
Reducing Pin and Area Overhead in Fault-Tolerant FPGA-
based Designs

Fernanda Lima Luigi Carro Ricardo Reis
Universidade Federal do Rio Grande do Sul

PPGC - Instituto de Informática - DELET
Caixa Postal: 15064, CEP 91501-970 - Porto Alegre - RS - Brazil

+55 51 33 16 70 36
<fglima, carro, reis>@inf.ufrgs.br

ABSTRACT
This paper proposes a new high-level technique for designing fault
tolerant systems in SRAM-based FPGAs, without modifications in
the FPGA architecture. Traditionally, TMR has been successfully
applied in FPGAs to mitigate transient faults, which are likely to
occur in space applications. However, TMR comes with high area
and power dissipation penalties. The proposed technique was
specifically developed for FPGAs to cope with transient faults in
the user combinational and sequential logic, while also reducing
pin count, area and power dissipation. The methodology was
validated by fault injection experiments in an emulation board. We
present some fault coverage results and a comparison with the
TMR approach.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms
Design, Performance, Reliability.

Keywords
Fault-tolerance, FPGA.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are increasingly

demanded by spacecraft electronic designers, because of their high
flexibility in achieving multiple requirements such as high
performance, no NRE (Non Refundable Engineering) cost and fast
turnaround time. In particular, SRAM-based FPGAs are uniquely
suited for remote missions, because they can be reprogrammed by
the user as many times as necessary in a very short period. As a
result, SRAM-based FPGAs offer the additional benefits of
allowing in-orbit design changes, thus reducing the mission cost by
correcting errors or improving system performance after launch.

Transient faults, also called Single Event Upset (SEU), are
the major concern in space applications [1], with potentially
serious consequences for the spacecraft, including loss of
information, functional failure, or loss of control. SEU occurs
when a charged particle hits the silicon, transferring enough
energy to provoke a bit flip in a memory cell or a transient logic
pulse in the combinational logic. SEU on devices has become more
frequent because of smaller transistor features achieved by the
continuous technology evolution. As a result, not only space
applications but also terrestrial applications that are critical, such
as bank servers, telecommunication servers and avionics, are more
and more considering the use of tolerant techniques to ensure
reliability [2, 3].

SRAM-based FPGA will be the focus of this work, more
specifically the Virtex® family [4]. SEU has a peculiar effect in
SRAM-based FPGAs when a particle hits the user’s combinational
logic. In an ASIC, the effect of a particle hitting either the
combinational or the sequential logic is transient; the only
variation is the time duration of the fault. A fault in the
combinational logic is a transient logic pulse in a node that can
disappear, according to the logic delay and topology. In other
words, this means that a transient fault in the combinational logic
may or may not be latched by a storage cell. Faults in the
sequential logic manifest themselves as bit flips, which will
remain in the storage cell until the next load. On the other hand, in
a SRAM-based FPGA, both the user’s combinational and
sequential logic are implemented by customizable logic cells, in
other words, SRAM cells. When an upset occurs in the
combinational logic, hitting either the logic or the routing, it has a
transient effect followed by a permanent effect, because the SRAM
cell that implements that logic or controls that routing has flipped.
This means that a transient upset in the combinational logic in a
FPGA will be latched by a storage cell, unless some detection
technique is used. When an upset occurs in the user sequential
logic, it has a transient effect, because the fault can be corrected in
the next cell load. Accordingly, the use of SEU mitigation
techniques for programmable architectures must take into account
these peculiarities.

In order to mitigate SEU in Virtex® family [4] FPGAs, the
Triple Modular Redundancy (TMR) with voting technique,
combined with bitstream scrubbing has been applied [5, 7]. TMR
is a suitable technique for SRAM-based FPGAs, because of its full
hardware redundancy property in the combinational and sequential
logic. Previous results from bitstream fault injection [6] and
radiation ground testing presented in [7] showed that the use of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23-25, 2003, Monterey, California, USA.
COPYRIGHT 2003 ACM 1-58113-651-X/03/0002… $5.00.

TMR in Virtex FPGAs has confirmed the efficacy of the TMR
structure combined with scrubbing to recover upsets in the FPGA
architecture. However, the TMR technique presents some
limitations, such as area overhead, three times more input and
output pins and, consequently, a meaningful increase in power
dissipation.

In this work we propose a SEU tolerant technique for SRAM-
based FPGAs to cope with both problems above described: power
and pins overhead caused by TMR, and the permanent effect of an
upset in the user’s combinational logic. This paper is organized as
follows. Section II shows some used SEU tolerant techniques
applied to FPGAs and to ASICs, more specifically hardware
redundancy and time redundancy techniques. Section III introduces
the new technique that combines duplication with comparison
(DWC) and time redundancy to reduce pin count penalties. Section
IV presents the evaluation results performed by fault injection
experiments developed using a prototype board, and a comparison
to the TMR approach. Conclusions and ongoing works are
discussed in section V.

2. PREVIOUS WORK
Several SEU mitigation techniques have been proposed in the

past years in order to avoid transient faults in digital circuits,
including those implemented in programmable logic. A SEU
immune circuit may be accomplished through a variety of
mitigation techniques based on redundancy. Redundancy is
provided by extra components (hardware redundancy), by extra
execution time or different time of storage (time redundancy), or
by a combination of both. Each technique has some advantages
and drawbacks, and there is always a compromise between area,
performance, power and fault tolerance efficiency.

