
Parallel Placement for Field-Programmable Gate Arrays

Pak K. Chan
Department of Computer Engineering

University of California
Santa Cruz, California 95064 USA

pak@cse.ucsc.edu

Martine D.F. Schlag
Department of Computer Engineering

University of California
Santa Cruz, California 95064 USA

martine@cse.ucsc.edu

ABSTRACT
Placement and routing are the most time-consuming processes in
automatically synthesizing and configuring circuits for field-pro-
grammable gate arrays (FPGAs). In this paper, we use the nego-
tiation-based paradigm to parallelize placement. Our new FPGA
placer, NAP (Negotiated Analytical Placement), uses an analytical
technique for coarse placement and the negotiation paradigm for
detailed placement. We describe the serial algorithm and report re-
sults. We also report findings related to parallelizing NAP under
a multicast networking and multi-threaded operating system envi-
ronment; the parallel placer is tolerant to multicast packet loss as
well as out-of-order packet delivery. Our parallel placer exhibits
little performance degradation while attaining speedups of 2 using
3 processors.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—Gate ar-
rays; B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing; D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming

General Terms
Algorithms, Performance, Design

Keywords
Parallel placement, FPGAs, Timing-driven placement, Analytical
placement

1. INTRODUCTION
Placement and routing are the most time-consuming processes

in automatically synthesizing and configuring circuits for field–
programmable gate arrays (FPGAs). Given a circuit represented
as a connection of logic blocks, the problem of placement for FP-
GAs can be stated as that of assigning each logic block to a unique
physical resource while achieving a given overall performance. As
the capacity of FPGA devices as well as the size of FPGA users’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03,February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

circuits grow, there is a great demand to place designs rapidly.
There are several approaches towards this problem. One can sac-
rifice/trade the quality of the placement for the amount of time it
takes to place the circuit [9], or put effort into accelerating a se-
rial placer. The first approach seems to imply a user will know
the proper quality/time tradeoff of the placera priori. The authors
of [6] apply different techniques for parallelizing simulated anneal-
ing to accelerate VPR[2]. These techniques require the parallel
placer to run on expensive shared-memory machines (SGI Origin)
or specialized distributed memory multiprocessors (IBM-SP2).

In contrast, we approach this problem by designing a placer that
can be easily parallelized in a ubiquitous network environment.
Our algorithm combines an analytical technique [7, 10] with the
negotiation paradigm [4]. In the negotiation paradigm, blocks are
allowed to occupy the same location and the cost of overcommit-
ted locations are increased (history cost) until the conflicts are re-
solved. This technique is key to our parallelization since it allows
the algorithm to tolerate inaccuracy in each processor’s knowledge
of the current positions of the blocks.

We discuss our serial placement algorithm in Section 2, and
present some experimental results in Section 2.7. In Section 3, we
describe the parallel placement algorithm and its implementation
and provide speedup results. We ascertain the quality of the se-
rial placer, and use a network of low cost workstations to run the
parallelized placements. Each parallel placer has two threads; one
thread is responsible for communication via multi-cast while the
other thread is placing the blocks.

2. A NEW PLACEMENT ALGORITHM
In this section we present a placement method (NAP) which is

a hybrid of the well known analytical placement technique and the
negotiation method in an iterative framework. Analytical place-
ment is used to minimize the weighted quadratic displacement be-
tween blocks while the negotiation paradigm is used to resolve the
competition of blocks for locations. The negotiation method has
been shown to converge for bipartite matching problems such as
the problem of assigning blocks to locations [4].

Covering the netlist with trees allows us to calculate the analyt-
ical placement efficiently and hence repeatedly. It also provides
the means to partition the task for parallel processing. Figure 1
gives a high-level description of the serial algorithm. The input is
the netlist of I/O and logic blocks; the output is the assignment of
blocks to locations. For simplicity, we first assume that the posi-
tions of the I/O blocks are given and fixed, that is, the pads are
locked. Section 2.6 describes the case when pad locations are not
fixed.

NAP(netlist, FPGA architecture)

Cover the netlist with trees
while the placement is not feasible

for each treeTi

Calculate analytical placement~Vi of Ti
for each nodenj in Ti

find position fornj in window centered atVi, j minimizing
clone cost+history cost+sharedcost+ Iteration(mod2)∆wirelength

endfor
Update delays and criticalities

endfor
Update history costs

endwhile
end

Figure 1: Placement algorithm.

