enables and resets must be expressed as logic fea-
tures, since each independent thread must see a different
view of the reset or enable. Thus, they can remain features
in the design but can’t be implemented by current FPGAs
using the native enables and resets. Other specialized fea-
tures, such as Xilinx SRL16s,4 can’t be utilized in a C-slow
design for the same reasons.

One important issue is how to properly C-slow memory
blocks. In most cases, one desires the complete illusion
that each stream of execution is completely independent
and unchanged. To create this illusion, the memory must
be increased by a factor of C, with additional address lines
driven by a counter. This insures that each stream of ex-
ecution enjoys a completely separate memory space.

For dual ported memories, this potentially enables a
greater freedom in retiming: the two ports can have dif-
ferent lags, as long as the difference in lag is C − 1 or
less. After retiming, the difference in lag is added to the
appropriate port’s thread counter. This insures that each

4A mode where the LUT can act as a 16 bit shift register

187

FPGA Feature Effect on Retiming Effect on C-slowing

Asynchronous Global Set/Reset Forbidden Forbidden
Synchronous Global Set/Reset Effectively Forbidden Forbidden
Asynchronous Reset Forbidden Forbidden
Synchronous Reset Allowed Express as logic
Clock Enables Allowed Express as logic
Tri-state Buffers Allowed Allowed
Memories Allowed Allowed, Increase Size
SRL16 Allowed Express as logic
Multiple Clock Domains Design Restrictions Design Restrictions

Table 2: The effects of various FPGA and Design Features on Retiming and C-slow Retiming

stream of execution will read and write to both ports in
order, while enabling slightly more freedom for retiming to
proceed.

C-slowing normally guarantees that all streams view in-
dependent memories, however a designer may desire shared
memory common to all streams. Such memories could be
embedded in a design but the designer would need to con-
sider how multiple streams would affect the semantics and
would need to notify any automatic tool to treat the mem-
ory in a special manner. Otherwise, there are no other
semantic effects imposed by C-slow retiming.

Figures 3 and 3 demonstrates how C-slowing and re-
timing behave on the example used in the earlier illustra-
tions. The act of C-slowing only increases the number of
registers available, without offering any improvement in
throughput. Yet as there are now more registers on the
feedback loop, retiming is able to reduce the critical path
from 5 to 2.

4. Retiming FPGAs

Most FPGA designs are especially amenable to C-slow
retiming, as the FPGAs are generally register rich when
compared with most designs. Thus increasing the number
of registers will not necessarily create a larger design, if
the registers are well allocated.

An additional benefit for many architectures is the abil-
ity to separately use the logic cells and registers under a
wide variety of conditions. This enables registers to be
used that would otherwise go completely unused in a de-
sign, without impacting the logic utilization.

When retiming for FPGAs, the location of retiming in
the toolflow is an important consideration: it can occur
before, during, or after the placement process. There are
advantages and disadvantages for all three approaches.

Before placement is often the simplest but may en-
counter some limitations. If the placement tool only places
complete cells rather than district elements, the retiming
tool can’t effectively scavenge unused flip-flops without dis-
torting the placement process. Another disadvantage with
pre-placement retiming is the significant factor that inter-
connect delays play in FPGA retiming. Thus, any retim-
ing tools gains substantial benefits from a detailed under-
standing of the interconnect delays in a design, informa-

tion which can only be crudely estimated before placement
occurs.

Post placement retiming is also convenient as the de-
lays are now all completely known and flip flops can be
safely scavenged without affecting the placement process.
The main difficulties occur when attempting a large degree
of C-slowing, as allocating large numbers of flip-flops can
prove problematic unless placements are modified.

A combined placement and retiming tool is the ideal
solution except that it may require a partial or complete
restructuring of the placement process. Such a tool can
even perform effective retiming when a large number of
registers need to be allocated, as it can then permute the
design’s placement during the allocation process.

5. Automatically C-slowing for Virtex

To quantify the effects of C-slow retiming on real de-
signs, we created a prototype C-slow retiming tool that
operates after placement, targeting the Xilinx Virtex[17]
family of FPGAs.5 This tool is deliberately simplistic, as
it is designed simply to assess the costs and benefits of C-
slow retiming when applied with minimal disruption to a
commercial FPGA toolflow.

