
I/O Placement for FPGAs with Multiple I/O Standards

Wai-Kei Mak
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

wkmak@csee.usf.edu

ABSTRACT
In this paper, we present the first exact algorithm to solve the con-
strained I/O placement problem for FPGAs that support multiple
I/O standards. We derive a compact integer linear programming
formulation for the constrained I/O placement problem. The size
of the integer linear program derived is independent of the num-
ber of I/O objects to be placed and hence is scalable to very large
design instances. For example, for a Xilinx Virtex-E FPGA, the
number of integer variables required is never more than 32 and is
much smaller for practical design instances. Extensive experimen-
tal results using a non-commercial integer linear program solver
shows that it only takes seconds to solve the resultant integer linear
program in practice.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; J.6 [Computer-Aided
Engineering]: CAD

General Terms
Algorithms

Keywords
Placement, I/O placement, field-programmable gate array, I/O stan-
dards

1. INTRODUCTION
To keep pace with increasing clock speeds, higher data rates, and

new low-voltage applications, a wide variety of new high-performance,
low-voltage I/O standards have been introduced. Since FPGAs are
commonly used in applications where they communicate with sev-
eral devices and buses which may use different I/O standards, the
newer generation of FPGAs are designed so that each device can
support multiple I/O standards simultaneously.

Examples of FPGAs that support multiple I/O standards simul-
taneously include Xilinx’s Virtex[6], Virtex-E[7], Virtex-II[8], and
Virtex-II Pro[9], and Altera’s APEX 20KE, APEX 20KC, and MAX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

7000B[1]. All these FPGAs use a banked I/O organization such that
certain restrictions exist as to which I/O standards can be mixed in
the same I/O bank. Hence the user I/O objects must be placed care-
fully subject to the constraints imposed by the banked organization.
We call this the constrained I/O placement problem.

The constrained I/O placement problem for FPGA designs with
multiple I/O standards was previously considered in [2]. In [2], a
heuristic algorithm to automate the I/O placement process was pro-
posed and was reported to be being deployed in Xilinx’s placement
tool. Unfortunately, there is no guarantee that the heuristic can find
a feasible I/O placement solution even when feasible I/O placement
solutions exist. And the user is required to pre-place the I/O objects
manually in a feasible manner in the event that the heuristic fails to
place them. Moreover, the method proposed in [2] is incapable of
distinguishing those design instances that are inherently infeasible.
So the user may try in vain to pre-place the I/O objects when the
instance is actually infeasible.

In this paper, we present the first exact algorithm for the con-
strained I/O placement problem based on a compact integer linear
programming formulation. It automatically determines if a prob-
lem instance is feasible or not. And it always produce a feasible
I/O placement if the instance is feasible. We will use Xilinx Virtex-
E devices as the example in this paper.

The rest of the paper is organized as follows. First, in Sec-
tion 2.1, we describe the banked I/O organization and the con-
straints it imposes on I/O placement. Second, in Section 2.2, we
show the shortcomings of a previously proposed heuristic approach
for the constrained I/O placement problem and hence the need for
an exact algorithm. Then, in Section 3, we present an exact ap-
proach based on an elegant integer linear programming formulation
which can be efficiently solved. In Section 4, we suggest a new
FPGA placement flow for FPGAs with multiple I/O standards. Ex-
perimental results are reported in Section 5. Finally, we conclude
the paper in Section 6.

2. BACKGROUND

2.1 Banked I/O Organization
Different I/O standards differ in terms of their Vre f voltage and

Vcco voltage requirements. Firstly, some I/O standards require the
use of a differential amplifier input and an external reference volt-
age, Vre f , must be provided to the amplifier. Secondly, some I/O
standards require a specific supply voltage, Vcco, to power either
or both input and output blocks. Table 1 lists the requirements of
the twenty I/O standards supported by Virtex-E FPGAs. There are
two columns for Vcco, one labeled “Output Vcco” and the other “In-
put Vcco” because some standards such as CTT only require a Vcco
voltage for their output blocks but not for their input blocks. On

the other hand, the Vre f voltage (if any) of a standard is required
by the input objects of the standard but not by the output objects of
the standard. Naturally, bidirectional I/O objects of a standard have
the combined requirements of the input objects and output objects
of that standard. For example, since an input object of the CTT
standard requires a Vre f voltage of 1.50V but not a Vcco voltage,
and an output object of the same standard requires a Vcco voltage
of 3.3V but not a Vre f voltage, so a bidirectional I/O object of the
CTT standard requires a Vre f voltage of 1.50V and a Vcco voltage
of 3.3V.

Table 1: Vre f and Vcco requirements of the 20 I/O standards supported
by Virtex-E FPGAs.