A B C

D E F

G H I

i1

i2

i3

i7 i8 i9

o1

o2

o3

i4 i5 i6

Figure 2: Netlist example.

A B C

F

i1

i7 i9

o1

o2

Di2 E F

G H Ii3

o2

o3

i4 i5 i6

E

Ai1

D

B

i8

Figure 3: Tree cover of netlist example.

2.1 Covering with trees
The first step is to cover the netlist with trees. The root of the tree

is an output I/O block, the leaves are I/O blocks and the internal
nodes are logic blocks. The tree covering must ensure that each
I/O block, logic block and source-to-sink connection appears in at
least one tree. This may require that blocks appear multiple times,
either as nodes in the same tree or separate trees. For this reason we
refer to the tree nodes asclonesof blocks. Figure 2 shows a netlist
corresponding to a 3×3 grid. Its tree cover is shown in Figure 3.
The edges are oriented from child to parent in Figure 3 which can
be opposite from the signal direction as is the case for the edge
from o1 to C in Figure 3.

Design IOs logic blocks edges clones trees
alu4 22 1522 5408 6243 8
apex2 41 1878 6692 8384 3
apex4 28 1262 4479 6528 19
des 501 1591 6110 8440 245
ex1010 20 4598 16078 26473 10
ex5p 71 1064 4002 8903 34
misex3 28 1397 4968 6343 43
pdc 56 4575 17193 28988 40
seq 76 1750 6193 7857 33
spla 62 3690 13808 24347 46
g50 200 2500 5100 6823 2

Table 1: Tree sizes.

Each source-to-sink connection (and hence block) must be rep-
resented in at least one tree, so that the delay of the circuit can be
properly optimized in the placement phase. But since the running
time of the placement phase depends on the number of clones in
the cover, the algorithm should try to minimize the total number
of clones. Minimizing the cover is in itself an NP-hard problem.
Since we wish to minimize the size of the cover principally to re-
duce the running time of the placement phase, the time spent on
generating the cover must be balanced against the goal. We use the
heuristic approach given in Figure 4.

The netlist is an acyclic graph since latches are decomposed into
input and output nodes. Hence the longest paths can be calculated
in linear time using the DAG ordering. The first path selected is the
minimum longest input-to-output path rather than the maximum;
using the maximum often results in a single large tree. After the
first path, the trees are created by adjusting the cost of the nodes
and edges so that we can find a path from the inputs with the most
missing (not yet covered) blocks and edges. Table 1 shows the size
and number of the trees in the covers produced for the benchmarks
used in our experiments.

2.2 Collapsing the Clones
In addition to the usual constraint that the blocks not overlap,

feasibility now also requires that each logic block’s clones have
been placed in a single location:collapsed. To achieve this we
calculate thecenter of gravityof the clones of each logic block (if
it has more than one clone). The distance from a clone to its block’s

Cover with Trees(netlist)

Calculate the longest path for each input to any output
B← 2∗ Number of nodes
T1← a minimum longest input to the output path
while there are missing nodes or edges

Set cost of missing nodes to−B
if there are no missing nodes

Set cost of missing internal edges to−B
else Set cost of missing internal edges to the cost of their source node
Calculate the minimum cost paths from each node to any output
Traverse a minimum cost path starting from the input with the minimum

pathcost until either an output or a node with positive path cost is
reached

if an output is reached
then create a new tree containing the traversed path
elsegraft the traversed path onto the tree at the final node

endwhile
Add any missing external edges onto the trees

end

Figure 4: Covering algorithm.

Figure 5: Three clones and their center of gravity: the small
dotted circle.

center of gravity is part of the cost function in fine placement (inner
for-loop) and is also used in the analytical placement as described
in Section 2.3. Figure 5 shows three clones and their center of
gravity (dotted node). Each clone is encouraged to move towards
the center.

To quickly calculate the center and determine if a logic block’s
clones have collapsed, we maintain two sums for each coordinate
and update them incrementally:

Lx =
n

∑
i=1

xi ,

and

Sx =
n

∑
i=1

x2
i

wherex1,x2, . . . ,xn are thex-coordinates for the block’s clones.Ly
andSy are likewise maintained for they-coordinates. We calculate
the center of gravity by dividingLx andLy by the number of clones.
Since the variance of the coordinates,

1
n

n

∑
i=1

(xi − x̄)2 =
1
n

(
n

∑
i=1

x2
i

)
− x̄2 =

1
n2 (nSx−L2

x)

will be 0 only when all the coordinates are identical, we can detect
in constant time whether a logic block has collapsed.

