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ABSTRACT 
This paper proposes a new high-level technique for designing fault 
tolerant systems in SRAM-based FPGAs, without modifications in 
the FPGA architecture. Traditionally, TMR has been successfully 
applied in FPGAs to mitigate transient faults, which are likely to 
occur in space applications. However, TMR comes with high area 
and power dissipation penalties. The proposed technique was 
specifically developed for FPGAs to cope with transient faults in 
the user combinational and sequential logic, while also reducing 
pin count, area and power dissipation. The methodology was 
validated by fault injection experiments in an emulation board. We 
present some fault coverage results and a comparison with the 
TMR approach. 

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 

General Terms 
Design, Performance, Reliability. 

Keywords 
Fault-tolerance, FPGA. 

1. INTRODUCTION 
Field Programmable Gate Arrays (FPGAs) are increasingly 

demanded by spacecraft electronic designers, because of their high 
flexibility in achieving multiple requirements such as high 
performance, no NRE (Non Refundable Engineering) cost and fast 
turnaround time. In particular, SRAM-based FPGAs are uniquely 
suited for remote missions, because they can be reprogrammed by 
the user as many times as necessary in a very short period. As a 
result, SRAM-based FPGAs offer the additional benefits of 
allowing in-orbit design changes, thus reducing the mission cost by 
correcting errors or improving system performance after launch. 

Transient faults, also called Single Event Upset (SEU), are 
the major concern in space applications [1], with potentially 
serious consequences for the spacecraft, including loss of 
information, functional failure, or loss of control. SEU occurs 
when a charged particle hits the silicon, transferring enough 
energy to provoke a bit flip in a memory cell or a transient logic 
pulse in the combinational logic. SEU on devices has become more 
frequent because of smaller transistor features achieved by the 
continuous technology evolution. As a result, not only space 
applications but also terrestrial applications that are critical, such 
as bank servers, telecommunication servers and avionics, are more 
and more considering the use of tolerant techniques to ensure 
reliability [2, 3]. 

SRAM-based FPGA will be the focus of this work, more 
specifically the Virtex® family [4]. SEU has a peculiar effect in 
SRAM-based FPGAs when a particle hits the user’s combinational 
logic. In an ASIC, the effect of a particle hitting either the 
combinational or the sequential logic is transient; the only 
variation is the time duration of the fault.  A fault in the 
combinational logic is a transient logic pulse in a node that can 
disappear, according to the logic delay and topology. In other 
words, this means that a transient fault in the combinational logic 
may or may not be latched by a storage cell. Faults in the 
sequential logic manifest themselves as bit flips, which will 
remain in the storage cell until the next load. On the other hand, in 
a SRAM-based FPGA, both the user’s combinational and 
sequential logic are implemented by customizable logic cells, in 
other words, SRAM cells. When an upset occurs in the 
combinational logic, hitting either the logic or the routing, it has a 
transient effect followed by a permanent effect, because the SRAM 
cell that implements that logic or controls that routing has flipped. 
This means that a transient upset in the combinational logic in a 
FPGA will be latched by a storage cell, unless some detection 
technique is used. When an upset occurs in the user sequential 
logic, it has a transient effect, because the fault can be corrected in 
the next cell load. Accordingly, the use of SEU mitigation 
techniques for programmable architectures must take into account 
these peculiarities.  

In order to mitigate SEU in Virtex® family [4] FPGAs, the 
Triple Modular Redundancy (TMR) with voting technique, 
combined with bitstream scrubbing has been applied [5, 7]. TMR 
is a suitable technique for SRAM-based FPGAs, because of its full 
hardware redundancy property in the combinational and sequential 
logic. Previous results from bitstream fault injection [6] and 
radiation ground testing presented in [7] showed that the use of 
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TMR in Virtex FPGAs has confirmed the efficacy of the TMR 
structure combined with scrubbing to recover upsets in the FPGA 
architecture. However, the TMR technique presents some 
limitations, such as area overhead, three times more input and 
output pins and, consequently, a meaningful increase in power 
dissipation.   

In this work we propose a SEU tolerant technique for SRAM-
based FPGAs to cope with both problems above described: power 
and pins overhead caused by TMR, and the permanent effect of an 
upset in the user’s combinational logic. This paper is organized as 
follows. Section II shows some used SEU tolerant techniques 
applied to FPGAs and to ASICs, more specifically hardware 
redundancy and time redundancy techniques. Section III introduces 
the new technique that combines duplication with comparison 
(DWC) and time redundancy to reduce pin count penalties. Section 
IV presents the evaluation results performed by fault injection 
experiments developed using a prototype board, and a comparison 
to the TMR approach. Conclusions and ongoing works are 
discussed in section V. 