I/O Output Input Input
standard Vcco (V) Vcco (V) Vre f (V)
LVTTL 3.3 3.3 N/A

LVCMOS2 2.5 2.5 N/A
LVCMOS18 1.8 1.8 N/A
SSTL3 I & II 3.3 N/A 1.50
SSTL2 I & II 2.5 N/A 1.25

GTL N/A N/A 0.80
GTL+ N/A N/A 1.0

HSTL I 1.5 N/A 0.75
HSTL III & IV 1.5 N/A 0.90

CTT 3.3 N/A 1.50
AGP-2X 3.3 N/A 1.32
PCI33 3 3.3 3.3 N/A
PCI66 3 3.3 3.3 N/A

BLVDS & LVDS 2.5 N/A N/A
LVPECL 3.3 N/A N/A

The commercial FPGAs that support multiple I/O standards[1,
6, 7, 8, 9] all use a banked I/O organization (see Fig. 1). The I/O
blocks of a bank are served by a single Vre f voltage and a single
Vcco voltage. Hence no two I/O objects that require differing Vre f
voltages or differing Vcco voltages can be put in the same bank. For
example, an output object of the LVTTL standard and an output
object of the LVCMOS2 standard will create a conflict if they are
put in the same bank because they require different Vcco voltages.
On the other hand, I/O objects of different standards can be put in
the same bank if there is no conflict in their Vre f voltage and Vcco
voltage requirements. For example, output objects of the LVTTL
standard, output objects of the CTT standard, and output objects
of the GTL standard can be mixed in the same bank with the Vcco
voltage of the bank configured to 3.3V.

bank 0 bank 1

bank 2
bank 3

bank 5 bank 4

ba
nk

 7
ba

nk
 6

Figure 1: Banked I/O organization.

The Xilinx FPGAs have one interesting architectural character-
istic explained below. Besides the regular user I/O pins, each bank
also has some Vcco pins to receive the Vcco voltage and some Vre f
pins to receive the Vre f voltage required by the bank. If a bank does

not need to access a Vre f voltage (i.e., none of the I/O objects as-
signed to it requires a Vre f voltage), the Vre f pins in the bank can
be used to accommodate user I/O signals instead. However, the
Vcco pins in a block are dedicated pins and can never be used to
accommodate user I/O signals. We note that our algorithm to be
presented in Section 3 is able to take advantage of the conditional
usage of Vre f pins to find a feasible I/O placement. For design in-
stances where there is a feasible solution only if the conditional us-
age of Vre f is taken into account, our algorithm is powerful enough
to compute such a solution.

2.2 Previous Algorithm
Due to the various constraints described in Section 2.1, assigning

user I/O objects to the I/O banks to obtain a feasible I/O placement
is a non-trivial problem. This problem was first considered in [2]
and a heuristic algorithm was proposed. Below we describe that
heuristic and discuss its shortcomings.

First, simulated annealing is applied to place the I/O objects
along with the logic blocks. The annealing process tries to mini-
mize a cost function that is a weighted sum of the wirelength cost,
the timing cost, and the banking violation cost. But the annealing
process cannot ensure that the resultant I/O placement will be fea-
sible. A weighted bipartite matching step is used to try to re-assign
the I/O objects in the I/O banks to repair minor banking rule viola-
tions of the annealing placement solution. The weighted bipartite
matching step attempts to perform I/O object re-assignment assum-
ing that the Vre f voltage and the Vcco voltage of a bank must remain
fixed to the the prevalent Vre f voltage and the prevalent Vcco volt-
age of the bank obtained at the end of the annealing process. (The
prevalent Vre f (Vcco) voltage of a bank is defined as the Vre f (Vcco)
voltage value required by the largest number of I/O objects assigned
to the bank.) However, it is not guaranteed that this step can suc-
cessfully re-assign the I/O objects in a feasible manner. Because
there may not exist a feasible I/O placement where the Vre f and
Vcco voltages of a bank are equal to the prevalent Vre f and Vcco
voltages of the bank obtained at the end of the annealing process.
Fig. 2 shows an example of such a case. Assume that there are only
two banks. Suppose the infeasible I/O placement in Fig. 2(a) is
obtained after simulated annealing where two class A1 I/O objects
requiring a Vcco voltage equals to VC1 and one class A2 I/O object
requiring a Vcco voltage equals to VC2 (VC2 6= VC1) are assigned to
each of banks 1 and 2. Hence the prevalent Vcco voltage of both
banks are VC1. It is easy to see that there is no feasible I/O place-
ment unless the prevalent voltages of the banks are changed, for
example, as in Fig. 2(b).

2AA

bank 1
1A11 AA

bank 2

(b)

(a)

bank 1

21A

211 AAA211 AAA

bank 2

(prevalent

(prevalent

)C1V=CCOV(prevalent)C1V=CCOV

V C2)V=CCOV(prevalent)C1V=CCO

Figure 2: (a) An infeasible I/O placement after simulated annealing.
(b) A feasible I/O placement with the prevalent voltages changed.