In the case of SRAM-based FPGAs, the problem of finding an
efficient technique in terms of area, performance and power is very
challenging, because of the high complexity of the architecture. As
previously mentioned, when an upset occurs in the user’s
combinational logic implemented in a FPGA, it provokes a very
peculiar effect, not commonly seen in ASICs. The SEU behavior is
characterized as a transient effect, followed by a permanent effect.
The upset can affect either the combinational logic or the routing.
The consequences of this type of effect, a transient followed by a
permanent fault, cannot be handled by the standard fault tolerant
solutions used in ASICs, such as Error Detection and Correction
Codes (Hamming code) or the standard TMR with a single voter,
because a permanent fault in the encoder or decoder logic or in the
voter would invalidate the technique provoking an error in the
circuit.

Special techniques should be developed for FPGAs to cope
with this type of effect. An example is the TMR proposed in [5].
Section 2.1 discusses this technique and some penalty points that
could be improved if some SEU mitigation techniques for ASICs
are adapted for FPGAs. Section 2.2 discusses some time and
hardware redundancy proposed in the past for ASICs. It is
important to notice that the studies presented in this paper do not
change the FPGA matrix architecture of the FPGA. They are all
applied in high-level design descriptions, such as VHDL or
Verilog.

2.1 Full Hardware Redundancy (TMR) for
FPGAs

Virtex devices consist of a flexible and regular architecture,
composed of an array of configurable logic blocks (CLBs),
surrounded by programmable I/O blocks, all interconnected by a
hierarchy of fast and versatile routing resources [4]. The CLBs
provide the functional elements for constructing logic, while the
I/O blocks provide the interface between the package pins and the
CLBs. The CLBs are interconnected through a general routing
matrix (GRM), that comprises an array of routing switches located
at the intersections of horizontal and vertical routing channels. The
Virtex matrix also has dedicated memory blocks of 4096 bits each,
clock DLLs for clock-distribution delay compensation and clock
domain control, and two 3-State buffers (BUFTs) associated with
each CLB.

Virtex devices are quickly programmed by loading a
configuration bitstream (collection of configuration bits) into the
device. The device functionality can be changed at anytime by
loading in a new bitstream. This continuous bitstream loading is
called scrubbing. The bitstream is divided into frames, and it
contains all the information needed to configure the programmable
storage elements in the matrix located in the Look-up tables
(LUTs), CLBs flip-flops, CLBs configuration cells and
interconnections, as shown in figure 1. All these configuration bits
are potentially sensitive to SEU and consequently, they must be
protected by a SEU tolerant technique.

F1
F2
F3
F4

Configuration Memory CellM

M

M M M M M M
LUT

Figure 1. Example of SEU sensitive bits in the CLB tile

(shaded area)

The SEU mitigation technique used nowadays to protect
designs synthetized in Virtex® architecture is mostly based on
TMR combined with scrubbing. The TMR mitigation scheme uses
three identical logic circuits (redundant block 0, redundant block 1
and redundant block 2), synthetized in the FPGA, performing the
same task in tandem, with corresponding outputs being compared
through a majority vote circuit. The TMR technique for Virtex® is
presented in details in [5], and more examples are also presented
in [6, 8]. Figure 2 shows the TMR scheme. The user’s flip-flop is
replaced by a TMR structure composed of three flip-flops, three
voters and multiplexors that are implemented using LUTs, one for
each. The combinational logic and input and output pins are also
triplicated to avoid any single point of failure inside the FPGA, as
illustrated in figure 2. In this way, any upset inside the matrix can
be voted out by the TMR structure assuring correct values in the
output. Figure 3 shows the output pad scheme of the TMR
approach.

The upsets in the FPGA matrix can be corrected by loading
the original bitstream (scrubbing). Scrubbing allows a system to

repair SEUs in the configuration memory without disrupting its
operations. It is performed continuously, without interruption of
the system operation. However, because scrubbing does not
interrupt the normal device operation, the original bitstream values
cannot be loaded in the flip-flops and embedded memory
structures, as these cells are constantly being updated by the
application. Consequently, if an upset occurs in the CLB flip-flop,
the TMR structure (figure 2) is responsible for voting and
correcting the fault by itself. If an upset occurs in the user
combinational logic, TMR votes out the logic block no longer
functioning, while the reconfiguration (scrubbing) repairs the upset
before more upsets accumulate and overcome the TMR.

tr0
voter

tr1
voter

tr2
voter

clk0

clk1

clk2

pad

pad

pad

Combinational logic Sequential logic

Figure 2. Triple Modular Redundancy Scheme for

Combinational and Sequential blocks [5]

tr0

tr1

tr0

tr1

check0

check1

pad

pad

tr2
tr2

check2

pad

Figure 3. Triple Modular Redundancy Scheme for output

pads [5]