2. PREVIOUS WORK 
Several SEU mitigation techniques have been proposed in the 

past years in order to avoid transient faults in digital circuits, 
including those implemented in programmable logic. A SEU 
immune circuit may be accomplished through a variety of 
mitigation techniques based on redundancy. Redundancy is 
provided by extra components (hardware redundancy), by extra 
execution time or different time of storage (time redundancy), or 
by a combination of both.  Each technique has some advantages 
and drawbacks, and there is always a compromise between area, 
performance, power and fault tolerance efficiency. 

In the case of SRAM-based FPGAs, the problem of finding an 
efficient technique in terms of area, performance and power is very 
challenging, because of the high complexity of the architecture. As 
previously mentioned, when an upset occurs in the user’s 
combinational logic implemented in a FPGA, it provokes a very 
peculiar effect, not commonly seen in ASICs. The SEU behavior is 
characterized as a transient effect, followed by a permanent effect. 
The upset can affect either the combinational logic or the routing. 
The consequences of this type of effect, a transient followed by a 
permanent fault, cannot be handled by the standard fault tolerant 
solutions used in ASICs, such as Error Detection and Correction 
Codes (Hamming code) or the standard TMR with a single voter, 
because a permanent fault in the encoder or decoder logic or in the 
voter would invalidate the technique provoking an error in the 
circuit. 

Special techniques should be developed for FPGAs to cope 
with this type of effect. An example is the TMR proposed in [5]. 
Section 2.1 discusses this technique and some penalty points that 
could be improved if some SEU mitigation techniques for ASICs 
are adapted for FPGAs. Section 2.2 discusses some time and 
hardware redundancy proposed in the past for ASICs. It is 
important to notice that the studies presented in this paper do not 
change the FPGA matrix architecture of the FPGA. They are all 
applied in high-level design descriptions, such as VHDL or 
Verilog.  

2.1 Full Hardware Redundancy (TMR) for 
FPGAs 

Virtex devices consist of a flexible and regular architecture, 
composed of an array of configurable logic blocks (CLBs), 
surrounded by programmable I/O blocks, all interconnected by a 
hierarchy of fast and versatile routing resources [4]. The CLBs 
provide the functional elements for constructing logic, while the 
I/O blocks provide the interface between the package pins and the 
CLBs. The CLBs are interconnected through a general routing 
matrix (GRM), that comprises an array of routing switches located 
at the intersections of horizontal and vertical routing channels. The 
Virtex matrix also has dedicated memory blocks of 4096 bits each, 
clock DLLs for clock-distribution delay compensation and clock 
domain control, and two 3-State buffers (BUFTs) associated with 
each CLB. 

Virtex devices are quickly programmed by loading a 
configuration bitstream (collection of configuration bits) into the 
device. The device functionality can be changed at anytime by 
loading in a new bitstream. This continuous bitstream loading is 
called scrubbing. The bitstream is divided into frames, and it 
contains all the information needed to configure the programmable 
storage elements in the matrix located in the Look-up tables 
(LUTs), CLBs flip-flops, CLBs configuration cells and 
interconnections, as shown in figure 1. All these configuration bits 
are potentially sensitive to SEU and consequently, they must be 
protected by a SEU tolerant technique. 
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Figure 1. Example of SEU sensitive bits in the CLB tile 

(shaded area) 

The SEU mitigation technique used nowadays to protect 
designs synthetized in Virtex® architecture is mostly based on 
TMR combined with scrubbing. The TMR mitigation scheme uses 
three identical logic circuits (redundant block 0, redundant block 1 
and redundant block 2), synthetized in the FPGA, performing the 
same task in tandem, with corresponding outputs being compared 
through a majority vote circuit. The TMR technique for Virtex® is 
presented in details in [5], and more examples are also presented 
in [6, 8]. Figure 2 shows the TMR scheme. The user’s flip-flop is 
replaced by a TMR structure composed of three flip-flops, three 
voters and multiplexors that are implemented using LUTs, one for 
each. The combinational logic and input and output pins are also 
triplicated to avoid any single point of failure inside the FPGA, as 
illustrated in figure 2. In this way, any upset inside the matrix can 
be voted out by the TMR structure assuring correct values in the 
output. Figure 3 shows the output pad scheme of the TMR 
approach. 