Since bipartite matching can fail to obtain a feasible re-assignment,
a greedy bin packing method is used in [2] as a last resort to re-
assign the I/O objects. The I/O objects are sequentially assigned in
decreasing order of packing difficulty. (I/O objects that require both

a Vre f voltage and a Vcco voltage are the most difficult, I/O objects
that require either a Vre f voltage or a Vcco voltage but not both are
less difficult, lastly I/O objects that neither require a Vre f voltage
nor a Vcco voltage are the least difficult.) When an I/O object is as-
signed, it is put into the bank with the highest affinity to it such that
it does not conflict with other I/O objects already assigned to the
bank. The affinity of a bank to an I/O object x is defined as the sum
of the number of I/O objects with the same Vre f voltage as x and the
number of I/O objects with the same Vcco voltage as x in the infea-
sible placement produced by simulated annealing. Unfortunately,
this last resort can still fail to yield a feasible I/O placement. One
example is shown in Fig. 3. Assume that there are only two banks
and the capacity of each bank is six. Suppose that I/O objects of
class A1 require a Vcco voltage equals to VC1 but do not require a
Vre f voltage. And I/O objects of class Bi (i = 1,2) require a Vre f
voltage equals to VRi but do not require a Vcco voltage. Hence all
I/O objects have the same level of difficulty. Assume that I/O ob-
jects of class A1 are assigned first, followed by I/O objects of class
B1, and then I/O objects of class B2. First, we assign the I/O ob-
jects of class A1, since affinityA1,bank1(= 4) > affinityA1,bank2(= 0),
all four I/O objects of class A1 are assigned to bank 1. Next we
assign the I/O objects of class B1, since affinityB1,bank2(= 2) >

affinityB1,bank1(= 1), all three I/O objects of class B1 are assigned
to bank 2. Finally, we assign the I/O objects of class B2. Though
affinityB2,bank1(= 3) > affinityB2,bank2(= 0), assigning the class B2
I/O objects to bank 2 will conflict with the class B1 I/O objects
already in bank 2, so we must assign the class B2 I/O objects to
bank 1. However, we are stuck after assigning two class B2 I/O ob-
jects to bank 1 since bank 1 has become full (see Fig. 3(b)). It is not
difficult to see that a feasible I/O placement (see Fig. 3(c)) does ex-
ist for the given instance though the greedy bin packing procedure
has failed.

2B21A B1A

1A

1A(b)

111A B1A

bank 2bank 1

(a)

B

B2B2B2B1B

B2B2

1

1

B1B1

B1B1

B

1

1A 1A

1A1A 1A

1A1A 1A

1A 1A

1A B B1 A1 21BB11AA(c)

Figure 3: (a) Result after simulated annealing. (b) Reassignment by
the greedy bin packing procedure where one class B2 object cannot be
assigned anywhere. (c) A feasible I/O placement.

From the above discussion, it is clear that the heuristic approach
proposed in [2] can easily fail to produce a feasible I/O placement
even after going through two fixing procedures. Moreover, the
heuristic method is incapable of distinguishing infeasible problem
instances from feasible ones. In the next section, we present an ex-
act method that guarantees to produce a feasible I/O placement if
the given instance is feasible. In the case that the given instance is
infeasible, it will give a “proof” that it is indeed infeasible.

3. A COMPACT ILP FORMULATION
It is well known that integer linear programming (ILP) is a ver-

satile approach for solving combinatorial optimization problems.
However, it is viable in practice only when the number of integer
variables is small or when the integer linear program has some spe-
cial structures so that it can be solved efficiently by some special-
ized method. Very often different ILP formulations can be found
for the same problem, some of which are more efficiently solvable
than others. Finding the best ILP formulation for a problem is not
always straightforward. In this section, we present a compact ILP
formulation for the constrained I/O placement problem. We will
use the Virtex-E FPGA family as an example. Based on a number
of observations, we are able to come up with a formulation that
requires no more than 32 integer variables (the number is much
smaller for most constrained I/O placement problem instances that
occur in practice). An integer linear program of such size can be
solved very quickly.

Perhaps the most straightforward ILP formulation for the con-
strained I/O placement problem is a 0-1 integer linear program de-
fined as follows. First, define a 0-1 integer variable yik for each I/O
object i and bank k where yik = 1 if and only if I/O object i is as-
signed to bank k. Second, formulate the capacity constraint for each
bank (number of I/O objects assigned to a bank must not exceed the
capacity of the bank), the assignment constraint for each I/O object
(an I/O object must be assigned to exactly one bank), and the com-
patibility constraints of the I/O objects (I/O objects with incompat-
ible Vcco or Vre f voltages cannot be assigned to the same bank), in
terms of yik’s. Then the I/O placement problem is feasible if and
only if the corresponding ILP is feasible. (Alternatively, we can
modify the assignment constraint such that each I/O object must be
assigned to at most one bank, and try to maximize the number of
I/O objects that are assigned.) However, since there are hundreds
of I/O objects and eight banks, this ILP formulation requires thou-
sands of integer variables which is not computationally feasible to
solve. In the following, we will present a completely different ILP
formulation which is much more elegant and compact by making a
number of important observations.