2.3 Analytical Placement
We use an analytical placement technique to determine a coarse

placement for each tree during each iteration. In principle, the ana-
lytical placement problem is to solve the matrix equation:

G·~v =~b

where~b is the vector of positions of the I/Os,~v represents positions
of the clones of the internal blocks, andG is the edge-weight matrix
of the graph. This computation can be interpreted as computing
the node voltages of a resistive network with the I/Os as current
sources, the edge-weights as conductances, and the positions of the
clones as node voltages [5]. Figure 6 shows the calculation for a
tree with 5 nodes and 5 I/Os. The conductance of each edge is
determined by the criticality of the edge. Because our graph is a
tree,~v can be calculated quickly in linear time by traversing the
tree in lieu of a numerical approach.

G also includes an edge for each clone to its center of gravity,
which has a fixed position during this calculation and so is treated
as an additional current source. The edge to the center of gravity
has conductance 0 initially, but its value is increased to help the
clones of a logic block collapse to a single location as the algorithm
progresses.

This analytical placement computation yields an optimal solu-
tion with respect to a weighted quadratic wirelength objective, but
the cells may overlap. A negotiation placement paradigm which
resolves these overlaps is discussed below.

2.4 Fine Placement
Fine placement of each clone is achieved by using the voltage

calculated as described above as the center of a window and select-
ing a location within the window which minimizes the cost func-
tion:

clone cost + history cost

+ sharedcost

+ Iteration(mod 2)∆wirelength

I/O

I/O

AI/O

I/O

I/O

1

7

7

8

9

4.65

6.13

additional force

6.82

7.06

center of gravity of A

6.71

Figure 6: Analytical placement. I/O blocks are current sources.
Each edge has resistance of one Ohm. Values on the nodes are
voltages.

clone cost is the distance to the logic block’s center of gravity.
Thehistory costof a location is increased at the end of every iter-
ation after which that location is over-committed. Thesharedcost
is the number of other logic blocks that currently occupy that loca-
tion (have at least one clone present). The weight of the shared and
clone components as well as the size of the window are adjusted as
the algorithm proceeds to achieve feasibility.

The spans of each net are maintained so that the change in wire-
length of the nets can be quickly evaluated. The centers of gravity
of the clones are used as the coordinates of the logic blocks for the
wirelength calculations.

The delays of all the edges (source-to-sink connections) are up-
dated after each tree has been placed, and their criticalities are up-
dated for use in the analytical placement. The delay of a source-to-
sink connection is the sum of the delays associated with a shortest
path through the routing architecture; in this case, the sum of the
delays for the pips, switches and wire segments.

2.5 Scaling for large array sizes
The algorithm is applied hierarchically by clustering the grid

locations into which the clones must be placed. For example, a
60×60 grid using a cluster size of 3 becomes a 20×20 grid with
each grid position (slot) capable of holding 9 logic blocks. This
improves the efficiency by allowing placement constraints to be re-
solved at a coarser level. All delay and wirelength calculations use
the full coordinate system; the coordinates of the grid position at
the center of the slot are used as the position for each clone in that
slot. Once feasibility or near feasibility is attained at the coarser
level, the current placement is expanded with each grid position
inheriting an interpolated version of the history of its slot. For the
first few iterations after expansion, clones are constrained to remain
within the slot boundaries in order to reestablish an equilibrium.

2.6 Moving I/Os
In the preceding sections we have assumed the positions of the

I/O blocks were given and fixed. This might be the case in prac-
tice, but when the placement of the I/Os is not constrained, their
placement should be determined as part of the placement optimiza-
tion. In order to calculate the analytical placement described in
Section 2.3 the I/O positions must be known.

Initial positions for the I/Os are calculated from the 2nd and 3rd

smallest eigenvectors of the Laplacian derived from the netlist [3].
The fanout netmodel was used to convert the netlist to a graph.1

1A net with f sinks was represented in the graph byf edges each

fixed pads moving pads
g50 x,y wl delay time x,y wl delay time

VPR 1.25 1.18 1164 14.23 1.15 1.99 1323 15.0
NAP 1.06 1.07 1128 17.35 1.10 1.16 1278 29.37

Table 3: Results of a50×50grid netlist with fixed and moving
pads. The optimal solution has wirelength0.98 0.98 and delay
999.