The upsets in the FPGA matrix can be corrected by loading 
the original bitstream (scrubbing). Scrubbing allows a system to 



repair SEUs in the configuration memory without disrupting its 
operations. It is performed continuously, without interruption of 
the system operation. However, because scrubbing does not 
interrupt the normal device operation, the original bitstream values 
cannot be loaded in the flip-flops and embedded memory 
structures, as these cells are constantly being updated by the 
application. Consequently, if an upset occurs in the CLB flip-flop, 
the TMR structure (figure 2) is responsible for voting and 
correcting the fault by itself. If an upset occurs in the user 
combinational logic, TMR votes out the logic block no longer 
functioning, while the reconfiguration (scrubbing) repairs the upset 
before more upsets accumulate and overcome the TMR.  
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Figure 2. Triple Modular Redundancy Scheme for 

Combinational and Sequential blocks [5] 
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Figure 3. Triple Modular Redundancy Scheme for output 

pads [5] 

The effect of an upset in the FPGA matrix is unique for each 
type of programmable structure, such as LUT cells, routing cells, 
flip-flop cells and embedded memory cells. In order to assure 
reliability, the effects of an upset should be isolated inside a single 
redundant block, and must not propagate, affecting two or more 
blocks. For example, upsets in LUTs and CLB flip-flops are 
restricted to the redundant block affected by the upset, because 
they provoke an error only in the combinational logic defined by 
that LUT. Upsets in the embedded memory are isolated in the 
memory. However, the rate of the memory scrubbing circuit 
implemented by the user in the FPGA is very important to avoid 
accumulation of upsets that could overcome the TMR reliability. 
Upsets in the routing can connect or disconnect signals causing a 
short circuit or an open circuit, respectively. The effect of an open 
circuit is only harmful for the redundant block to which the signal 
belongs. However, the effect of a short circuit can be destructive 
for the entire design, if two signals from two different redundant 

blocks are connected. Fault injection studies show that a very low 
percentage of short circuits (upsets in the routing), less than 1%, 
can provoke error in the TMR output [6]. The use of assigned area 
constraints for each redundant block can reduce the probability of 
short circuits between signals from distinct blocks.  

TMR is an attractive solution for SRAM based FPGAs 
because it only changes the high level design description. It does 
not require changes at the mask level. On the other hand, because 
it does not change the FPGA design by itself, it presents some 
limitations. Many applications can accept these limitations but 
some can not. The main limitations are:  

- The number of I/O pads available for designers is 
reduced by three, because each input and output of each 
TMR redundant block (tr0, tr1, tr2) should have its own 
input and output pads, as shown in figure 2. The 
number of dedicated clock resource segments for the 
routing available for designers  is also reduced by three, 
because each input and output of each TMR redundant 
block (tr0, tr1, tr2) should have its own clock. 

- The size of the combinational logic in the design is 
multiplied by three, and this also happens in the 
sequential logic, where each storage cell must be 
replaced by three storage cells, with three voters and 
multiplexors, as shown in figure 2. 

- The embedded memory also needs to be triplicated and 
refreshed using extra logic. 

- There is a delay overhead inserted by the voters. 

- The power consumption is increased by three times as 
all input and output pins as well as the combinational 
and sequential logic are triplicated. 

In conclusion, TMR is a suitable solution for FPGAs because 
it provides a full hardware redundancy, including the user’s 
combinational and sequential logic, the routing, and the I/O pads. 
However, it comes with some penalties because of its full 
hardware redundancy, such as area, I/O pad limitations and power 
dissipation. Although these overheads could be reduced by using 
some SEU mitigation solutions such as hardened memory cells [9, 
10], EDACs techniques and standard TMR with single voter [11], 
these solutions are costly because they require modifications in the 
matrix architecture of the FPGA (NRE cost). This paper will show 
a high level technique that combines TMR with time and hardware 
redundancy, with some extra features able to cope with the upset 
effects in FPGAs, allowing the reduction of the number of I/O pads 
and consequently power dissipation in the interface. 

2.2 Time and Hardware Redundancy for 
ASICs 

Time and hardware redundancy techniques are largely used in 
ASICs [12]. The techniques range from simple upset detection to 
upset voting and correction. There is a wide possibility of 
techniques according to the user’s application requirements. 
Sometimes it is just necessary to warn the presence of upset with 
an interruption in the system functionality, while sometimes it is 
required to completely avoid interruptions, assuring full reliability. 
There is a set of techniques that can present reliability in between 



these two extremes, each one producing more or less overhead 
according to its fault reliability.  