First, notice that we can classify the I/O objects into four types.
(i) I/O objects that require a Vcco voltage but not a Vre f voltage.
(ii) I/O objects that require a Vre f voltage but not a Vcco voltage.
(iii) I/O objects that require both a Vcco voltage and a Vre f voltage.
(iv) I/O objects that require neither a Vcco voltage nor a Vre f volt-
age. The classification of the I/O objects supported by the Virtex-E
FPGAs is shown in Table 2.

Table 2: Classification of I/O objects supported by Virtex-E FPGAs.
I/O I/O object

standard Input Output Bidirectional
LVTTL i i i

LVCMOS2 i i i
LVCMOS18 i i i
SSTL3 I & II ii i iii
SSTL2 I & II ii i iii

GTL ii iv ii
GTL+ ii iv ii

HSTL I ii i iii
HSTL III & IV ii i iii

CTT ii i iii
AGP-2X ii i iii
PCI33 3 i i i
PCI66 3 i i i

BLVDS & LVDS iv i i
LVPECL iv i i

Furthermore, since there are four possible Vcco voltage levels (see
Table 1), we can divide the I/O objects of type (i) into four equiv-
alence classes A1,A2,A3, and A4. We denote the Vcco voltage used
by Ai as VCi (i = 1, . . . ,4). Similarly, since there are seven possible
Vre f voltage levels (see Table 1), we can divide the I/O objects of
type (ii) into seven equivalence classes B1 to B7. We denote the
Vre f voltage used by B j as VR j (j = 1, . . . ,7). Now, for I/O objects
of type (iii) which require both a Vcco voltage and a Vre f voltage,
there are 28 (= 4× 7) possible combinations since there are four
possible Vcco voltage levels and seven possible Vre f voltage levels.
Hence, we can divide the I/O objects of type (iii) into 28 equiva-
lence classes Ci j (i = 1, . . . ,4; j = 1, . . . ,7) where Ci j uses the same
Vcco voltage as Ai and the same Vre f voltage as B j. However, we
note that out of these 28 equivalence classes, all except five are
always empty since only five combinations of Vcco and Vre f can oc-
cur in practice by checking Table 1. We denote the set of the five
valid (i, j) index pairs as F . Finally, we define a single equivalence
class D for all I/O objects of type (iv). So there are a total of 17
possible equivalence classes of I/O objects.

We say that a class p is compatible with a class q if I/O objects
of class p and I/O objects of class q can be mixed in the same I/O
bank (i.e., they do not have any Vcco or Vre f voltage requirement
conflict). It is easy to see that the compatibility relation is reflexive
and symmetric. But note that it is not transitive. For example,
class A1 is compatible with class D, and class D is compatible with
class A2, but class A1 is not compatible with class A2. Finally, since
the compatibility relation is symmetric, it is legitimate to say “two
classes are compatible” or “two classes are incompatible”. The
following lemma summarizes for all distinct pairs of classes if they
are compatible or not.

LEMMA 1. (Class Compatibility)
(a) Classes Ai1 and Ai2 are incompatible for all i1 6= i2.
(b) Classes B j1 and B j2 are incompatible for all j1 6= j2.
(c) Classes Ai and B j are compatible for all i = 1, . . . ,4 and j =
1, . . . ,7.
(d) Classes Ai1 and Ci2 j are compatible if and only if i1 = i2.
(e) Classes B j1 and Ci j2 are compatible if and only if j1 = j2.
(f) Class D is compatible with any other class.

Proof:

(a) Suppose i1 6= i2, I/O objects of class Ai1 and I/O objects of
class Ai2 require two distinct Vcco voltages, hence cannot be
put in the same bank.

(b) Suppose j1 6= j2, I/O objects of class B j1 and I/O objects of
class B j2 require two distinct Vre f voltages, hence cannot be
put in the same bank.

(c) Since I/O objects of class Ai only require a Vcco voltage but
not a Vre f voltage, while I/O objects of class B j only require
a Vre f voltage but not a Vcco, they do not have any conflicting
voltage requirement and can be put into the same bank.

(d) I/O objects of class Ai1 use a Vcco voltage equals to VCi1 and
no Vre f voltage. I/O objects of class Ci1 j use a Vcco volt-
age equals to VCi2 . So they cannot have any Vre f voltage re-
quirement conflict. Finally, they do not have any Vcco voltage
requirement conflict if and only if VCi1 = VCi2 , i.e., i1 = i2.
Hence the result.

(e) I/O objects of class B j1 use a Vre f voltage equals to VR j1 and
no Vcco voltage. I/O objects of class Ci j2 use a Vre f voltage

equals to VR j2 . So they cannot have any Vcco voltage require-
ment conflict. Finally, they do not have any Vre f voltage re-
quirement conflict if and only if VR j1 = VR j2 , i.e., j1 = j2.
Hence the result.

