Parallel Placement for Field-Programmable Gate Arrays

Pak K. Chan Martine D.F. Schlag
Department of Computer Engineering Department of Computer Engineering
University of California University of California
Santa Cruz, California 95064 USA Santa Cruz, California 95064 USA
pak@cse.ucsc.edu martine@cse.ucsc.edu
ABSTRACT circuits grow, there is a great demand to place designs rapidly.

Placement and routing are the most time-consuming processes in Nere are several approaches towards this problem. One can sac-
rifice/trade the quality of the placement for the amount of time it

automatically synthesizing and configuring circuits for field-pro- 2= - .
Y 3y d guring P takes to place the circuit [9], or put effort into accelerating a se-

grammable gate arrays (FPGAS). In this paper, we use the nego- Lol The fi h imol il Kk
tiation-based paradigm to parallelize placement. Our new FPGA rial placer. e first approach seems to imply a user will know

placer, NAP (Negotiated Analytical Placement), uses an analytical € Proper quality/time tradeoff of the placpriori. The authors
technique for coarse placement and the negotiation paradigm for°f [6] apply different techniques for parallelizing simulated anneal-
detailed placement. We describe the serial algorithm and report re-IN9 10 accelerate VPR([2]. These techniques require the parallel

sults. We also report findings related to parallelizing NAP under P!acer to run on expensive shared-memory machines (SGI Origin)
a multicast networking and multi-threaded operating system envi- or specialized distributed memory multlprocessprs_(lBM-SPZ).

ronment; the parallel placer is tolerant to multicast packet loss as In contrast, we apprpach .th'S pro_ble_m by designing a placer that
well as out-of-order packet delivery. Our parallel placer exhibits ca" be easily parallelized in a ubiquitous network environment.

little performance degradation while attaining speedups of 2 using Our a_lgc_)rithm combines an analytical_te_chnique [_7’ 10] with the
3 processors. negotiation paradigm [4]. In the negotiation paradigm, blocks are

allowed to occupy the same location and the cost of overcommit-
ted locations are increasekigtory_cos) until the conflicts are re-

Categories and Subject Descriptors solved. This technique is key to our parallelization since it allows

B.7.1 [Integrated Circuits]: Types and Design StylesGate ar- the algorithm to tolerate inaccuracy in each processor’s knowledge

rays B.7.2 [Integrated Circuits]: Design Aids—Placement and of the current positions of the blocks. o _

routing; D.1.3 [Programming Techniqueg: Concurrent Program- We discuss our serial placement algorithm in Section 2, and

ming—Distributed programming present some experimental results in Section 2.7. In Section 3, we
describe the parallel placement algorithm and its implementation
and provide speedup results. We ascertain the quality of the se-

Gen_eral Terms _ rial placer, and use a network of low cost workstations to run the

Algorithms, Performance, Design parallelized placements. Each parallel placer has two threads; one
thread is responsible for communication via multi-cast while the

Keywords other thread is placing the blocks.

Parallel placement, FPGAs, Timing-driven placement, Analytical

placement

1. INTRODUCTION 2. ANEW PLACEMENT ALGORITHM

Placement and routing are the most time-consuming processes N this section we present a placement method (NAP) which is
in automatically synthesizing and configuring circuits for field— @& hybrid of the well known analytical placement technique and the
programmable gate arrays (FPGAs). Given a circuit representednegm!at'on metho_d_ln_ an iterative framework. _ An_alytlcal place-
as a connection of logic blocks, the problem of placement for FP- Ment is used to minimize the weighted quadratic displacement be-
GAs can be stated as that of assigning each logic block to a uniquefWeen blocks while the negotiation paradigm is used to resolve the
physical resource while achieving a given overall performance. As competition of blocks for locations. The negotiation method has

the capacity of FPGA devices as well as the size of FPGA users’ been shown to converge for bipartite matching problems such as
the problem of assigning blocks to locations [4].