The Xilinx toolflow operates in several stages: Synthe-
sis or schematic capture, translation, mapping, placement,
routing, and static timing analysis. During synthesis, the
design is converted from an HDL representation to an out-
put netlist. This netlist is translated to Xilinx .ngd for-
mat for use by the remaining tools use. Mapping takes
the logical elements (gates, flip-flops, and other features),
combining them into slices. These slices are then placed
and routed. Static timing analysis calculates the critical
path of the resulting design. Between mapping, placement,
routing, and static timing analysis, designs are carried in
an .ncd binary format. In order to facilitate additional
tools, Xilinx defines a text-based .xdl format and a trans-
lator to convert between .xdl and .ncd.

By operating on the .xdl file format, we are able to
modify designs at any point in the mapping, placement,
routing, and timing analysis pathway. Significant modifi-
cations prevent timing-based backannotation from operat-

5This line includes the Xilinx Virtex, Virtex E, Spartan II
and Spartan II-E lines.

188

ing, and designer created preplacement constraints are not
included in the .xdl, but the other portions of the flow
appear unaffected.

Because we both lacked the designer placed constraints
in the .xdl file, the placement tool only operates on slices,
and the lack of good timing information before placement,
we decided to perform all our transformations after place-
ment. If we desired pre-placement retiming, the effects of
packing flip-flops with unrelated logic would significantly
skew the routing process.

This is especially important because the flip-flops in
the Virtex slice can be used independently of the logic
through the BX and BY inputs under almost all cases.6

Yet because the placement tool operates on slices, flip-flops
that are packed with unrelated logic may severely impact
placement quality.

Our modified toolflow, written as a series of perl scripts
executing the Xilinx tools, performs synthesis, mapping,
and placement, before converting the design to .xdl. This
.xdl file is loaded into a Java program that performs the
actual C-slowing and retiming.

Our tool first loads the design and insures that it con-
tains no features that would inhibit C-slow retiming, such
as clock enables, LUTs as RAM or SRL16s, or set/reset
connections. Once the design is verified, it is converted to
a directed graph that represents the retiming problem. All
registers in the design are removed and replaced with edge
weights, allowing them to be freely moved. BlockRAMs
and I/O pad registers are likewise removed and replaced
with mandatory constraints. Any negative-edge clocked
memories are changed to operate on a positive clock, with
constraints to insure that registers will be placed on the
outputs.

Also created are estimates of logic and interconnect de-
lay. Logic delays are based on the published datasheet
numbers for LUT evaluation, Block Ram evaluation, carry
chain costs, and other additions. Interconnect delays are
estimated based on a Manhattan distance metric that ab-
stracts out the different interconnect types. Once this
model is complete, the design can then be C-slowed by
simply multiplying the number of registers on any given
edge by C. If only retiming is desired, C is simply set to 1.

Given this framework, the tool performs classical re-
timing, with no regard to limiting the number of resulting
registers. This first requires a O(V 3) operation7 to enu-
merate all possible critical paths in the design and the
number of registers currently along each such path.

The next step involves determining the shortest critical
path that the design can be retimed to meet. This phase
involves solving the constraint system discussed in Sec-
tion 2 using the Bellman/Ford shortest path algorithm, an
O(V 2) operation, and using the results to perform a binary
search for the smallest feasible critical path.

There are several minor techniques that speed up this
process. If a solution exists, the Bellman/Ford algorithm

6The only exceptions are when the F5 or F6 muxes are
used, when the LUT is used for routing, the LUTs are
used as memory devices, or when the carry-in is driven
from external logic.
7This could be replaced with an O(V 2lg(V)) step, but
would necessitate changing the representations used

quickly converges, allowing us to perform fewer iterations
than are required to guarantee convergence. We can also
detect that a solution has been found early, and halt the
computation. Carrying over the attempted solution from
previous runs also improves performance by providing a
mostly correct starting point.

Once a solution is found, the edge weights are converted
back into design flip-flops. A first pass allocates any output
registers with the appropriate logic. Beyond that, all other
registers are allocated by a simple heuristic. A search for
an unused register begins at the central point between the
source and all destinations and spirals outward. When a
register is found, it is then allocated. This process iterates
until all registers are instantiated. The resulting design is
exported as .xld that is then passed through the Xilinx
routing and static timing analysis tools.

The retiming process itself requires a few minutes to
perform on a Pentium III 550 for the smaller designs due
to the O(V 3) all-pairs shortest path implementation and
the numerous Bellman/Ford processing steps. For a larger
design, the initial V 3 step is substantial, requiring a few
hours to perform for the synthesized SPARC core described
in Section 6.3.