The effect of an upset in the FPGA matrix is unique for each
type of programmable structure, such as LUT cells, routing cells,
flip-flop cells and embedded memory cells. In order to assure
reliability, the effects of an upset should be isolated inside a single
redundant block, and must not propagate, affecting two or more
blocks. For example, upsets in LUTs and CLB flip-flops are
restricted to the redundant block affected by the upset, because
they provoke an error only in the combinational logic defined by
that LUT. Upsets in the embedded memory are isolated in the
memory. However, the rate of the memory scrubbing circuit
implemented by the user in the FPGA is very important to avoid
accumulation of upsets that could overcome the TMR reliability.
Upsets in the routing can connect or disconnect signals causing a
short circuit or an open circuit, respectively. The effect of an open
circuit is only harmful for the redundant block to which the signal
belongs. However, the effect of a short circuit can be destructive
for the entire design, if two signals from two different redundant

blocks are connected. Fault injection studies show that a very low
percentage of short circuits (upsets in the routing), less than 1%,
can provoke error in the TMR output [6]. The use of assigned area
constraints for each redundant block can reduce the probability of
short circuits between signals from distinct blocks.

TMR is an attractive solution for SRAM based FPGAs
because it only changes the high level design description. It does
not require changes at the mask level. On the other hand, because
it does not change the FPGA design by itself, it presents some
limitations. Many applications can accept these limitations but
some can not. The main limitations are:

- The number of I/O pads available for designers is
reduced by three, because each input and output of each
TMR redundant block (tr0, tr1, tr2) should have its own
input and output pads, as shown in figure 2. The
number of dedicated clock resource segments for the
routing available for designers is also reduced by three,
because each input and output of each TMR redundant
block (tr0, tr1, tr2) should have its own clock.

- The size of the combinational logic in the design is
multiplied by three, and this also happens in the
sequential logic, where each storage cell must be
replaced by three storage cells, with three voters and
multiplexors, as shown in figure 2.

- The embedded memory also needs to be triplicated and
refreshed using extra logic.

- There is a delay overhead inserted by the voters.

- The power consumption is increased by three times as
all input and output pins as well as the combinational
and sequential logic are triplicated.

In conclusion, TMR is a suitable solution for FPGAs because
it provides a full hardware redundancy, including the user’s
combinational and sequential logic, the routing, and the I/O pads.
However, it comes with some penalties because of its full
hardware redundancy, such as area, I/O pad limitations and power
dissipation. Although these overheads could be reduced by using
some SEU mitigation solutions such as hardened memory cells [9,
10], EDACs techniques and standard TMR with single voter [11],
these solutions are costly because they require modifications in the
matrix architecture of the FPGA (NRE cost). This paper will show
a high level technique that combines TMR with time and hardware
redundancy, with some extra features able to cope with the upset
effects in FPGAs, allowing the reduction of the number of I/O pads
and consequently power dissipation in the interface.

2.2 Time and Hardware Redundancy for
ASICs

Time and hardware redundancy techniques are largely used in
ASICs [12]. The techniques range from simple upset detection to
upset voting and correction. There is a wide possibility of
techniques according to the user’s application requirements.
Sometimes it is just necessary to warn the presence of upset with
an interruption in the system functionality, while sometimes it is
required to completely avoid interruptions, assuring full reliability.
There is a set of techniques that can present reliability in between

these two extremes, each one producing more or less overhead
according to its fault reliability.

The use of time and hardware redundancy has already been
proposed in the past [13, 14, 15] for the detection of transient
upsets and upset tolerance. The goal is to take advantage of the
transient pulse characteristic to compare signals at two different
moments. The output of the combinational logic is latched at two
different times, where the clock edge of the second latch is shifted
by time d. A comparator indicates an upset occurrence (error
detection). The scheme is illustrated in figure 3a. Hardware
redundancy as duplication with comparison (DWC) can also be
used for upset detection, as shown in figure 3b. Although it
presents a larger area overhead compared to time redundancy, its
detection scheme for a full coverage of upset detection is simpler
to apply.

clk

Clk+d

Combinational
logic

 (a) Time Redundancy

Combinational
logic

Combinational
logic

(b) Hardware Redundancy

Figure 4. Examples of Upset Detection schemes

The possibility of applying time redundancy combined with
hardware redundancy technique for FPGAs looks interesting to
reduce the costs of using full hardware redundancy: TMR.
Potentially the use of DWC with time redundancy may reduce area
and pin count in comparison to TMR. But there are two problems
to be solved. First, previous techniques can only be used to detect
transient upsets, and not transient upsets that become permanent,
as in the case of SRAM based FPGAs. Second, in the FPGA, it is
not only sufficient to detect an upset, but one also must be able to
vote the correct value in order to assure the correct output. In the
next section, we present a technique based on time and hardware
redundancy for SRAM-based FPGA that takes into consideration
the above problems to reduce pin count, area and power
dissipation.

3. REDUCING PIN AND AREA
OVERHEARD BY USING TIME AND
HARDWARE REDUNDANCY

There are always some kinds of penalties to be paid when
designing fault tolerant systems. The penalties come from the
redundancy. Full hardware redundancy approach can produce
larger area, pin and power overheads. Time redundancy can
provoke interruption of the system in the presence of fault, and
performance penalties. The question is: what would happen if
some hardware redundancy blocks are replaced by time
redundancy?