Covering the netlist with trees allows us to calculate the analyt-

ical placement efficiently and hence repeatedly. It also provides

Permission to make digital or hard copies of all or part of this work for the means to partition the task for parallel processing. Figure 1
personal or classroom use is granted without fee provided that copies aregives a high-level description of the serial algorithm. The input is
not made or distributed for profit or commercial advantage and that copies the netlist of /0O and logic blocks; the output is the assignment of
bear this notice and the full citation on the first page. To copy otherwise, to plocks to locations. For simplicity, we first assume that the posi-
republish, to post on servers or to redistribute to lists, requires prior specific tions of the I/0 blocks are given and fixed, that is, the pads are

permission and/or a fee. . - .
FPGA03, February 23-25, 2003, Monterey, California, USA. locked. Section 2.6 describes the case when pad locations are not

Copyright 2003 ACM 1-58113-651-X/03/0002%$5.00. fixed.

NAP(netlist, FPGA architecture)

Cover the netlist with trees
while the placement is not feasible
for eachtreeT;
Calculate analytical placemeﬁitof Ti
for eachnoden; in T
find position forn; in window centered af ; minimizing
clonecost+ history.cost+ sharedcost+ Iteration(mod 2 Awirelength
endfor
Update delays and criticalities
endfor
Update history costs
endwhile
end

Figure 1: Placement algorithm.

Design || IOs | logic blocks | edges| clones| trees
alu4 22 1522 | 5408 | 6243 8
apex2 41 1878 | 6692| 8384 3
apex4 28 1262 | 4479| 6528 19
des 501 1591 | 6110| 8440| 245
ex1010|| 20 4598 | 16078 | 26473| 10
ex5p 71 1064 | 4002| 8903 34
misex3 || 28 1397 | 4968| 6343| 43
pdc 56 4575 | 17193 | 28988 40
seq 76 1750 | 6193| 7857 33
spla 62 3690 | 13808 | 24347| 46
g50 200 2500 | 5100| 6823 2

Table 1: Tree sizes.

Each source-to-sink connection (and hence block) must be rep-
resented in at least one tree, so that the delay of the circuit can be
properly optimized in the placement phase. But since the running
time of the placement phase depends on the number of clones in
the cover, the algorithm should try to minimize the total number
of clones. Minimizing the cover is in itself an NP-hard problem.
Since we wish to minimize the size of the cover principally to re-
duce the running time of the placement phase, the time spent on
generating the cover must be balanced against the goal. We use the
heuristic approach given in Figure 4.

The netlistis an acyclic graph since latches are decomposed into
)) input and output nodes. Hence the longest paths can be calculated

Figure 3: Tree cover of netlist example. in linear time using the DAG ordering. The first path selected is the
minimum longest input-to-output path rather than the maximum;
. . using the maximum often results in a single large tree. After the
2.1 Coverlng with trees first path, the trees are created by adjusting the cost of the nodes

The first step is to cover the netlist with trees. The root of the tree and edges so that we can find a path from the inputs with the most
is an output 1/0 block, the leaves are 1/0 blocks and the internal Missing (not yet covered) blocks and edges. Table 1 shows the size
nodes are logic blocks. The tree covering must ensure that eachand number of the trees in the covers produced for the benchmarks
I/0 block, logic block and source-to-sink connection appears in at Used in our experiments.
least one tree. This may require that blocks appear multiple times, .
either as nodes in the sa}llmeqtree or separate trggs. ForthiSreason w%-z Collapsmg the Clones
refer to the tree nodes aknesof blocks. Figure 2 shows a netlist In addition to the usual constraint that the blocks not overlap,
corresponding to a 8 3 grid. Its tree cover is shown in Figure 3. feasibility now also requires that each logic block’s clones have
The edges are oriented from child to parent in Figure 3 which can been placed in a single locatiorrollapsed To achieve this we
be opposite from the signal direction as is the case for the edge calculate theeenter of gravityof the clones of each logic block (if
from o1 to C in Figure 3. it has more than one clone). The distance from a clone to its block’s

Coverwith_Trees(netlist)