The use of time and hardware redundancy has already been 
proposed in the past [13, 14, 15] for the detection of transient 
upsets and upset tolerance. The goal is to take advantage of the 
transient pulse characteristic to compare signals at two different 
moments. The output of the combinational logic is latched at two 
different times, where the clock edge of the second latch is shifted 
by time d. A comparator indicates an upset occurrence (error 
detection). The scheme is illustrated in figure 3a. Hardware 
redundancy as duplication with comparison (DWC) can also be 
used for upset detection, as shown in figure 3b. Although it 
presents a larger area overhead compared to time redundancy, its 
detection scheme for a full coverage of upset detection is simpler 
to apply. 
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Figure 4. Examples of Upset Detection schemes 

The possibility of applying time redundancy combined with 
hardware redundancy technique for FPGAs looks interesting to 
reduce the costs of using full hardware redundancy: TMR. 
Potentially the use of DWC with time redundancy may reduce area 
and pin count in comparison to TMR. But there are two problems 
to be solved. First, previous techniques can only be used to detect 
transient upsets, and not transient upsets that become permanent, 
as in the case of SRAM based FPGAs. Second, in the FPGA, it is 
not only sufficient to detect an upset, but one also must be able to 
vote the correct value in order to assure the correct output. In the 
next section, we present a technique based on time and hardware 
redundancy for SRAM-based FPGA that takes into consideration 
the above problems to reduce pin count, area and power 
dissipation. 

3. REDUCING PIN AND AREA 
OVERHEARD BY USING TIME AND 
HARDWARE REDUNDANCY 

There are always some kinds of penalties to be paid when 
designing fault tolerant systems. The penalties come from the 
redundancy. Full hardware redundancy approach can produce 
larger area, pin and power overheads. Time redundancy can 
provoke interruption of the system in the presence of fault, and 
performance penalties. The question is: what would happen if 
some hardware redundancy blocks are replaced by time 
redundancy?  

Aiming to reduce the number of pins overhead of a full 
hardware redundancy implementation (TMR), and at the same 
time coping with permanent upset effects, we present a new 
technique based on time and hardware redundancy, where triple 
modular redundancy (TMR) and double modular redundancy with 
comparison (DWC) are combined with time redundancy to detect 
transient faults in the programmable matrix (SEUs in the 
programmable elements). The upset detection and voter block is a 
state-machine able to detect upsets and to identify the fault-free 
redundant block (correct value) to allow continuous operation. The 
main objective is to reduce input and output pins, and 
consequently power dissipation in the I/O pads, the main 
drawbacks of the TMR approach. Moreover, it can present some 
area reduction for some designs composed of large combinational 
logic structures. 

Time redundancy by itself can only detect transient faults. 
The same occurs with duplication with comparison (DWC), which 
can also only detect faults. However, the combination of time 
redundancy and DWC can provide an interesting upset evaluation, 
which can not only detect the presence of a fault, but also 
recognize in which redundant block the upset has occurred. Figure 
5 shows the detailed scheme. There are two redundant blocks: dr0 
and dr1. In this way, upsets in the combinational logic can be 
detected and voted before being latched.  
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Figure 5. Time and Hardware Redundancy Schematic for 

Upset Detection 

Four values are stored in the auxiliary latches (dr0, dr0_d, dr1 
and dr1_d), two from each redundant block collected in different 
instant.  Two latches store the dr0 and the dr1 outputs at the clock 
edge and two latches store the dr0 and dr1 outputs at the clock 
edge plus a delay d. As a consequence, there are four outputs of 
comparators in the scheme: Tc0 is the time redundancy comparator 
from redundant block 0, Hc is the hardware redundancy 
comparator at the clock edge, Tc1 is the time redundancy 
comparator from redundant block 1 and Hcd is the hardware 
redundancy comparator at the clock+d edge. Analyzing the sixteen 
possibilities of output combinations of dr0, dr0_d, dr1 and dr1_d, 
eight different syndromes are recognized, as presented in table 1. 
Analyzing the syndromes from table 1, it is possible to see the 
temporal effect of an upset in the FPGA. The steps are basically no 
fault, transient upset effect in redundant block 0 (dr0) or block 1 
(dr1), permanent effect in redundant block 0 (dr0) or block 1 (dr1), 
recovery upset effect in redundant block 0 (dr0) or block 1 (dr1), 
and no fault. 