Aiming to reduce the number of pins overhead of a full
hardware redundancy implementation (TMR), and at the same
time coping with permanent upset effects, we present a new
technique based on time and hardware redundancy, where triple
modular redundancy (TMR) and double modular redundancy with
comparison (DWC) are combined with time redundancy to detect
transient faults in the programmable matrix (SEUs in the
programmable elements). The upset detection and voter block is a
state-machine able to detect upsets and to identify the fault-free
redundant block (correct value) to allow continuous operation. The
main objective is to reduce input and output pins, and
consequently power dissipation in the I/O pads, the main
drawbacks of the TMR approach. Moreover, it can present some
area reduction for some designs composed of large combinational
logic structures.

Time redundancy by itself can only detect transient faults.
The same occurs with duplication with comparison (DWC), which
can also only detect faults. However, the combination of time
redundancy and DWC can provide an interesting upset evaluation,
which can not only detect the presence of a fault, but also
recognize in which redundant block the upset has occurred. Figure
5 shows the detailed scheme. There are two redundant blocks: dr0
and dr1. In this way, upsets in the combinational logic can be
detected and voted before being latched.

clk

clk

Clk+d

Clk+d

Combinational
logic 0

Tc0

Tc1

Hc

Hcd

Combinational
logic 1

dr0

dr1

dr0_ d

dr1_ d

out0

out1

Figure 5. Time and Hardware Redundancy Schematic for

Upset Detection

Four values are stored in the auxiliary latches (dr0, dr0_d, dr1
and dr1_d), two from each redundant block collected in different
instant. Two latches store the dr0 and the dr1 outputs at the clock
edge and two latches store the dr0 and dr1 outputs at the clock
edge plus a delay d. As a consequence, there are four outputs of
comparators in the scheme: Tc0 is the time redundancy comparator
from redundant block 0, Hc is the hardware redundancy
comparator at the clock edge, Tc1 is the time redundancy
comparator from redundant block 1 and Hcd is the hardware
redundancy comparator at the clock+d edge. Analyzing the sixteen
possibilities of output combinations of dr0, dr0_d, dr1 and dr1_d,
eight different syndromes are recognized, as presented in table 1.
Analyzing the syndromes from table 1, it is possible to see the
temporal effect of an upset in the FPGA. The steps are basically no
fault, transient upset effect in redundant block 0 (dr0) or block 1
(dr1), permanent effect in redundant block 0 (dr0) or block 1 (dr1),
recovery upset effect in redundant block 0 (dr0) or block 1 (dr1),
and no fault.

An upset in redundant block 0, syndrome 1001, is
characterized by a transient variation in the output (Tc0=1) with
no changes in dr1 outputs (Tc1=0), and in addition Hc=0 and
Hcd=1. An upset occurrence in dr1 is recognized in an equivalent
way, where Tc1=1 and Tc0=0. There are many other syndromes
that are not commonly seen in an ASIC environment, only in
FPGAs. One example is the permanent effect of an upset,
syndrome 0101. By analyzing this syndrome, it is not possible to
conclude which redundant block has the correct value and which
does not. The previous syndrome characterized by the transient
effect detection is necessary to vote the correct path. This
phenomenon characterizes the necessity of a state machine to vote
the correct value. This technique considers only one upset per
design at once, either in redundant block 0 or in redundant block
1. An implementation with an assigned area constrain may avoid
the occurrence of a fault in the redundant block 0 at the same time

of a fault in redundant block 1 (syndrome 1010). The identification
of this syndrome can be used as a flag to show that upsets have
overcome the DMR scheme.

The DWC with time redundancy proposed technique for the
combinational blocks, illustrated in figure 6, combines duplication
with comparison and time concurrent error detection to identify
combinational upsets in FPGAs. DWC with time redundancy
tolerates upsets without system interruptions. The combinational
logic is duplicated and there are detection and voter circuits able to
detect an upset and to identify which redundant block should be
connected to the CLB flip-flops. The upsets in the combinational
logic are corrected by scrubbing, while upsets in the CLB flip-
flops are corrected by the TMR scheme. It is important to notice
that for upset correction, scrubbing is performed continuously, to
assure that only one upset has occurred between two
reconfigurations in the design.

Table 1. Syndrome Analysis in the Double Modular Redundancy Approach

dr0 dr0_d dr1 dr1_d Tc0 Hc Tc1 Hcd Syndrome
0 0 0 0 0 0 0 0 No fault
0 0 0 1 0 0 1 1 Fault dr1 (stage 1, transient)
0 0 1 0 0 1 1 0 Fault recovery dr1
0 0 1 1 0 1 0 1 Fault dr0 or dr1 (stage 2, permanent)
0 1 0 0 1 0 0 1 Fault dr0 (stage 1, transient)
0 1 0 1 1 0 1 0 Fault dr0 and dr1 (stage 1, transient)
0 1 1 0 1 1 1 1 Fault dr0 or dr1, recovery dr0 or dr1
0 1 1 1 1 1 0 0 Fault recovery dr0
1 0 0 0 1 1 0 0 Fault recovery dr0
1 0 0 1 1 1 1 1 Fault dr0 or dr1, recovery dr0 or dr1
1 0 1 0 1 0 1 0 Fault dr0 and dr1 (stage 1, transient)
1 0 1 1 1 0 0 1 Fault dr0 (stage1, transient)
1 1 0 0 0 1 0 1 Fault dr0 or dr1 (stage 2, permanent)
1 1 0 1 0 1 1 0 Fault recovery dr1
1 1 1 0 0 0 1 1 Fault dr1 (stage1, transient)
1 1 1 1 0 0 0 0 No fault