For large designs it would be possible to partition the
design before retiming. This would cost some precision as
the algorithm would be unable to consider delays which
cross the partition boundry while reducing running time
considerably. We did not perform such an operation as we
were interested in correctness, not performance.

Our tool does have some basic limitations. It only C-
slows the entire design, only works with a single clock do-
main, and can’t automatically increase the size of mem-
ories. This last limitation is acommidated by modifying
the memories at the design level before proceeding. Yet
it is suitable to evaluate the benefits of applying C-slow
retiming to realistic designs targeting commercial FPGAs.

6. Benchmarks

For testing purposes, we used three separate bench-
marks which can all benefit from C-slow retiming: AES
encryption, Smith/Waterman sequence matching, and the
LEON 1 synthesized SPARC core. The AES and Smith/Waterman
implementations were initially hand placed and C-slow re-
timed, enabling a direct comparison of our tool’s perfor-
mance with those of carefully hand-crafted implementa-
tions. LEON 1 is a much larger design, allowing us to
evaluate our performance on a substantial design created
by conventional HDL synthesis tools.

6.1 AES Encryption

The AES encryption algorithm, also known as Rijn-
dael[8], is a block cipher operating on 128-bit quantities
with a 128, 192, or 256-bit key. Although generally repre-
sentative of many block ciphers in design, it is particularly
amenable to FPGA implementation as it relies on 8-bit
table lookups, byte mixing, and bit manipulations.

Another useful feature is that many usage scenarios
greatly benefit from C-slowing, as this represents the abil-

189

ity to encrypt multiple blocks simultaneously, which occurs
either when there are multiple streams or the cipher is be-
ing used in Counter (CTR) mode[9].

Our initial implementation is a carefully constructed
encryption core using 128-bit keys that was hand placed
and manually 5-slow retimed, enabling 115 MHz operation
on a Spartan 2 100, requiring 10 BlockRAMs and roughly
800 LUTs. We removed the pipelining to create a “pre-
retimed” version, and also constructed versions without
placement information.

6.2 Smith/Waterman Sequence Matching

Smith/Waterman[12] is an important application from
computational biology, used to compare the edit distance
between two strings. This distance represents how “close”
two proteins or DNA sequences may be in terms of func-
tionality or origin, based on a cost model associated with
various substations, deletions, and insertions.

Smith/Waterman is a dynamic programming problem,
requiring O(mn) time for a sequential implementation.
Yet the nature of the dependencies allows a systolic im-
plementation, requiring O(m) time and O(n) space. Of
further benefit is the common usage: a string is compared
to a large database. Thus although the comparison be-
tween any single element in the database is a sequential
task, there exists abundant parallelism when searching the
entire database.

Our implementation consists of a 16-bit edit distance
calculation using 5-bit weights and a 5-bit (protein) al-
phabet. This uses an affine gap scoring, thus creating a
break is more expensive then extending an existing break.
This is a specialized implementation, where the sequence
being compared is compiled into the design, saving a con-
siderable amount of resources.

For testing purposes, we realized 8 systolic cells in a
Spartan 2 200. This design is roughly 1700 LUTs, of which
most are adders, comparators, and multiplexors.

6.3 LEON 1 Microprocessor Core

The Leon 1[4] synthesized microprocessor core is a SPARC-
compatible design composed in portable VHDL. Although
it may seem unintuitive, a microprocessor design is an ex-
cellent candidate for C-slowing, as each separate task is
effectively a separate processor in a multiprocessor sys-
tem. The resulting design behaves in ways similar to a
Symmetric Multithreaded architecture or related designs.

The observation is that each processor in a multipro-
cessor or multithreaded system is really a separate task,
so if one can interleave the computation between distinct
tasks, one creates the illusion of 2 or more processors with-
out increasing the logic, just the pipelining. If the memory
controller and caches are separate from the processor core,
it is straightforward to apply automatic techniques and
some design modifications to complete this illusion.

The core itself can be automatically C-slowed, without
any changes, to produce a design capable of operating at
a significantly higher clock rate by interleaving the execu-
tion of C separate streams on C separate virtual proces-
sors. Because the entire core’s architectural state is au-

tomatically duplicated, including the control registers, the
register file, and the TLB, and because each thread now
uses isolated state, this transformation produces an illu-
sion that C-separate cores exist and present their inputs
and ouputs in a round-robin fashion through a common
interface.