An upset in redundant block 0, syndrome 1001, is 
characterized by a transient variation in the output (Tc0=1) with 
no changes in dr1 outputs (Tc1=0), and in addition Hc=0 and 
Hcd=1. An upset occurrence in dr1 is recognized in an equivalent 
way, where Tc1=1 and Tc0=0. There are many other syndromes 
that are not commonly seen in an ASIC environment, only in 
FPGAs. One example is the permanent effect of an upset, 
syndrome 0101. By analyzing this syndrome, it is not possible to 
conclude which redundant block has the correct value and which 
does not.  The previous syndrome characterized by the transient 
effect detection is necessary to vote the correct path. This 
phenomenon characterizes the necessity of a state machine to vote 
the correct value. This technique considers only one upset per 
design at once, either in redundant block 0 or in redundant block 
1. An implementation with an assigned area constrain may avoid 
the occurrence of a fault in the redundant block 0 at the same time 

of a fault in redundant block 1 (syndrome 1010). The identification 
of this syndrome can be used as a flag to show that upsets have 
overcome the DMR scheme.  

The DWC with time redundancy proposed technique for the 
combinational blocks, illustrated in figure 6, combines duplication 
with comparison and time concurrent error detection to identify 
combinational upsets in FPGAs. DWC with time redundancy 
tolerates upsets without system interruptions. The combinational 
logic is duplicated and there are detection and voter circuits able to 
detect an upset and to identify which redundant block should be 
connected to the CLB flip-flops. The upsets in the combinational 
logic are corrected by scrubbing, while upsets in the CLB flip-
flops are corrected by the TMR scheme. It is important to notice 
that for upset correction, scrubbing is performed continuously, to 
assure that only one upset has occurred between two 
reconfigurations in the design. 

Table 1. Syndrome Analysis in the Double Modular Redundancy Approach  

dr0 dr0_d dr1 dr1_d Tc0 Hc Tc1 Hcd Syndrome 
0 0 0 0 0 0 0 0 No fault 
0 0 0 1 0 0 1 1 Fault dr1 (stage 1, transient) 
0 0 1 0 0 1 1 0 Fault recovery dr1 
0 0 1 1 0 1 0 1 Fault dr0 or dr1 (stage 2, permanent) 
0 1 0 0 1 0 0 1 Fault dr0 (stage 1, transient) 
0 1 0 1 1 0 1 0 Fault dr0 and dr1 (stage 1, transient) 
0 1 1 0 1 1 1 1 Fault dr0 or dr1, recovery dr0 or dr1 
0 1 1 1 1 1 0 0 Fault recovery dr0 
1 0 0 0 1 1 0 0 Fault recovery dr0 
1 0 0 1 1 1 1 1 Fault dr0 or dr1, recovery dr0 or dr1 
1 0 1 0 1 0 1 0 Fault dr0 and dr1 (stage 1, transient) 
1 0 1 1 1 0 0 1 Fault dr0 (stage1, transient) 
1 1 0 0 0 1 0 1 Fault dr0 or dr1 (stage 2, permanent) 
1 1 0 1 0 1 1 0 Fault recovery dr1 
1 1 1 0 0 0 1 1 Fault dr1 (stage1, transient) 
1 1 1 1 0 0 0 0 No fault 
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Figure 6 DWC with time redundancy proposed technique scheme for one bit output 



 

When the circuit is reset, the state machine starts in state 0 
and it is persistently monitoring the redundant block 0, while the 
redundant block 1 is the spare. At this point, an upset in the 
redundant block 1 will not affect the system, and it will be 
corrected by the periodic scrubbing. If an upset occurs in the 
redundant block 0, the state machine recognizes the fault, and the 
operation switches to the spare path, the redundant block 1. The 
upset in the redundant block 0 will be soon corrected by the 
scrubbing, while now the system is operating with the redundant 
block 1. At this point, the state machine is constantly monitoring 
the redundant block 1, looking for upsets and the redundant block 
0 is the spare. Upsets in the redundant block 0 will be corrected 
by scrubbing. 

As the fault detection technique used for this method is able 
to identify only transient faults, it is necessary to have an 
observation period to detect the fault occurrence and consequently 
the faulty module (dr0 or dr1). The size of the observation period 
of a fault occurrence is referred to as the clock delay d. As a 
result, the transient fault observability occurs between clock and 
clock+d. Outside this observation period, the fault is seen as 
permanent and the faulty module can not be recognized, only the 
presence of a fault can be detected.  The percentage of faulty 
module detection is related to d.  As the observation period (d) 
becomes greater, the probability of faulty module detection 
becomes higher. One can use d as half of one clock cycle. The 
performance penalty of this method is related to the time duration 
of the fault observability (d). 