The two eigenvectors are used to provide a two-dimensional em-
bedding of the circuit. The embedding is first rotated so that the
maximum number of outputs are on the right and lower sides (in
the range[−135o,45o]) to match the direction of the architecture.
Each I/O is then projected to the boundary of the array preserving
its angle with respect to the the center of the embedding. If this po-
sition is occupied, the I/Os on either side (whichever requires less
shifting) are shifted to make room.

Inside the placement loop, positions of the I/Os are recalculated
every 50th iteration. The position which minimizes delay with re-
spect to the current positions of the logic blocks is determined. If
this position is occupied, the position with the least current occu-
pants within a small window is selected. If there is significant over-
lap after all I/Os have been considered, then the I/Os areflattened
to remove any overlaps.Flatteningconsists of examining each over
committed slot and shifting the I/Os on either side to make room
for the excess.

2.7 Performance of NAP
To evaluate our placement algorithm we ran NAP using the ar-

chitecture and benchmarks from the FPGA Place-and-Route Chal-
lenge [1] and compared the results with VPR version 4.3 run with
the path timing driven option. All ten combinational bench-
marks were placed by VPR. NAP was run with both fixed pad lo-
cations using the pad locations produced by VPR and also without
fixed pad locations. For each benchmark the array size is deter-
mined by the smallest square array that will accommodate both the
logic blocks and I/O pads (des is the only design for which the ar-
ray size is constrained by the number of I/O pads). The placements
are validated by a separate program which takes as input the place-
ment output file and also reports the wirelength and delay. Table 2
gives the results in term of wirelength, delay and running time in
minutes on a SUN Ultra 5 360Mhz. We also ran VPR and NAP
on a synthetic design for which the optimal wirelength and delay
is known: a grid of size 50×50 similar to the circuit in Figure 2.
Table 3 shows the results of VPR and NAP placing this design on a
50×50 array (100% full).

The results in Tables 2 and 3 are reported in terms of the addi-
tive delay model used in NAP. As VPR is optimizing a capacitive
delay model we also evaluated the placements using VPR with the
route only andtiming driven options. Before attempting to
route VPR reports the Estimated Critical Path; these results are re-
ported in Table 4 under the heading “Est.” The placements were
routed with the minimum number of tracks achieved in the FPGA
Place-and-Route Challenge [1] and as expected, none of them were
successfully routed as these placements were optimized for delay.
We also routed each placement with 20%, 50% and 100% addi-
tional tracks beyond the minimum [1] and report these results in
Table 4. A routing failure is indicated by RF. In Table 5, the results
from Table 4 are normalized to the best result achieved within each
routing experiment.

of weight 1/ f .

Design VPR NAP
Array Moving Pads Fixed Pads Moving Pads
size x,y wl delay time x,y wl delay time x,y wl delay time

alu4 40 3.35 2.62 352 11.84 3.42 2.78 318 8.36 3.34 2.90 361 9.23
apex2 44 4.06 3.59 412 22.21 4.12 3.69 376 9.13 3.92 3.98 437 10.19
apex4 36 5.25 3.99 330 13.44 4.86 4.15 342 6.99 4.19 4.81 396 13.80
des 63 4.11 3.90 377 20.58 4.28 4.06 458 6.33 5.21 4.77 369 6.17
ex1010 68 3.76 3.81 821 84.22 3.74 4.03 782 54.51 4.03 4.19 754 67.00
ex5p 33 5.45 5.22 300 7.24 5.37 5.28 312 27.91 5.03 5.73 300 16.70
misex3 38 3.91 3.40 369 10.23 3.83 3.62 303 6.12 3.75 3.70 309 6.08
pdc 68 4.89 5.21 728 90.37 4.90 5.18 609 69.09 4.84 5.23 676 62.61
seq 42 3.81 4.07 339 17.58 3.75 3.90 326 9.78 3.75 3.82 352 11.33
spla 61 4.02 4.02 590 59.77 4.38 4.08 553 52.31 3.91 4.51 562 46.82

Table 2: Results for VPR in timing mode and NAP in terms of wirelength, delay and running time in minutes. NAP was run both
with fixed pads (obtained from the VPR placement) and with moving pads starting with the spectral pad placement.