The caches and memory controller need to be modified
to account for this round-robin design. Such modifications
require architectural changes, including keeping track of
which virtual processor requested which datum. A non-
blocking cache, at least between the separate streams, is
essential to improve performance, and all memory writes
and reads need to be atomic to provide synchronization
primitives and to prevent problematic interactions between
the virtual processors.

The resulting design is a complete C-thread processor
with a programming model identical to other multiproces-
sor or multithreaded systems: C separate processors, with
their own architectural state and a common memory. Any
particular thread runs slower due to the increased pipeline
latency but the overall system runs at a significantly higher
clock rate, increasing throughput if programs can take ad-
vantage of the multiple virtual processors.

A C-slowed processor’s complete behavior is quite sim-
ilar to a Simultaneous Multithreaded (SMT)[16] [5] archi-
tecture, although it achieves the illusion of separate proces-
sors through entirely different implementation strategies.

Similarly, the interleaved computation strategy bears
a strong familial resemblance to the early multithreaded
machines such as HEP[11] and Tera[1], architectures which
removed all bypassing and context switched on every cycle,
or the proposed interleaving[6] architectures which main-
tained some bypassing. Both techniques attempted to hide
memory latencies through these context switches. Unlike
the other architectures, the C-slowed strategy takes advan-
tage of the longer dependencies to pipeline the structure
more heavily, resulting in a substantially increased system
clock.

For FPGA implementations, a 2-slow design is consider-
ably more efficient than 2 distinct processor cores because
most processors contain considerably more logic than reg-
isters. For direct ASIC implementations, a 2 slow design
will still be substantially more efficient as only the number
of pipeline registers needs to increase, although not to the
same degree seen in an FPGA target.

7. Results

In order to evaluate the quality of our results, we ran
our retiming tool on three application-based benchmarks
discussed earlier, targeting various members of the Xilinx
Virtex[18] family of FPGAs. All were placed and routed
using Xilinx Foundation 4.1i with maximum effort. All
timings are reported by the Xilinx static timing analysis
tool.

7.1 AES Encryption

For testing purposes, we began with an AES implemen-
tation that was hand placed and hand retimed 5-slow to

190

Version 4-LUTs LUT Associated LUT Unassociated Clock Stream Clock
Flip Flops Flip Flops MHz MHz

None 708 169 48 MHz 48 MHz
5-slow by hand 1012 1229 105 MHz 21 MHz
Retimed automatically 708 150 0 47 MHz 47 MHz
2-slow automatically 708 302 289 64 MHz 32 MHz
3-slow automatically 708 348 668 75 MHz 25 MHz
4-slow automatically 708 447 899 87 MHz 21 MHz
5-slow automatically 708 462 1324 88 MHz 18 MHz

Table 3: The effects of C-slow retiming the Rijndael encryption core placed with simulated annealing on a
Spartan II 100. Our tool produces highly competitive results, able to nearly double the throughput using
automated transformations.

Version 4-LUTs LUT Associated LUT Independent Clock Stream Clock
Flip Flops Flip Flops MHz MHz

None 708 169 48 MHz 48 MHz
5-slow by hand 1012 1229 115 MHz 23 MHz
Retimed automatically 708 132 37 50 MHz 50 MHz
2-slow automatically 708 332 110 74 MHz 37 MHz
3-slow automatically 708 404 515 95 MHz 32 MHz
4-slow automatically 708 660 459 86 MHz 22 MHz
5-slow automatically 708 660 885 105 MHz 21 MHz

Table 4: The effects of C-slow retiming the hand placed Rijndael encryption core targeting a Spartan II
100. For 5-slow retiming, our throughput more than doubled when compared with the original, unretimed
version.

operate at 115 MHz on a Spartan 2 100, speedgrade 5. Re-
moving the placement information reduces the clock to 105
MHz, while removing both placement and retiming infor-
mation reduces the clock to 48 MHz. This design requires
10 BlockRAMs and about 800 LUTs. We ran experiments
on both the simulated annealing and hand placed versions.