(f) Since I/O objects of class D neither require a Vcco voltage
nor a Vre f voltage, they will not cause any conflict in voltage
requirement with I/O objects of any other class.

2

Now we are ready to present a compact integer linear program-
ming formulation for the constrained I/O placement problem. One
way to look at the problem is as follows. An I/O bank can be con-
figured with at most one Vcco voltage and at most one Vre f voltage.
Depending on the Vcco and Vre f voltage assignments, some classes
of I/O objects can be put in the bank while other classes cannot. We
say that a bank is of type Ti j (i = 1, . . . ,4; j = 1, . . . ,7) if it is con-
figured with a Vcco voltage equals to VCi and a Vre f voltage equals
to VR j. It is clear that only I/O objects of classes Ai, B j, Ci j , and
D can be put into a bank of type Ti j while I/O objects of any other
class cannot. The capacity of a type Ti j bank is U where U is the
number of regular user I/O pins in a bank. We need to distinguish
the banks that are not configured with a Vre f voltage, since the Vre f
pins of these banks can be used to accommodate user I/O objects as
noted in Section 2.1. We say that a bank is of type Ti (i = 1, . . . ,4)
if it is configured with a Vcco voltage equals to VCi but with no Vre f
voltage. The capacity of such a bank is U +R where U is the num-
ber of regular user I/O pins in the bank and R is the number of Vre f
pins in the bank. It is clear that only I/O objects of classes Ai and
D can be put into a bank of type Ti. On the other hand, we do not
have to specifically distinguish the banks that are not configured
with a Vcco voltage. Since a bank α configured with a Vre f voltage
equal to VR j but with no Vcco voltage can always be replaced by a
bank β configured with a Vre f voltage equal to VR j and some ar-
bitrary Vcco voltage (bank β has the same capacity as bank α and
every I/O object allowable in bank α is also allowable in bank β).
Hence, we have to determine how many banks of each type Ti/Ti j
(i = 1, . . . ,4; j = 1, . . . ,7) is needed in order to minimize the total
number of banks required to accommodate all the I/O objects of
a design instance. A design instance is feasible if and only if the
minimum number of banks required is no more than 8 which is the
number of I/O banks available on a device.

The parameters of the problem are defined as follows:

U = number of regular user I/O pins per bank.

R = number of Vre f pins per bank.

|Ai| = no. of class Ai I/O objects (i = 1, . . . ,4).

|B j| = no. of class B j I/O objects (j = 1, . . . ,7).

|Ci j| = no. of class Ci j I/O objects ((i, j) ∈ F).

|D| = number of class D I/O objects.

Given a constrained I/O pin placement problem instance, the values
of U , R, |Ai|’s, |B j|’s, |Ci j|’s, and |D| are all known.

The variables whose values need to be determined are:

ai = no. of class Ai I/O objects assigned to a bank of

type Ti(i = 1, . . . ,4).

ai j = no. of class Ai I/O objects assigned to a bank of

type Ti j(i = 1, . . . ,4; j = 1, . . . ,7).

bi j = no. of class B j I/O objects assigned to a bank of

type Ti j(i = 1, . . . ,4; j = 1, . . . ,7).

di = no. of class D I/O objects assigned to a bank of

type Ti(i = 1, . . . ,4).

di j = no. of class D I/O objects assigned to a bank of

type Ti j(i = 1, . . . ,4; j = 1, . . . ,7).

xi = no. of type Ti banks (i = 1, . . . ,4).

xi j = no. of type Ti j banks (i = 1, . . . ,4; j = 1, . . . ,7).

Notice that all class Ci j I/O objects must be assigned to a bank of
type Ti j, hence the number of class Ci j I/O objects assigned to a
bank of type Ti j is always equal to |Ci j|(i = 1, . . . ,4; j = 1, . . . ,7).
The complete integer linear program is presented below.

M :

min
4

∑
i=1

xi +
4

∑
i=1

7

∑
j=1

xi j

s.t. ai +
7

∑
j=1

ai j = |Ai| ∀i = 1, . . . ,4

4

∑
i=1

bi j = |B j| ∀ j = 1, . . . ,7

4

∑
i=1

di +
4

∑
i=1

7

∑
j=1

di j = |D|

ai +di ≤ (U +R)xi ∀i = 1, . . . ,4

ai j +bi j + |Ci j|+di j ≤ Uxi j ∀i = 1, . . . ,4; j = 1, . . . ,7

ai,ai j,bi j,di,di j,xi,xi j ≥ 0

xi,xi j are integers.