VPR NAP
Moving Pads Fixed Pads Moving Pads

Design Est. +20% +50% +100% Est. +20% +50% +100% Est. +20% +50% +100%

alu4 78.6 80.4 80.4 80.3 72.3 82.0 76.2 74.4 81.3 88.6 84.6 82.2
apex2 89.8 90.6 90.6 90.6 84.6 87.3 88.4 86.0 97.3 104.3 98.6 99.1
apex4 73.0 RF 88.3 73.0 75.3 RF 77.2 77.2 86.7 RF 96.3 87.9
des 82.6 82.9 82.9 83.5 98.1 98.5 98.4 98.5 80.6 83.5 82.0 82.0
ex1010 171.6 187.0 175.7 176.6 166.4 172.7 167.3 167.3 159.6 RF 165.5 161.7
ex5p 67.0 RF 68.5 68.5 68.8 100.7 70.6 70.6 68.7 RF 69.3 69.0
misex3 81.8 108.9 82.0 82.0 68.7 82.6 70.0 69.4 69.4 108.7 70.6 71.5
pdc 154.7 175.7 156.0 159.0 132.8 181.3 137.5 136.3 144.2 157.1 146.1 144.9
seq 75.3 80.4 76.6 76.6 73.1 105.3 78.4 74.5 77.3 104.1 79.8 81.0
spla 127.8 RF 129.1 128.5 120.0 RF 123.7 122.6 121.8 RF 124.2 125.5

Table 4: Results for VPR in timing mode and NAP in terms of critical path as measured by VPR. The estimated critical path is in
10−9 seconds, as well as the routed result with 20%, 50% and 100% more tracks than the minimum [1].

Est. +20% +50% +100%
design VPR NAPf NAPm VPR NAPf NAPm VPR NAPf NAPm VPR NAPf NAPm

alu4 1.09 1 1.12 1 1.02 1.1 1.06 1 1.11 1.08 1 1.1
apex2 1.06 1 1.15 1.04 1 1.19 1.02 1 1.12 1.05 1 1.15
apex4 1 1.03 1.19 RF RF RF 1.14 1 1.25 1 1.06 1.2
des 1.02 1.22 1 1 1.19 1.01 1.01 1.2 1 1.02 1.2 1
ex1010 1.08 1.04 1 1.08 1 RF 1.06 1.01 1 1.09 1.03 1
ex5p 1 1.03 1.03 RF 1 RF 1 1.03 1.01 1 1.03 1.01
misex3 1.19 1 1.01 1.32 1 1.32 1.17 1 1.01 1.18 1 1.03
pdc 1.16 1 1.09 1.12 1.15 1 1.13 1 1.06 1.17 1 1.06
seq 1.03 1 1.06 1 1.31 1.29 1 1.02 1.04 1.03 1 1.09
spla 1.06 1 1.01 RF RF RF 1.04 1 1 1.05 1 1.02

Table 5: Relative results in terms of critical path for VPR, NAP with fixed pins and NAP with moving pins. Each placer’s result is
divided by the minimum result within the experiment.

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

multiple threads on each host

HP switchIGMP

Figure 8: Multi-cast and Multi-threaded parallel processing.

3. PARALLEL VERSION
In the parallel version of our placement algorithm, each proces-

sor is assigned a subset of the trees to place. Each processor com-
municates the positions of the clones in its trees when they are mod-
ified. Hence each processor has information about the positions of
all of the clones necessary to calculate the positions of the clones
in its assigned trees. Figure 7 gives a high-level description of the
parallel algorithm.

The trees are allocated by sorting them into decreasing size and
allocating them one by one to the processor which currently has the
subset of smallest size. This is a static allocation.

Each processor keeps track of the iterations of every processor to
avoid getting too far ahead of the others (out of synch). When the
number of shared locations and uncollapsed blocks drops below a
certain threshold, a designated processor takes over and completes
the placement on its own. This is necessary for convergence of the
negotiation paradigm [4].

3.1 Communications aspects of P-NAP
In a negotiation-based algorithm, there are no constraints on the

number of tenants which can occupy a resource; instead the cost of
using a resource with multiple occupants is the mechanism used to
resolve resource conflicts. Our experience with our parallel router
has revealed that tight synchronization among the processors is
not required, as long as the costs are updated eventually and cor-
rectly [4].

Available technology to support inter-processor communication
exists at the computer network level and board level. Processors
communicate through “sockets” at the network level with loose
synchronization. Threads programming and corresponding oper-
ating system support are widely available to facilitate fine-grain
threads to communicate tightly. We exploit both of these oppor-
tunities in our placer.