The registers from the sequential logic store the 
combinational logic outputs at clock plus d, plus the delay from 
the upset detection circuit, totaling a new delay d’. The latches 
from the concurrent upset detection state machine will also store 
the next state at clock+d’. In order to simplify the number of 
clocks in the design, one possibility is to reduce the frequency of 
the design by two. In this way, the combinational output is stable 
at the clock falling edge. At this time, the value is captured for the 
future comparison. The fault observability period is until the next 
clock rising edge where the correct redundant logic is voted. 
Figure 7 illustrates two fault effects, one occurring during the 
propagation time and one occurring during the observation time. 
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Figure 7. Fault effect in the clock period 

If a fault effect occurs during the propagation period, the 
DWC with time redundancy scheme will detect an error but will 
not be able to recognize which redundant block (dr0 or dr1) is 
faulty. However, some fault effects occurring during the 
propagation period can be tolerated, if they affect the spare 
redundant logic that is not being observed at that time. The fault 
can be corrected in the next scrubbing and no error may occur. If a 

fault effect occurs during the observation time, the DWC with 
time redundancy scheme will be able to detect the output 
variation and vote the fault-free redundant module (dr0 or dr1). 
Faults in the observation time will always be correctly voted, 
except for those whose effect will not be manifested at the time. 
For example, a stuck at one fault in a node that is already one 
because of the input vectors.  

Some constrains must be observed for the perfect functioning 
of the technique. There constrains are the same as TMR:  

- There must be only one upset per dual modular 
redundancy (DMR) combinational logic, including the 
state machine detection and voting circuit, 
consequently it is important to use some assigned area 
constraints to reduce the probability of short circuits 
between redundant block 0 and 1 (dr0 and dr1). 

- The scrubbing rate should be fast enough to avoid 
accumulation of upsets in two different redundant 
blocks.  

Upsets in the detection and voting circuit do not interfere 
with the correct execution of the system, because the logic is 
already triplicated. In addition, upsets in the latches of this logic 
are not critical, as they are refreshed in each clock cycle.  
Assuming a single upset per chip between scrubbing, if an upset 
alters the correct voting, it does not matter as long as there is no 
upset in both redundant blocks.  

This technique can be used as an additional option for the 
TMR technique for designing reliable circuits in FPGAs with 
pads and power reduction. Because the combinational circuit is 
just duplicated, inputs and outputs can be duplicated instead of 
triplicated, as in the TMR approach. However, it is important to 
notice that the TMR inputs related to the user’s sequential logic 
used in the CLB flip-flops are not changed as triple input clocks, 
reset and user vdd and gnd [8]. 

The upset detector and voter circuit can be optimized in 
terms of area. In figure 6, the upset detector and voter circuit are 
represented for only one bit. However, it is possible to use the 
circuit for groups of bits. In this way, only one state-machine per 
TMR redundant part for each group of bits is necessary, as 
presented in figure 8.  

Another possible optimization is to use a single state 
machine to vote just the input of the redundant block 2 of the 
TMR register, as presented in figure 9. In this way, a fault in one 
of the combinational redundant blocks (dr0 or dr1) is voted to the 
tr2 input, assuring the correct operation. A fault in this upset 
detection and voter block will corrupt just the redundant block 2 
of the TMR (tr2), consequently, tr0 and tr1 will still vote the 
correct value. The scheme presented in figure 9 also shows the 
clock optimizations, where the sample storage cells are latched at 
the clock falling edge (clk0, clk1) and the state machine of the 
upset detection block is latched at the clock rising edge (clk2). 
The three clocks are the same, and are all connected outside the 
FPGA chip. 
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Figure 8. Upset detector and voter circuit area optimization 
using group of n bits 

clk0
dr0

dr0

clk1
dr1dr1

dr0_ d

Sample latches

DWC
modules

trv0

trv1

trv2

n-bit TMR register

n bits

n bits

tr0

tr2

tr1

out0

out1

dr0

dr1

dr0_ d

dr1_ d
clk2

out0
out1

f

f

f It returns 1 if at least one bit is erroneous

f It returns 0 if at least one bit is erroneous

dr1_ d

 

Figure 9. Upset detector and voter circuit area optimization 
using a single state machine for a group of n bits 

 

In summary, the final DWC with time redundancy scheme is 
composed of: 

- Two redundant blocks of the combinational logic. 

- A set of sample latches related to the number of output 
bits of each redundant block, which is used to capture 
the value at the clock falling edge. 

- Upset detection block, which is continuously 
monitoring a variation between the captured value and 
the combinational output during the observation period 
(clock low level).  

The corrected redundant part is voted just before the next 
clock rising edge, where the TMR redundant part 2 from the 
register stores the fault-free redundant logic (dr0 or dr1). 