dr0

dr1

dr0_ d

dr1_ d

voter

voter

voter

clk0+d’

clk1+d’

clk2+d’

trv0

trv1

trv2

clk0
dr0

dr0

clk1
dr1dr1
dr1_ d

Upset Detector and voter

clk1+d

clk0+d

dr0_ d

out0
out1

out0
out1

out0
out1

clk0 +d’

clk1 +d’

clk2 +d’

out0

out1

dr0

dr1

dr0_ d

dr1_ d

dr0

dr1

dr0_ d

dr1_ d

1-bit TMR register

Sample latches

DWC
modules

tr0

tr1

tr2

Figure 6 DWC with time redundancy proposed technique scheme for one bit output

When the circuit is reset, the state machine starts in state 0
and it is persistently monitoring the redundant block 0, while the
redundant block 1 is the spare. At this point, an upset in the
redundant block 1 will not affect the system, and it will be
corrected by the periodic scrubbing. If an upset occurs in the
redundant block 0, the state machine recognizes the fault, and the
operation switches to the spare path, the redundant block 1. The
upset in the redundant block 0 will be soon corrected by the
scrubbing, while now the system is operating with the redundant
block 1. At this point, the state machine is constantly monitoring
the redundant block 1, looking for upsets and the redundant block
0 is the spare. Upsets in the redundant block 0 will be corrected
by scrubbing.

As the fault detection technique used for this method is able
to identify only transient faults, it is necessary to have an
observation period to detect the fault occurrence and consequently
the faulty module (dr0 or dr1). The size of the observation period
of a fault occurrence is referred to as the clock delay d. As a
result, the transient fault observability occurs between clock and
clock+d. Outside this observation period, the fault is seen as
permanent and the faulty module can not be recognized, only the
presence of a fault can be detected. The percentage of faulty
module detection is related to d. As the observation period (d)
becomes greater, the probability of faulty module detection
becomes higher. One can use d as half of one clock cycle. The
performance penalty of this method is related to the time duration
of the fault observability (d).

The registers from the sequential logic store the
combinational logic outputs at clock plus d, plus the delay from
the upset detection circuit, totaling a new delay d’. The latches
from the concurrent upset detection state machine will also store
the next state at clock+d’. In order to simplify the number of
clocks in the design, one possibility is to reduce the frequency of
the design by two. In this way, the combinational output is stable
at the clock falling edge. At this time, the value is captured for the
future comparison. The fault observability period is until the next
clock rising edge where the correct redundant logic is voted.
Figure 7 illustrates two fault effects, one occurring during the
propagation time and one occurring during the observation time.

clk

Fault effect (1)

Fault effect (2)

fault observation period (d)propagation period

Figure 7. Fault effect in the clock period

If a fault effect occurs during the propagation period, the
DWC with time redundancy scheme will detect an error but will
not be able to recognize which redundant block (dr0 or dr1) is
faulty. However, some fault effects occurring during the
propagation period can be tolerated, if they affect the spare
redundant logic that is not being observed at that time. The fault
can be corrected in the next scrubbing and no error may occur. If a

fault effect occurs during the observation time, the DWC with
time redundancy scheme will be able to detect the output
variation and vote the fault-free redundant module (dr0 or dr1).
Faults in the observation time will always be correctly voted,
except for those whose effect will not be manifested at the time.
For example, a stuck at one fault in a node that is already one
because of the input vectors.

Some constrains must be observed for the perfect functioning
of the technique. There constrains are the same as TMR:

- There must be only one upset per dual modular
redundancy (DMR) combinational logic, including the
state machine detection and voting circuit,
consequently it is important to use some assigned area
constraints to reduce the probability of short circuits
between redundant block 0 and 1 (dr0 and dr1).

- The scrubbing rate should be fast enough to avoid
accumulation of upsets in two different redundant
blocks.

Upsets in the detection and voting circuit do not interfere
with the correct execution of the system, because the logic is
already triplicated. In addition, upsets in the latches of this logic
are not critical, as they are refreshed in each clock cycle.
Assuming a single upset per chip between scrubbing, if an upset
alters the correct voting, it does not matter as long as there is no
upset in both redundant blocks.

This technique can be used as an additional option for the
TMR technique for designing reliable circuits in FPGAs with
pads and power reduction. Because the combinational circuit is
just duplicated, inputs and outputs can be duplicated instead of
triplicated, as in the TMR approach. However, it is important to
notice that the TMR inputs related to the user’s sequential logic
used in the CLB flip-flops are not changed as triple input clocks,
reset and user vdd and gnd [8].

The upset detector and voter circuit can be optimized in
terms of area. In figure 6, the upset detector and voter circuit are
represented for only one bit. However, it is possible to use the
circuit for groups of bits. In this way, only one state-machine per
TMR redundant part for each group of bits is necessary, as
presented in figure 8.