The value of the objective function is equal to the total number
of banks used. The first constraint expresses the fact that class Ai
I/O objects can be assigned to banks of types Ti,Ti1, . . . ,Ti7 only.
The second constraint expresses the fact that class B j I/O objects
can be assigned to banks of types T1 j, . . . ,T4 j only. The third con-
straints expresses the fact that class D I/O objects can be assigned
to banks of any type. The fourth constraints expresses the fact that
the number of I/O objects assigned to banks of type Ti must be less
than or equal to the number of type Ti banks times the number of
usable I/O pins in a type Ti bank. The fifth constraints expresses
the fact that the number of I/O objects assigned to banks of type Ti j
must be less than or equal to the number of type Ti j banks times the
number of usable I/O pins in a type Ti j bank. The given I/O place-
ment problem instance is feasible if and only if ILP M is feasible
and has an optimal objective function value less than or equal to 8.

We note that we have deliberately left out the integral constraints
for ai,ai j,bi j,di,di j in our integer program formulation. In the fol-
lowing lemma, we prove that we can still obtain an optimal solution
for which all ai,ai j,bi j,di,di j,xi,xi j are integers by imposing inte-
ger constraints on xi,xi j only. This observation is an important one
since it greatly reduces the number of integer variables in our ILP
formulation.

LEMMA 2. The ILP M always has an all integral optimal so-
lution (i.e., all ai,ai j,bi j,di,di j , xi, xi j are integral).

Proof: First, we show that the ILP is always feasible. It is easy to
see that we can always assign all I/O objects into banks without any
Vcco or Vre f voltage conflict by using a sufficiently large number of
banks. For example, we can assign all I/O objects of class Ai to
banks of type Ti (i.e., ai = |Ai|, and ai j = 0 for j = 1, . . . ,7), assign
all I/O objects of class B j to banks of type T1 j (i.e., b1 j = |B j|,
and bi j = 0 for i 6= 1), assign all I/O objects of class D to banks
of type T1 (i.e., d1 = |D|, and di = 0 for i 6= 1, and di j = 0 for

i = 1, . . . ,4; j = 1, . . .7). Then we need
⌈

|A1|+|D|
U+R

⌉

banks of type

T1 (i.e., x1 =
⌈

|A1|+|D|
U+R

⌉

),
⌈

|Ai|
U+R

⌉

banks of type Ti for i 6= 1 (i.e.,

xi =
⌈

|Ai|
U+R

⌉

for i 6= 1),
⌈

|B j|
U

⌉

banks of type T1 j (i.e., x1 j =
⌈

|B j|
U

⌉

)

and no bank of type Ti j for i 6= 1 (i.e., xi j = 0 for i 6= 1). Hence the
ILP M is always feasible.

Second, we show that there always exists an all integral optimal
solution. Suppose the ILP has an optimal solution for which xi = Xi
and xi j = Xi j where Xi and Xi j denote some constants. It is clear
that Xi and Xi j are some integer constants because of the presence
of the integer constraints on xi,xi j in ILP M . Hence we have

ai +
7

∑
j=1

ai j = |Ai| ∀i = 1, . . . ,4

4

∑
i=1

bi j = |B j| ∀ j = 1, . . . ,7

4

∑
i=1

di +
4

∑
i=1

7

∑
j=1

di j = |D|

ai +di ≤ (U +R)Xi ∀i = 1, . . . ,4

ai j +bi j +di j ≤ UXi j −|Ci j| ∀i = 1, . . . ,4; j = 1, . . . ,7

The above can be viewed as a transportation problem[5]. In par-
ticular, the transportation problem has source nodes Ti (i = 1, . . . ,4)
and Ti j (i = 1, . . . ,4; j = 1, . . . ,7), and sink nodes Ai (i = 1, . . . ,4),
B j (j = 1, . . . ,7), and D . The supply at source node Ti is (U +
R)Xi (i = 1, . . . ,4) and the supply at source node Ti j is UXi −|Ci j|
(i = 1, . . . ,4; j = 1, . . . ,7). The demand at sink node Ai is |Ai|
(i = 1, . . . ,4), the demand at sink node B j is |B j| (j = 1, . . . ,7),
and the demand at sink node D is |D|. Shipment is only possi-
ble from Ti to Ai or D (i = 1, . . . ,4), and from Ti j to Ai or B j or
D (i = 1, . . . ,4; j = 1, . . . ,7). The transportation problem is to de-
termine a feasible way of shipment to satisfy the demands of the
sink nodes by the supplies of the source nodes.1 The variable ai
denotes the amount of shipment from Ti to Ai (i = 1, . . . ,4), ai j
denotes the amount of shipment from Ti j to Ai (i = 1, . . . ,4; j =
1, . . . ,7), bi j denotes the amount of shipment from Ti j to B j (i =
1, . . . ,4; j = 1, . . . ,7), di denotes the amount of shipment from Ti to
D (i = 1, . . . ,4), di j denotes the amount of shipment from Ti j to D
(i = 1, . . . ,4; j = 1, . . . ,7). It is well known that for any transporta-
tion problem instance with integral supplies at the source nodes and
integral demands at the sink nodes, there is always an integer fea-
sible solution (i.e., all ai,ai j,bi j,di,di j are integers) if the instance
is feasible. Hence the desired result follows. 2

1The general transportation problem is to determine a feasible way
of shipment incurring the smallest transportation cost when ship-
ment between different pairs of source and sink have different unit
transportation costs. Here we simply assume that the unit trans-
portation cost between a pair of source and sink is 1 if shipment
between them is allowed, or is ∞ otherwise.