4. RESULTS 
The DWC with time redundancy scheme was validated by 

fault injection methodology in a prototype board using VHDL. 
The fault injection system described in VHDL was specifically 
developed to test the proposed technique. Results were emulated 
in an AFX-PQ249-110 board using a XCV300 part. Some area 
comparisons between the proposed approach and TMR were also 
performed using Xilinx implementation tools. We use multipliers 
as combinational circuit case studies, and FIR canonical filters as 
sequential circuit case studies.  

Fault injection in VHDL was used to characterize and 
validate the technique. The fault injection system is able to 
randomly choose the fault time, the fault node and the redundant 

block. The faults are injected in a SRAM cell located in the fault 
node and its effect is permanent. The fault can be a stuck at one 
or a stuck at zero. There is a reset fault signal that works as a 
scrubbing, cleaning up the fault. The circuit chosen for this first 
evaluation was a 2x2 bit multiplier with a register at the output. It 
was possible to inject a set of faults in all the user’s 
combinational nodes of the example circuit, covering several time 
intervals in the clock cycle, and to emulate the scrubbing between 
faults. The multiplier input vectors were also randomly generated.  

Figure 10 shows the simulation of random faults in a node of 
the multiplexor emulated in the XCV300 FPGA. The fault is a 
stuck at one and it was inserted in the redundant block 0 during 
the observation time. There is one point of data acquisition at the 
clock falling edge, just after the combinational output has 
stabilized. The fault must be detected before the next clock rising 
edge (clock+d), as shown in figure 6. The fault effect between 
these two points can be easily detected, and the correct redundant 
block can be voted. However, upset effects located extremely near 
the clock rising edge of the register, or during the propagation 
time cannot be voted, but they can be detected. This limitation on 
the detection of a fault is due to the impossibility of 
distinguishing a data disparity coming from a fault or from the 
input variations in the redundant block 0 and redundant block 1. 
As the effect of an upset in the user’s combinational logic in a 
FPGA is permanent, all the results from the redundant block 0 
after the fault effect are erroneous until the next scrubbing takes 
place. 
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Fig. 10. Simulation Analysis of a fault injection in the DMR with time redundancy scheme implemented in a 2x2 bits multiplier 

Table 2. Example of combinational circuit: Multiplier Implemented in XCV300-PQ240 FPGA 

 Standard TMR DWC with time redundancy 
Multipliers 2x2 8x8 16x16 2x2 8x8 16x16* 2x2 8x8 16x16 
Combinational Input Pins 4 16 32 12 48 96 8 32 64 
Sequential Input Pins 2 2 2 12 12 12 12 12 12 
Output Pins 4 16 32 12 48 96 12 48 96 
Number of 4-input LUTs 4 156 705 16 514 2002 33 440 1504 
Number of ffs 4 16 32 12 48 96 21 81 161 

*I/O pins were out of range for the TMR approach, the part XCV300-BG432 was used. 

Fault injection results show the reliability of the presented 
method. There were inserted 128 stuck at one and 128 stuck at 
zero faults in a random single node (ranging from 0 to 7) at a 
random instant of the clock cycle in a 2x2 bit multiplier that 
could occur during the propagation or the observation time. 
Among the stuck at one faults, 113 of them were detected and 
tolerated, either because they were correctly voted or because 
the fault did not affect the correct design output. Among the 
stuck at zero faults, 121 of them were also detected and 
tolerated, either because they were correctly voted or because 
the fault did not affect the correct design output. 

The injected faults during the observation time that 
generated an error were the ones where the effect could not be 
observed by the input vectors at that time. Faults occurring 
during the propagation time were detected and some of them 
were also tolerated. The tolerated faults are the ones that 
occurred in the spare redundant block. When the upset effect 
happens during the propagation time, the scheme presented in 
figure 6 is not capable of detecting in which redundant block the 
fault has occurred, only detecting that the system is in error. 
Consequently, after fault detection with no correction (syndrome 
0101), the system should be reinitialized or some results should 
not be considered. 

Table 2 presents area results of 2x2, 8x8 and 16x16 bit 
multipliers, implemented in the XCV300 FPGA using no 
tolerance technique, TMR technique and DWC with time 

redundancy in order to reduce pin count. All of the multipliers 
were synthesized with a register at the output. Table 2 results 
show that it is possible not only to reduce the number of I/O 
pins but also the area, according to the size of the combinational 
logic block. Note that the 16x16 bit multiplier protected by 
TMR could not be synthesized in the prototype board that uses a 
Virtex part with 240 I/O pins (166 available for the user). 
However, the same multiplier implemented by the proposed 
technique could fit in the chip, also occupying less area. 