For testing purposes, we started with two modification
versions of the above design, one with the pipelining and
placement information removed and a second with just
pipeline information removed. This allows us to determine
how well our tool compares with hand-retimed designs, as
well as evaluating absolute speedup over the original de-
sign. Table 3 shows the effects of C-slow retiming on the
design when automated placement is used, while Table 4
shows the benefits for a hand placed design. Lut-associated
flip-flops are those which were packed with a LUT output,
while LUT independant flip-flops were otherwise unused
flip-flops allocated to register the signal. This benchmark
has a single cycle feedback loop which defines the criti-
cal path, so retiming without C-slowing is of effectively no
benefit.

These tables measure both the number of flip-flops that
are bundled with associated logic and the number that
have to be scavenged from unused elements of the FPGA
for our automatic tool. In any case, this design is Block-
RAM, not LUT limited, so large numbers of registers can
be allocated without an area penalty. The clock rate repre-
sents the total throughput of the system, while the stream
clock is the latency for any single task or stream of exe-

cution. Aggressive C-slowing increases overall throughput
for multiple execution streams at the cost of single thread
latency.

For both cases, although the results are still somewhat
inferior to the hand-crafted implementation, they are still
highly competitive, more than doubling the throughput
for the hand placed, 5-slow version. As expected, retiming
without C-slowing provides negligible benefit as the critical
path is defined by the single cycle feedback loop.

The limitations on our tool for a high C factor are due to
an inability to alter the logic placement in response to the
numerous registers that need to be added and the simple
heuristic used to allocate the flip flops. The hand-placed
version contains a subkey generation module, expressing
roughly 1/3 of the interconnect in 1/5 of the FPGA area.
This poses significant difficulties for the tool when allo-
cating large numbers of flip-flops. Additionally, the hand-
created implementations used SRL16s to create a compact
128b wide, 3 cycle long delay chain in the subkey genera-
tion, a technique not employed by our tool.

There are other factors that affect our quality. The
heuristics to calculate interconnect delay are simply lin-
ear functions of manhattan distance and the proceedure
for for allocating flip flops is comparatively crude. Ad-
ditionally, the C-slow retiming process needs to allocate a
considerable number of registers because there are 384 bits
of registered BlockRAM output that need to be C-slowed.

One particular point of interest is the 4-slow case for
hand placement. When C-slowing, the latency for each

191

thread is always worse, with the goal that the total through-
put increases. We still don’t quite understand why the
change from 3-slow to 4-slow reduces the throughput, while
the transition from 4-slow to 5-slow increases it. We sus-
pect that it involves poor heuristics used to allocate new
flip-flops that do not occur in the 5-slow case.

7.2 Smith/Waterman

For testing purposes, we began with a carefully hand-
tuned specialized cell that was hand mapped, placed and
hand retimed 4-slow to operate at 100 MHz on a Spartan
II 200. This cell uses a 5 bit alphabet, 5 bit costs, affine
gap distance, and 16 bit arithmetic quantities, with the
string being matched against compiled into the configu-
ration. Removing the placement information reduces the
clock to 90 MHz, while removing both placement and re-
timing information reduces the clock to 44 MHz. This de-
sign requires about 1700 LUTs, of which most are adders.

The results are summarized in Table 5 and Table 6.
The slight performance decrease for retiming without C-
slowing is due to imprecision in our delay modeling that
result in some slightly poor decisions. Beyond that, C-slow
retiming shows the expected performance gains, with not
quite double the throughput for the 3-slow, automatically
placed version at 84 MHz.

Another observation is that the tool was deliberately
conservative: never using an unrelated flip-flop when the
carry chain was used, instead of being slightly more selec-
tive by monitoring the carry in state that posed a minor
limitation due to the large number of adders in this design.

7.3 LEON 1

Unlike the other designs, LEON 1[4] is a fully synthe-
sized design and required some minor modifications before
it could be tested with our tool. The register file was
implemented by hand using negative-edge clocked Block-
RAMs to create the illusion that it was an asynchronous
memory—needed to match the pipeline structure of the
processor. The caches and memory controller were re-
moved because they would need to be reimplemented for
a C-slowed design to account for multiple data streams
and to enable non-blocking behavior between the distinct
threads. All other control lines were registered through
I/O pads. Synthesis was performed using Symplify with
the inferring of clock enables suppressed. The resulting
design requires 5900 LUTs, 1580 Flip Flops, and 4 Block-
RAMs. It runs at 23 MHz on a Virtex XCV400-5.

However, this was still insufficient for use in our tool
as we were unable to prevent the synthesis of hardware
resets. Hardware sets and resets were converted to logic
which was placed in front of each flip flop by hand-editing
the EDIF, creating a design requiring 6100 LUTs.