We have a few remarks about our ILP formulation.

1. The size of ILP M is independent of the number of I/O ob-
jects to be placed or the number of banks in the FPGA.

2. The maximum number of integer variables required by our
formulation is 32 (4 xi’s and 28 xi j’s) which occurs only
when a design instance uses all four distinct Vcco voltages
and seven distinct Vre f voltages. For a design instance that
uses I(≤ 4) distinct Vcco voltages and J(≤ 7) distinct Vre f
voltages, the actual number of integer variables required is
I + I · J(≤ 32) and the number of constraints (excluding the
non-negativity constraints and integer constraints) is 2I +J +
I · J +1(≤ 44).

3. We are able to model the conditional usage of the Vre f pins
in our ILP approach succinctly. However, handling the con-
ditional usage of the Vre f pins is likely to be a challenge for
other approaches.

4. The proof of Lemma 2 suggests that solving the ILP M by
any ILP solver based on the simplex algorithm [4] will al-
ways yield an integer optimum solution since it has the struc-
ture of a transportation problem.

5. The proof of Lemma 2 also suggests that instead of using
a general ILP solver to solve the ILP M , we may develop a
specialized branch and bound algorithm that employs a trans-
portation problem procedure to solve it.

If the optimal objective function value of M is greater than 8,
then there is no feasible solution to the given constrained I/O place-
ment problem instance. Otherwise, let a∗i , a∗i j , b∗i j , d∗i , d∗i j , x∗i , x∗i j

be an optimal solution of M . A feasible I/O placement can be
obtained by arbitrarily selecting x∗i banks on the FPGA to be con-
figured to type Ti and x∗i j banks on the FPGA to be configured to
type Ti j , and then arbitrarily select a∗i of the class Ai objects to as-
sign to the I/O banks configured to type Ti and select a∗i j of the class
Ai objects to assign to the I/O banks configured to type Ti j , etc.

4. PLACEMENT OF CORE LOGIC AND I/O
OBJECTS

[2] suggested the following placement flow for FPGAs with mul-
tiple I/O standards. First, the core logic and the I/O objects are
placed simultaneously by applying simulated annealing. Then a
weighted bipartite matching procedure or a greedy bin packing pro-
cedure is applied to re-place the I/O objects to fix the I/O banking
rule violations if possible. When both procedures fail, the user
needs to manually re-place the I/O objects. The shortcoming of
this flow is that it spends a large amount of effort in the simulated
annealing process to optimize the timing/wirelength only to yield
an infeasible solution most of the time. The timing/wirelength will
unavoidably be increased when the I/O objects are re-placed.

Here we propose an alternative flow. In our flow, a feasible place-
ment of I/O objects is computed first to ensure feasibility, and then
it works towards optimality in timing/wirelength. Note that our
constrained I/O placement algorithm determines how many banks
of each type Ti/Ti j are needed, but there is freedom in choosing
which banks on the FPGA are configured to type Ti/Ti j. There is
also freedom in permuting the placement of I/O objects within a
bank. So we may first obtain an initial feasible I/O placement as
described at the end of Section 3. Then we can apply simulated
annealing to place the core logic and re-distribute the I/O objects
at the same time for wirelength and/or timing optimization. We

only need to ensure that the I/O objects are re-distributed in such
a way that no I/O banking rule violation will be introduced in the
process. For example, the following types of move involving the
I/O objects can be used. (1) Swapping any two banks of I/O ob-
jects. (2) Exchanging the positions of any two I/O objects within
the same bank. (3) Moving an I/O object to a vacant position within
the same bank. (4) Exchanging the positions of any two I/O objects
of the same class. Compared with [2], our search space is much
smaller and only consists of feasible placement solutions, so no
time is wasted in searching through infeasible placement solutions.
Finally, a weighted bipartite matching procedure similar to that in
[2] can be applied after simulated annealing to further optimize the
wirelength and/or timing without changing the prevalent Vcco and
Vre f voltages of each bank.

5. EXPERIMENTAL RESULTS
In order to verify the effectiveness of our integer linear program

approach to the constrained I/O placement problem, we tested it
extensively on a large number of large test cases. We used a non-
commercial ILP solver[3]2 to solve the integer linear programs in
our experiments.