Currently our parallel placer runs on loosely coupled SUN Ul-
tra 5 workstations. Each processor is assigned a subset of the tree
cover to place and the processors exchange messages to communi-
cate location changes of the clones. The negotiation paradigm tol-
erates a large degree of latency in the accuracy of this information,
since in all but the final phases of the algorithm this information is
used to evaluate the cost of resources; it’s not crucial to know that
12 rather than 8 clones want a particular location. Furthermore,
each processor only informs others of thechangeof the location
of a clone. This is a very important design feature of the parallel
placer and will be explained further. In order to complete place-
ment successfully, the algorithm does need to know with complete
accuracy the resource utilization in the final phases, and so one pro-
cessor takes over near the end.

Our current parallel implementation uses multi-casting for in-
terprocessor communication. Using IP multicasting (UDP sock-
ets) allows a processor to generate a single message which is then
broadcast at the switch level (almost) simultaneously to all of the
other processors (within a limited “scope”). The amount of traffic
is dramatically reduced since each update message now requires
only 1 message rather thanN−1 whereN is the number of proces-
sors [11]. The overhead involved in IP multicasting is about 4 times
less than unicast sockets. This feature helps the processors remain
in closer synchronization during the execution of the algorithm.

We have conducted experiments with the IPv4 multi-cast routing
and have experienced less than 1 percent drop in packets, but with
a ten-fold increase in speed. The round trip delay of a multi-cast
packet is about 0.25 msec, and all the processors receive the same
message approximately at the same time. This is in sharp contrast
to TCP uni-casting which is reliable but delivers with much larger
delay variations.

The main obstacle in using IP multicasting is its unreliable na-
ture. IP multicasting is unreliable because packets may be dropped
or arrive out-of-order. There is extensive research in the networking
area related to recovery of packet losses in multicast networking.
The recovery techniques generally involve timeout, retransmission
as well as sending ACK and NACK mechanisms [11].

Our solution to this reliability problem is to take advantage of the
inherent tolerance in the negotiation paradigm. First, each packet
has a sequence number. Hence out-of-order packets are detected
and tolerated temporarily and subsequently forgiven if they don’t
involve movements of the same clone, as illustrated in Figure 9.
Due to the decomposition of the netlist into trees and the fact that
clones are placed as the trees are traversed, the chance that a series
of out-of-order packets involve the same clone is almost nil. Fur-
ther, minor packet loss is harmless if a subsequent packet related
to the same clone is received; as illustrated in Figure 9. So far,
we have observed IP multicast reliability problems only in the first
category with no fatal effects.

At a finer-grain level, our parallel placer is implemented as mul-
tiple threads. There is one programming thread that is responsible
for receiving, checking, and buffering incoming packets [8]. There
is another main thread that is responsible for placement and sending
the updates out as packets. This thread partitioning assures mini-
mum interprocess communication overhead and improves the ro-
bustness of the parallel placer. The access and update of the packet
buffer is coordinated using “locks” for mutual exclusion.

3.2 Results of parallel NAP
In P-NAP, processors communicate with each other by sending

and receiving messages. The network serves as the medium for
transferring messages. There is no guarantee regarding the order or
timing of the arrival of the messages to a processor. This is a source
of nondeterminism in the parallel placer. Table 6 shows results of
P-NAP using multiple processors. Since a processor computes in
nanoseconds and each communication takes milliseconds, it is not
surprising to see that speedups are more prominent in the larger de-
signs (spla, pdc) than in the smaller ones. Although our parallel
placer has not been fine-tuned, we are glad to see that it converges
for the very dense circuitex1010. Typically, we observe no sub-
stantial degradation of delays and wirelengths; one surprise is that
P-NAP yields better delay than the serial NAP for some circuits.

4. CONCLUSIONS
We have developed a negotiated-analytical placement algorithm

(NAP) and implemented a serial placer. The NAP algorithm has
been parallelized to run on a network of workstations. Experiments

P-NAP(netlist, FPGA architecture)

Cover the netlist with trees
Allocate trees to processors
while the placement is not feasible

for each treeTi assigned to me
Calculate analytical placement~Vi of Ti
for each nodenj in Ti

find position fornj in window centered atVi, j minimizing
clone cost+history cost+sharedcost+ Iteration(mod 2)∆wirelength

if the position of the node changed
send out the new position of the node

endfor
Read and process all of the messages in the buffer
Update delays and edge weights
Update clone centers
Send out the current delay

endfor
Update history costs
Send out a message with the current iteration
while(my iteration is> avg iteration+2)

Read and process messages
endwhile

endwhile
end

Figure 7: Parallel placement algorithm.