Another possible optimization is to use a single state
machine to vote just the input of the redundant block 2 of the
TMR register, as presented in figure 9. In this way, a fault in one
of the combinational redundant blocks (dr0 or dr1) is voted to the
tr2 input, assuring the correct operation. A fault in this upset
detection and voter block will corrupt just the redundant block 2
of the TMR (tr2), consequently, tr0 and tr1 will still vote the
correct value. The scheme presented in figure 9 also shows the
clock optimizations, where the sample storage cells are latched at
the clock falling edge (clk0, clk1) and the state machine of the
upset detection block is latched at the clock rising edge (clk2).
The three clocks are the same, and are all connected outside the
FPGA chip.

trv0

trv1

trv2

n-bits TMR
register

n bits

tr0

tr1

tr2
dr0

dr1

dr0_ d

dr1_ d

out0
out1

out0
out1

out0
out1

clk0 +d’

clk1 +d’

clk2 +d’

dr0

dr1

dr0_ d

dr1_ d

dr0

dr1

dr0_ d

dr1_ d n bits

n bits

f It returns 1 if at least one bit is erroneous

f It returns 0 if at least one bit is erroneous

f

f

f

f

f

f

Figure 8. Upset detector and voter circuit area optimization
using group of n bits

clk0
dr0

dr0

clk1
dr1dr1

dr0_ d

Sample latches

DWC
modules

trv0

trv1

trv2

n-bit TMR register

n bits

n bits

tr0

tr2

tr1

out0

out1

dr0

dr1

dr0_ d

dr1_ d
clk2

out0
out1

f

f

f It returns 1 if at least one bit is erroneous

f It returns 0 if at least one bit is erroneous

dr1_ d

Figure 9. Upset detector and voter circuit area optimization
using a single state machine for a group of n bits

In summary, the final DWC with time redundancy scheme is
composed of:

- Two redundant blocks of the combinational logic.

- A set of sample latches related to the number of output
bits of each redundant block, which is used to capture
the value at the clock falling edge.

- Upset detection block, which is continuously
monitoring a variation between the captured value and
the combinational output during the observation period
(clock low level).

The corrected redundant part is voted just before the next
clock rising edge, where the TMR redundant part 2 from the
register stores the fault-free redundant logic (dr0 or dr1).

4. RESULTS
The DWC with time redundancy scheme was validated by

fault injection methodology in a prototype board using VHDL.
The fault injection system described in VHDL was specifically
developed to test the proposed technique. Results were emulated
in an AFX-PQ249-110 board using a XCV300 part. Some area
comparisons between the proposed approach and TMR were also
performed using Xilinx implementation tools. We use multipliers
as combinational circuit case studies, and FIR canonical filters as
sequential circuit case studies.

Fault injection in VHDL was used to characterize and
validate the technique. The fault injection system is able to
randomly choose the fault time, the fault node and the redundant

block. The faults are injected in a SRAM cell located in the fault
node and its effect is permanent. The fault can be a stuck at one
or a stuck at zero. There is a reset fault signal that works as a
scrubbing, cleaning up the fault. The circuit chosen for this first
evaluation was a 2x2 bit multiplier with a register at the output. It
was possible to inject a set of faults in all the user’s
combinational nodes of the example circuit, covering several time
intervals in the clock cycle, and to emulate the scrubbing between
faults. The multiplier input vectors were also randomly generated.

Figure 10 shows the simulation of random faults in a node of
the multiplexor emulated in the XCV300 FPGA. The fault is a
stuck at one and it was inserted in the redundant block 0 during
the observation time. There is one point of data acquisition at the
clock falling edge, just after the combinational output has
stabilized. The fault must be detected before the next clock rising
edge (clock+d), as shown in figure 6. The fault effect between
these two points can be easily detected, and the correct redundant
block can be voted. However, upset effects located extremely near
the clock rising edge of the register, or during the propagation
time cannot be voted, but they can be detected. This limitation on
the detection of a fault is due to the impossibility of
distinguishing a data disparity coming from a fault or from the
input variations in the redundant block 0 and redundant block 1.
As the effect of an upset in the user’s combinational logic in a
FPGA is permanent, all the results from the redundant block 0
after the fault effect are erroneous until the next scrubbing takes
place.

fault (stuck at 1) in dr0data acquisition I

dr0 is been observed dr1 is been observed

fault observation periodpropagation period

transient fault detected

Fig. 10. Simulation Analysis of a fault injection in the DMR with time redundancy scheme implemented in a 2x2 bits multiplier

Table 2. Example of combinational circuit: Multiplier Implemented in XCV300-PQ240 FPGA

 Standard TMR DWC with time redundancy
Multipliers 2x2 8x8 16x16 2x2 8x8 16x16* 2x2 8x8 16x16
Combinational Input Pins 4 16 32 12 48 96 8 32 64
Sequential Input Pins 2 2 2 12 12 12 12 12 12
Output Pins 4 16 32 12 48 96 12 48 96
Number of 4-input LUTs 4 156 705 16 514 2002 33 440 1504
Number of ffs 4 16 32 12 48 96 21 81 161

*I/O pins were out of range for the TMR approach, the part XCV300-BG432 was used.