There is a constant area in this proposed method, resulting 
from the upset detection and voter block. Consequently, the 
proposed approach will only show a smaller area than TMR 
when the area of the combinational logic related to the third 
redundant part of the TMR that is suppressed is larger than this 
constant cost. However, this technique can be used in I/O 
circuitry, to assure pin count reduction in critical pin count 
designs.  

A canonical filter circuit was chosen as a sequential case 
study circuit for the proposed technique. Figure 11 shows the 
scheme of a canonical filter of 5 taps. The multipliers were 
designed with constant coefficients, resulting in an optimized 
area. The upset detection and voter block is placed at the 
outputs, and it votes the correct pad output from dr0 or dr1, as 
shown in figure 12. The registers are protected by TMR, while 
the combinational logic (multipliers and adders) is protected by 
DWC with time redundancy technique.  
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Fig. 11. Example of FIR Canonical Filter of 5 taps scheme 
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Figure 12. Filter adders and multipliers protected by DWC 

with time redundancy 

An 8-bit FIR canonical filter of 9 taps was synthesized in a 
XCV300 FPGA to evaluate area and pin count. The multiplier 
coefficients are: 2, 6, 17, 32 and 38. Table 3 presents area 
results of this filter using no tolerance technique, TMR 
technique and the proposed technique. Results show that the 9 
taps FIR canonical filter occupies 22% less area in the FPGA if 
protected by DWC and time redundancy instead of by TMR. 

The results also present a reduction of 20% in the pin count 
compared to TMR. 

Table 3. Example of Sequential circuit: FIR canonical filter 
of 9 taps implemented in XCV300-PQ240 FPGAs  

 Standard TMR 
DWC with 

time 
redundancy 

Combinational Input Pins 8 24 24 
Sequential Input Pins 3 15 15 
Output Pins 16 48 32 
Number of 4-input LUTs 265 948 741 
Number of ffs 64 192 225 

 
According to the user’s application requirements, the 

designer will be able to choose between a full hardware 
redundancy implementation (TMR) or a mixed solution where 
duplication with comparison is combined to concurrent error 
detection to reduce pins and power dissipation in the interface, 
as well as area, as shown in previous examples. Figure 12 
shows some implementations combining TMR and DWC with 
time redundancy. It is possible to use this new technique only in 
the interface of the FPGA, in this way reducing pins, as shown 
in figure 12a. DWC with time redundancy can also be used 
along the design as presented in figure 12b to reduce the 
number of I/O pads and also area for large combinational 
circuits, as presented in table 2 and table 3. 

Sequential circuits such as counters and state machines are 
more suitable to be protected by TMR, as the combinational 
logic is small compared to the sequential logic. The proposed 
technique is an alternate method to protect combinational 
circuits, as it is necessary to insert a concurrent error detection 
block. On the other side, large combinational logic blocks can 
be easily found in many applications. For example, 
microprocessors are composed of combinational logic such as 
the Arithmetic and Logic Unit, multipliers and the micro-
instruction decoder. 
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(a) DMR with time redundancy implementation in the interfaces 
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(b) DMR with time redundancy implemented in the entire circuit 

Figure 12. Evaluation schemes of the TMR and the DWC with time redundancy approach 



5. CONCLUSIONS 
This work presents a new technique for upset detection and 

voting that combines duplication with comparison (DWC) with 
time redundancy for the user’s combinational logic in SRAM-
based FPGAs. This technique reduces the number of input and 
output pins of the user’s combinational logic when compared to 
TMR technique. In addition, it can also reduce area, when large 
combinational blocks are used.  The proposed approach was 
validated by fault injection in a Virtex prototype board using 
VHDL. Upsets were randomly inserted in the user’s 
combinational logic nodes to emulate faults in the logic. The fault 
injection procedure was developed in VHDL, and it represents the 
effect of a SEU in a SRAM-based FPGA, where it has a transient 
effect followed by a permanent effect. Experiments in a 2x2 bit 
multiplier showed that 100% of the faults can be detected and 234 
of the 256 injected stuck at zero and stuck at one faults (91%) 
were tolerated, either because they were correctly voted before 
being captured by a CLB flip-flop or that specific faults did not 
affect the correct design output.  

Although the time redundancy technique can be successfully 
used to reduce pin count and area overhead over a full hardware 
redundancy, the transient concurrent error detection technique is 
not able to correct 100% of the faults occurring in FPGAs. 
Another penalty of this method is performance overhead because 
of the observation time. The evolution of this work investigates 
the use of modified time redundancy technique based on 
permanent fault detection to improve fault correction and to 
reduce the performance penalty at each clock cycle. 
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