Design 1 proc 2 proc 3 proc
x,y wl delay time x,y wl delay time x,y wl delay time

alu4 3.42 2.78 318 8.36 3.46 2.77 340 5.63 3.46 2.90 343 4.68
apex2 4.12 3.69 376 9.13 4.08 3.79 386 6.69 4.09 3.89 410 6.12
apex4 4.86 4.15 342 6.99 4.99 4.16 339 5.69 4.89 4.26 354 4.54
des 4.28 4.06 458 6.33 5.06 4.80 398 3.85 4.99 4.82 410 3.96
ex1010 3.74 4.03 782 54.51 3.95 4.42 776 47.81 3.85 4.19 758 44.30
ex5p 5.37 5.28 312 27.91 5.89 5.70 298 21.26 5.96 5.85 291 22.5
misex3 3.83 3.62 303 6.12 3.93 3.86 309 5.41 4.04 3.76 306 5.03
pdc 4.90 5.18 609 69.09 4.98 5.25 650 40.78 4.98 5.32 657 37.65
seq 3.75 3.90 326 9.78 3.87 3.96 350 7.92 3.80 3.91 339 7.61
spla 4.38 4.08 553 52.31 4.47 4.22 572 30.48 4.50 4.08 533 26.53

Table 6: Results of multiple processors running P-NAP in terms of wirelength, delay and running time in minutes. P-NAP was run
with fixed pads (obtained from the VPR placement).

IGMP

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

HP switch

A
B

C

B

C

A
out-of-order delivery

IGMP

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

SUN ultra

T2

T1

HP switch

A
B

C

B

C

A

A

packet loss

Figure 9: Packet delivered out-of-order and packet loss.

have demonstrated that our serial as well as parallel placers per-
form well with benchmark circuits. Challenges ahead include fine-
tunning the parallel placer to attain more speedup and controlling
the non-determinism.

5. ACKNOWLEDGMENTS
The authors thank Xilinx, UC MICRO, and SUN Microsystems

for their support.

6. REFERENCES
[1] V. Betz. FPGA Place-and-Route Challenge.

http://www.eecg.toronto.edu/~vaughn/challenge

/challenge.html.
[2] V. Betz and J. Rose. VPR: A New Packing, Placement and

Routing Tool for FPGA Research. InSeventh International
Workshop on Field Programmable Logic and Applications,
pages 213–222, London, England, 1997.

[3] P. K. Chan, M. Schlag, and J. Y. Zien. Spectralk-way
ratio-cut partitioning and clustering. InAdvanced Research
in VLSI, 1993 University of Washington Symposium on
Integrated Systems, pages 123–142, MIT Press, Cambridge,
MA, March 15–16 1993.

[4] P. K. Chan, M. D. F. Schlag, C. Ebeling, and L. McMurchie.
Distributed-Memory Parallel Routing for
Field-Programmable Gate Arrays.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
CAD-19(8):850–862, August 2000.

[5] C.-K. Cheng and E. S. Kuh. Module placement based on
resistive network optimization.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
CAD-3(3):218–225, July 1984.

[6] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee.
Parallel algorithms for FPGA placement. InThe Great Lakes
Symposium on VLSI, Chicago, March 2000.

[7] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich.
GORDIAN: VLSI Placement by Quadratic Programming
and Slicing Optimization.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
10(3):356–365, Mar. 1991.

[8] S. J. Norton and M. D. DiPasquale.Thread time : the
multithreaded programming guide. Prentice Hall, 1996.

[9] Y. Sankar and J. Rose. Trading quality for compile time:
Ultra-fast placement for FPGAs. InProceedings of
International ACM/SIGDA Symposium on
Field-Programmable Gate Arrays, pages 157–166,
Monterey, California, USA, Feb. 1999.

[10] M. Senn, U. Seidl, and F. Johannes. High quality
deterministic timing driven FPGA placement. In 10th

International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, Monterey, California, February
2002. Poster Abstract.

[11] W. R. Stevens.UNIX Network Programming, 2nd ed.
Prentice Hall, 1999.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