Fault injection results show the reliability of the presented
method. There were inserted 128 stuck at one and 128 stuck at
zero faults in a random single node (ranging from 0 to 7) at a
random instant of the clock cycle in a 2x2 bit multiplier that
could occur during the propagation or the observation time.
Among the stuck at one faults, 113 of them were detected and
tolerated, either because they were correctly voted or because
the fault did not affect the correct design output. Among the
stuck at zero faults, 121 of them were also detected and
tolerated, either because they were correctly voted or because
the fault did not affect the correct design output.

The injected faults during the observation time that
generated an error were the ones where the effect could not be
observed by the input vectors at that time. Faults occurring
during the propagation time were detected and some of them
were also tolerated. The tolerated faults are the ones that
occurred in the spare redundant block. When the upset effect
happens during the propagation time, the scheme presented in
figure 6 is not capable of detecting in which redundant block the
fault has occurred, only detecting that the system is in error.
Consequently, after fault detection with no correction (syndrome
0101), the system should be reinitialized or some results should
not be considered.

Table 2 presents area results of 2x2, 8x8 and 16x16 bit
multipliers, implemented in the XCV300 FPGA using no
tolerance technique, TMR technique and DWC with time

redundancy in order to reduce pin count. All of the multipliers
were synthesized with a register at the output. Table 2 results
show that it is possible not only to reduce the number of I/O
pins but also the area, according to the size of the combinational
logic block. Note that the 16x16 bit multiplier protected by
TMR could not be synthesized in the prototype board that uses a
Virtex part with 240 I/O pins (166 available for the user).
However, the same multiplier implemented by the proposed
technique could fit in the chip, also occupying less area.

There is a constant area in this proposed method, resulting
from the upset detection and voter block. Consequently, the
proposed approach will only show a smaller area than TMR
when the area of the combinational logic related to the third
redundant part of the TMR that is suppressed is larger than this
constant cost. However, this technique can be used in I/O
circuitry, to assure pin count reduction in critical pin count
designs.

A canonical filter circuit was chosen as a sequential case
study circuit for the proposed technique. Figure 11 shows the
scheme of a canonical filter of 5 taps. The multipliers were
designed with constant coefficients, resulting in an optimized
area. The upset detection and voter block is placed at the
outputs, and it votes the correct pad output from dr0 or dr1, as
shown in figure 12. The registers are protected by TMR, while
the combinational logic (multipliers and adders) is protected by
DWC with time redundancy technique.

x

+

x x x

+ +

x

+

C1 C2 C3 C4 C5

IN

OUT

R0 R1 R2 R3

x

+

x x x

+ +

x

+

C1 C2 C3 C4 C5

IN

OUT

R0 R1 R2 R3

Fig. 11. Example of FIR Canonical Filter of 5 taps scheme

Upset
detection

and
voter
block

x

C1_tr0

OUT_dr0

IN_tr0 R0_tr0 R1_tr0 R2_tr0 R3_tr0

+

x

C2_tr0

+

x

C3_tr0

+

x

C4_tr0

+

x

C5_tr0

x

C1_tr1

OUT_dr1

IN_tr1 R0_tr1 R1_tr1 R2_tr1 R3_tr1

+

x

C2_tr1

+

x

C3_tr1

+

x

C4_tr1

+

x

C5_tr1

check1

pad

check0

pad

Figure 12. Filter adders and multipliers protected by DWC

with time redundancy

An 8-bit FIR canonical filter of 9 taps was synthesized in a
XCV300 FPGA to evaluate area and pin count. The multiplier
coefficients are: 2, 6, 17, 32 and 38. Table 3 presents area
results of this filter using no tolerance technique, TMR
technique and the proposed technique. Results show that the 9
taps FIR canonical filter occupies 22% less area in the FPGA if
protected by DWC and time redundancy instead of by TMR.

The results also present a reduction of 20% in the pin count
compared to TMR.

Table 3. Example of Sequential circuit: FIR canonical filter
of 9 taps implemented in XCV300-PQ240 FPGAs

 Standard TMR
DWC with

time
redundancy

Combinational Input Pins 8 24 24
Sequential Input Pins 3 15 15
Output Pins 16 48 32
Number of 4-input LUTs 265 948 741
Number of ffs 64 192 225

According to the user’s application requirements, the

designer will be able to choose between a full hardware
redundancy implementation (TMR) or a mixed solution where
duplication with comparison is combined to concurrent error
detection to reduce pins and power dissipation in the interface,
as well as area, as shown in previous examples. Figure 12
shows some implementations combining TMR and DWC with
time redundancy. It is possible to use this new technique only in
the interface of the FPGA, in this way reducing pins, as shown
in figure 12a. DWC with time redundancy can also be used
along the design as presented in figure 12b to reduce the
number of I/O pads and also area for large combinational
circuits, as presented in table 2 and table 3.

Sequential circuits such as counters and state machines are
more suitable to be protected by TMR, as the combinational
logic is small compared to the sequential logic. The proposed
technique is an alternate method to protect combinational
circuits, as it is necessary to insert a concurrent error detection
block. On the other side, large combinational logic blocks can
be easily found in many applications. For example,
microprocessors are composed of combinational logic such as
the Arithmetic and Logic Unit, multipliers and the micro-
instruction decoder.