We note that in general the difficulty of a constrained I/O place-
ment instance increases with the number of I/O objects to be placed,
the ratio of the number of I/O objects to the I/O capacity of the
FPGA, and the numbers of distinct Vcco voltages and distinct Vre f
voltages used. In order to thoroughly test our algorithm under high
stress conditions, we generated test cases with between 640 and
800 I/O objects and assumed that they are placed on a FPGA with
100 regular user I/O pins and 16 Vre f pins per bank. Moreover, to
make the test cases as difficult as possible we assumed that all I/O
objects must require a Vcco voltage or a Vre f voltage or both, since
I/O objects that require neither a Vcco voltage nor a Vre f voltage are
easy to place.

We generated a hundred instances that use two distinct Vcco volt-
ages and two distinct Vre f voltages each. Then we generated an-
other hundred more difficult instances that use three distinct Vcco
voltages and four distinct Vcco voltages each. Lastly, for theoretical
interest we also generated a hundred extremely difficult instances
that use four distinct Vcco voltages and seven distinct Vre f voltages
each. The experiments were conducted on a 1.8GHz Pentium 4.
We report both the average running time and the maximum run-
ning time for the three batches in Table 3. The numbers of feasible
and infeasible instances in each batch are reported in the last col-
umn of the table. We can see that for practical design instances
(batches 1 and 2), the banked I/O organization usually does not
preclude a feasible I/O placement solution. For practical design in-
stances, our approach takes no more than a few seconds to find a
feasible I/O placement or determine that no feasible I/O placement
exists. As expected, instances that use more distinct Vre f voltages
and Vcco voltages are more likely to be infeasible. The majority of
the instances in batch 3 are infeasible.

Table 3: Results of experiment 1.
#Vcco/ Avg. time Max. time #feasible
#Vre f (s) (s) #infeasible

Batch 1 2/2 0.01 0.01 98:2
Batch 2 3/4 0.22 2.46 76:24
Batch 3 4/7 130.79 1929.66 9:91

One advantage of our ILP formulation for the constrained I/O

2[3] is based on the simplex algorithm.

placement problem is that its size is independent of the number of
I/O objects to be placed. Hence it can be applied even for very large
designs. We did a second experiment in which we generated test
cases with between 1280 and 1600 I/O objects and assumed that
they are placed on a FPGA with 200 regular user I/O pins and 32
Vre f pins per bank. Again we generated three batches of test cases
as in the first experiment. The results are reported in Table 4. We
can see that though the problem size has been doubled compared to
the first experiment, the running time is virtually unaffected.

Table 4: Results of experiment 2.
#Vcco/ Avg. time Max. time #feasible:
#Vre f (s) (s) #infeasible

Batch 4 2/2 0.01 0.02 100:0
Batch 5 3/4 0.20 2.01 74:26
Batch 6 4/7 106.33 1509.33 12:88

We note that we were unable to compare with the experimental
results in [2] because we did not have access to the five circuits
used in [2] which were from Xilinx’s customers.

6. CONCLUSIONS
We presented an elegant integer linear programming formulation

for the constrained I/O placement problem for FPGAs that support
multiple I/O standards. Unlike the method in [2], ours can auto-
matically determine if a design instance is feasible or not. And
it always computes a feasible I/O placement when an instance is
feasible. Moreover, the numbers of variables and constraints of
our integer linear programming formulation are independent of the
number of I/O objects to be placed, hence it can comfortably han-
dle very large designs. Extensive experimental results confirmed
its efficiency in practice.

Acknowledgement
We would like to thank Jason Anderson for answering our inquiry
about the experimental results in [2].

7. REFERENCES
[1] Altera Corp., “Using Selectable I/O Standards in APEX

20KE, APEX 20KC & MAX 7000B Devices”, Application
Note 117, Dec. 2001.

[2] J. Anderson, J. Saunders, S. Nag, C. Madabhushi, and R.
Jayaraman, “A Placement Algorithm for FPGA Designs with
Multiple I/O Standards”, in Proc. of the 10th Int’l Conference
on Field-Programmable Logic and Applications, Lecture Notes
in Computer Science 1896 (R.W. Hartenstein and H.
Grünbacher, eds.), pp. 211-220, Springer-Verlag, Berlin, 2000.

[3] M. Berkelaar, lp solve, available by anonymous ftp from
ftp://ftp.es.ele.tue.nl/pub/lp solve.

[4] G.B. Dantzig, Linear Programming and Extensions, Princeton
University Press, N.J., 1963.

[5] H.A. Taha, Operations Research: An Introduction (5th
Edition), Macmillan Publishing Company, New York, 1992.

[6] Xilinx Inc., “VirtexTM 2.5V Field Programmable Gate
Arrays”, Product Data Sheet, July 2002.

[7] Xilinx Inc., “VirtexTM-E 1.8V Field Programmable Gate
Arrays”, Product Data Sheet, July 2002.

[8] Xilinx Inc., “Virtex-II 1.5V Field Programmable Gate
Arrays”, Advance Product Specification, July 2002.

[9] Xilinx Inc., “Virtex-II Pro Field Programmable Gate Arrays”, Ad-
vance Product Specification, June 2002.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