For this design, the critical path was initially limited by
a multicycle feedback loop, enabling conventional retiming
to offer a limited benefit. Conventional retiming also elim-
inated the fragmented cycle from the memory access by
converting the BlockRAM to positive edge clocking and
forcing the design to rebalance itself, offering a potential

improvement in clock rate at the cost of substantially more
registers.

2-slow retiming showed a highly significant performance
increase. LEON contains a higher ratio of logic to pipeline
registers when compared to the other benchmarks, imply-
ing that the latency pentalies for retiming would be com-
paratively lower. This situation the best possible case,
where the combined benefits of retiming and C-slowing
produced a design where single threaded throughput re-
mains constant but aggregate throughput was doubled.

3-slow retiming attempted to allocate too many regis-
ters to create an efficient design, resulting in such a marginal
performance increase as to be negligible. This limitation
suggests that future work on better heuristics to limit flip-
flop creating and improve allocation would provide consid-
erable benefits.

8. Related Work

To our knowledge, there have been no published com-
mercial or academic C-slow retiming tool-flows apart from
flow developed by our group for the HSRA[15], a fixed fre-
quency FPGA where designs must be retimed to match
the fixed clock rate of the target architecture. The retim-
ing process was accomplised by modifying the design and
calling sis and having sis retime the resulting design.

Conventional retiming, however, is far more common.
There have been two previously significant academic retim-
ing tools targeted towards FPGAs. The first, by Cong and
Wu[2] combined retiming with technology mapping. This
approach enables retiming to occur before placement with-
out adding undue constraints on the placer, since the re-
timed registers are packed only with their associated logic.
The disadvantage is lack of precision, as delays can only
be crudely estimated before placement, and it is unsuitable
for significant C-slowing as this creates significantly more
registers.

The second, by Sing and Brown[10], combined retiming
with placement. This operated by modifying the place-
ment algorithm to be aware that retiming was occuring
and then modifying the retiming portion to enable per-
mutation of the placement as retiming proceeds. They
demonstrated how combining placement and retiming per-
forms significantly better than retiming either before or
after placement.

The simplified FPGA model used has a logic block where
the the flip flop can not be used independantly of the LUT,
constraining the ability of post placement retiming to allo-
cate new registers. Nevertheless, the results still strongly
suggest that combined placement and retiming offers sig-
nificant benefits over pre-placement or post-placement re-
timing.

Some commercial HDL synthesis tools, notably Syn-
opsys FPGA Compiler[13] and Synplify[14] also support
retiming. Because this retiming occurs fairly early in the
mapping and optimization processes, it suffers from a lack
of precision about placement and routing delays.

192

C-slow 4-LUTs LUT Associated LUT Unassociated Clock Stream Clock
Factor Flip Flops Flip Flops MHz MHz

None 1784 735 43 MHz 43 MHz
4-slow by hand 2040 2244 90 MHz 22 MHz
Retimed automatically 1784 628 287 40 MHz 40 MHz
2-slow automatically 1784 762 1010 69 MHz 34 MHz
3-slow automatically 1784 811 1723 84 MHz 28 MHz
4-slow automatically 1784 832 2524 76 MHz 25 MHz

Table 5: The effects of C-slow retiming on the Smith/Waterman Implementation, for simulated annealing
placement on a Spartan II 200. The 3 slow version almost doubles the throughput, while the automatic 4
slow version has passed the point of diminishing returns due to the large number of flip flops that required
allocation.

C-slow 4-LUTs LUT Associated LUT Unassociated Clock Stream Clock
Factor Flip Flops Flip Flops MHz MHz

Original 1784 735 45 MHz 45 MHz
4-slow by hand 2040 2244 100 MHz 25 MHz
Retimed automatically 1784 555 321 41 MHz 41 MHz
2-slow automatically 1784 813 972 57 MHz 29 MHz
3-slow automatically 1784 752 1167 86 MHz 28 MHz

Table 6: The effects of C-slow retiming on the Smith/Waterman Implementation for hand placement on
a Spartan II 200. Again, a high C factor nearly doubles the throughput.

9. Summary and Conclusions

C-slow retiming is a very powerful automatic transfor-
mation that can be applicable to a wide variety of prob-
lems. We reviewed the semantics of retiming and C-slow
retiming, and showed how they affect various FPGA design
features. Using this foundation, we created a prototype C-
slow retiming tool that operates on designs for the Xilinx
Virtex family of FPGAs.