CED CED

pads
pads

(a) DMR with time redundancy implementation in the interfaces

CED CED CED

pads
pads

(b) DMR with time redundancy implemented in the entire circuit

Figure 12. Evaluation schemes of the TMR and the DWC with time redundancy approach

5. CONCLUSIONS
This work presents a new technique for upset detection and

voting that combines duplication with comparison (DWC) with
time redundancy for the user’s combinational logic in SRAM-
based FPGAs. This technique reduces the number of input and
output pins of the user’s combinational logic when compared to
TMR technique. In addition, it can also reduce area, when large
combinational blocks are used. The proposed approach was
validated by fault injection in a Virtex prototype board using
VHDL. Upsets were randomly inserted in the user’s
combinational logic nodes to emulate faults in the logic. The fault
injection procedure was developed in VHDL, and it represents the
effect of a SEU in a SRAM-based FPGA, where it has a transient
effect followed by a permanent effect. Experiments in a 2x2 bit
multiplier showed that 100% of the faults can be detected and 234
of the 256 injected stuck at zero and stuck at one faults (91%)
were tolerated, either because they were correctly voted before
being captured by a CLB flip-flop or that specific faults did not
affect the correct design output.

Although the time redundancy technique can be successfully
used to reduce pin count and area overhead over a full hardware
redundancy, the transient concurrent error detection technique is
not able to correct 100% of the faults occurring in FPGAs.
Another penalty of this method is performance overhead because
of the observation time. The evolution of this work investigates
the use of modified time redundancy technique based on
permanent fault detection to improve fault correction and to
reduce the performance penalty at each clock cycle.

6. ACKNOWLEDGMENTS
The authors wish to thank Xilinx and CNPq Brazilian Agency for
their support of this work and Renato Hentschke from the Federal
University of RGS in Brazil (UFRGS) for his contribution to the
case study VHDL circuit description.

7. REFERENCES
[1] J. Barth, “Radiation Environment”, IEEE NSREC Short

Course, July, 1997.

[2] E. Normand, “Single Event Upset at Ground Level”, IEEE
Transactions on Nuclear Science, VOL. 43, NO. 6, Dec.
1996.

[3] A. Johnston., “Scaling and Technology Issues for Soft Error
Rates”, 4th Annual Research Conference on Reliability,
Stanford University, Oct. 2000.

[4] Xilinx Inc. Virtex™ 2.5 V Field Programmable Gate Arrays,
Xilinx Datasheet DS003, v2.4, Oct. 2000.

[5] C. Carmichael, “Triple Module Redundancy Design
Techniques for Virtex Series FPGA”, Xilinx Application
Notes 197, v1.0, Mar. 2001.

[6] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis, “A
Fault Injection Analysis of Virtex® FPGA TMR Design
Methodology”, Proc. of Radiation and its Effects on
Components and Systems (RADECS), Sept. 2001.

[7] C. Carmichael, E. Fuller, J. Fabula, F. Lima, “Proton Testing
of SEU Mitigation Methods for the Virtex FPGA”, Proc. of
Military and Aerospace Applications of Programmable Logic
Devices MAPLD, 2001.

[8] M. Caffrey, P. Graham, E. Johnson, M. Wirthlin, “Single
Event Upsets in SRAM FPGAs”, Proc. of Military and
Aerospace Applications of Programmable Logic Devices
(MAPLD), Sept. 2002.

[9] L. R. Rocket, “A design based on proven concepts of an
SEU-immune CMOS configuration data cell for
reprogrammable FPGAs”, Microelectronics Journal, VOL.
32, 2001, pp. 99-111.

[10] R. Velazco, D. Bessot, S. Duzellir, R. Ecoffet, R. Koga,
“Two Memory Cells Suitable for the Design of SEU-Tolerant
VLSI Circuits”, IEEE Transactions on Nuclear Science,
VOL. 41, NO. 6, Dec. 1994.

[11] W. Wesley Peterson, Error-correcting codes. Ed. 2.ed.
Cambridge : The mit Press, 1980. 560 p. ISBN 0262160390.

[12] E. Dupont, M. Nicolaidis, P. Rohr, “Embedded Robustness
IPs for Transient-Error-Free ICs”, IEEE Design and Test of
Computers, May-June, 2002, pp. 56-70.

[13] L. Anghel, M. Nicolaidis, “Cost Reduction and Evaluation of
a Temporary Faults Detecting Technique,” Proc. 2000
Design Automation and Test in Europe Conference (DATE
00), ACM Press, New York, 2000, pp. 591-598.

[14] L. Anghel, D. Alexandrescu, M. Nicolaidis, “Evaluation of a
Soft Error Tolerance Technique based on Time and/or
Hardware Redundancy,” Proc. of IEEE Integrated Circuits
and Systems Design (SBCCI), Sept. 2000, pp. 237-242.

[15] B.W. Johnson, J.H. Aylor, H.H. Hana, “Efficient Use of
Time and Hardware Redundancy for Concurrent Error
Detection in a 32-bit VLSI Adder,” IEEE Journal of Solid-
State-Circuits, pp. 208-215, Feb. 1988.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