This tool was applied to three benchmarks: AES en-
cryption, Smith/Waterman, and the LEON 1 synthesized
SPARC core. Of significant interest is that when C-slow
retiming is applied to a microprocessor core, the resulting
design is a multithreaded core with predictable semantics.
Such a core behaves in a very similar manner to an SMT
design, although it is constructed in an automatic manner.

All three benchmarks showed significant automatic gains
in throughput through the additional pipelining. In some
cases, the throughputs are doubled. The ability to double
performance through automatic techniques is very power-
ful, and should be included in conventional flows.

As the C-slowing introduces major semantic changes,
it is best performed early in the design process, probably
during synthesis. A synthesis tool could C-slow a block,
and then rely on later retiming to balance the resulting
delays.

Retiming itself is best performed either before, during,
or after placement as it benefits greatly from detailed tim-
ing information and the ability to scavenge unused flip-
flops from elsewhere in the design. Because it requires only
minor semantic restrictions, retiming should be included as
part of the place and route toolflow. Additionally, retim-

ing could be biased to minimize allocation of flip-flops, a
significant benefit when performing C-slow retiming.

10. Acknowledgments

Many thanks to Eylon Caspi for his advice on the se-
mantics of retiming, the reviewers for their valuable com-
ments, and Andrè DeHon for many comments about the
paper. This work is partially sponsored by Xilinx and the
California MICRO program.

11. REFERENCES

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The tera computer
system. In Proceedings of the ACM International
Conference on Supercomputing, June 1990.

[2] J. Cong and C. Wu. An improved algorithm for
performance optimal technology mapping with
retiming in LUT-based FPGA design. pages 572–578.

[3] J. Cong and C. Wu. Optimal FPGA mapping and
retiming with efficient initial state computation. In
Design Automation Conference, pages 330–335, 1998.

[4] J. Gaisler. Leon sparc-compatable processor.

[5] Intel. Intel hyper-threading technology, 2001.
http://developer.intel.com/technology/hyperthread/.

[6] J. Laudon, A. Gupta, and M. Horowitz. Interleaving:
A multithreading technique targeting
multiprocessors and workstations. In Proceedings of

193

C-slow 4-LUTs LUT Associated LUT Unassociated Clock Thread Clock
Factor Flip Flops Flip Flops MHz MHz

None 6132 1611 23 MHz 23 MHz
Retimed automatically 6132 2398 194 25 MHz 25 MHz
2-slow automatically 6132 2150 388 46 MHz 23 MHz
3-slow automatically 6132 2438 3713 47 MHz 16 MHz

Table 7: The effects of C-slow retiming on the LEON 1 SPARC microprocessor core targeting a Virtex
400-5. The 2 slow version doubles the throughput, while maintaining roughly the same latency, while the
3 slow version allocated too many flip flops to be effective.

the6th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 308–318, 1994.

[7] C. Leiserson, F. Rose, and J. Saxe. Optimizing
synchronous circuitry by retiming. In Third Caltech
Conference On VLSI, March 1993.

[8] NIST. Federal information processing standards
publication 197: Advanced encryption standard,
2001.
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[9] NIST. Recommendations for block cypher modes of
operation, nist special publication 800-38a, 2001.
http://csrc.nist.gov/publications/nistpubs/800-
38a/sp800-38a.pdf.

[10] D. P. Singh and S. D. Brown. Integrated retiming
and placement for field programmable gate arrays.
In Proceedings of the Tenth ACM International
Symposium on Field Programmable Gate Arrays,
2002.

[11] B. J. Smith. Architecture and application of the hep
multiprocessor computer system. In SPIE, pages
298:241–248, 1981.

[12] T. Smith and M. Waterman. Identification of
common molecular subsecquences, 1981.

[13] Synopsys. Synopsys fpga compiler.

[14] Synplify. Synplify fpga synthesis solution.

[15] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek,
and A. DeHon. HSRA: High-speed, hierarchical
synchronous reconfigurable array. In Proceedings of
the International Symposium on Field Programmable
Gate Arrays, pages 125–134, February 1999.

[16] D. M. Tullsen, S. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22th Annual
International Symposium on Computer Architecture,
pages 392–403, 1995.

[17] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex Series FPGAs, 1999.

[18] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex Series FPGAs, 1999.

194

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