Calculate the longest path for each input to any output
B < 2x Number of nodes
T1 « a minimum longest input to the output path
while there are missing nodes or edges
Set cost of missing nodes teB
if there are no missing nodes
Set cost of missing internal edges-t®
else Set cost of missing internal edges to the cost of their source node
Calculate the minimum cost paths from each node to any output
Traverse a minimum cost path starting from the input with the minimum

pathcost until either an output or a node with positive path cost is
reached
if an output is reached
then create a new tree containing the traversed path
elsegraft the traversed path onto the tree at the final node
endwhile
Add any missing external edges onto the trees
end
Figure 4: Covering algorithm.
% 2.3 Analytical Placement
O—X. We use an analytical placement technique to determine a coarse
h placement for each tree during each iteration. In principle, the ana-
\ lytical placement problem is to solve the matrix equation:
O -
G-Vv=b
Figure 5: Three clones and their center of gravity: the small whereb is the vector of positions of the I/Ogrepresents positions
dotted circle. of the clones of the internal blocks, a6ds the edge-weight matrix

of the graph. This computation can be interpreted as computing
the node voltages of a resistive network with the 1/0Os as current
center of gravity is part of the cost function in fine placement (inner sources, the edge-weights as conductances, and the positions of the
for-loop) and is also used in the analytical placement as described clones as node voltages [5]. Figure 6 shows the calculation for a
in Section 2.3. Figure 5 shows three clones and their center of tree with 5 nodes and 5 I/Os. The conductance of each edge is
gravity (dotted node). Each clone is encouraged to move towards determined by the criticality of the edge. Because our graph is a
the center. tree, v can be calculated quickly in linear time by traversing the
To quickly calculate the center and determine if a logic block’s tree in lieu of a numerical approach.
clones have collapsed, we maintain two sums for each coordinate G also includes an edge for each clone to its center of gravity,
and update them incrementally: which has a fixed position during this calculation and so is treated
n as an additional current source. The edge to the center of gravity
=S %, has conductance O initially, but its value is increased to help the
i; clones of alogic block collapse to a single location as the algorithm
progresses.
and This analytical placement computation yields an optimal solu-
n tion with respect to a weighted quadratic wirelength objective, but
S = Z\X'Z the cells may overlap. A negotiation placement paradigm which
i= resolves these overlaps is discussed below.

wherexg, %o, ... , X, are thex-coordinates for the block’s clonets, 2.4 Fine Placement

ands, are likewise maintained for thecoordinates. We calculate Fine placement of each clone is achieved by using the voltage
the center of gravity by dividingx andLy by the number of clones. calculated as described above as the center of a window and select-
Since the variance of the coordinates, ing a location within the window which minimizes the cost func-
tion:
12 1(2 -5 1
n Z(Xi -%)? = n (leiz> -3 = @(”S(* L%)
i= i= clonecost + history.cost

will be 0 only when all the coordinates are identical, we can detect + sharedcost

in constant time whether a logic block has collapsed. + Iteration(mod 2 Awirelength

center of gravity of A fixed pads moving pads |

gSO X,y wl | delay | time Xy wl | delay | time
VPR || 1.251.18| 1164 | 14.23| 1.151.99| 1323 | 15.0
NAP || 1.06 1.07| 1128 | 17.35|| 1.101.16| 1278 | 29.37

\‘:
additional force

465
Table 3: Results of a50 x 50 grid netlist with fixed and moving
/o <>< pads. The optimal solution has wirelength0.98 098 and delay

999

The two eigenvectors are used to provide a two-dimensional em-

6.82 bedding of the circuit. The embedding is first rotated so that the
maximum number of outputs are on the right and lower sides (in

Figure 6: Analytical placement. I/O blocks are current sources. the range[—135’,45°]) to match the direction of the architecture.
Each edge has resistance of one Ohm. Values on the nodes are Each /O is then projected to the boundary of the array preserving
voltages. its angle with respect to the the center of the embedding. If this po-

sition is occupied, the I/Os on either side (whichever requires less
shifting) are shifted to make room.

clonecostis the distance to the logic block’s center of gravity. Inside the placement loop, positions of the 1/Os are recalculated
Thehistory_costof a location is increased at the end of every iter- every 5@ iteration. The position which minimizes delay with re-
ation after which that location is over-committed. i@redcost spect to the current positions of the logic blocks is determined. If

is the number of other logic blocks that currently occupy that loca- this position is occupied, the position with the least current occu-
tion (have at least one clone present). The weight of the shared andpants within a small window is selected. If there is significant over-
clone components as well as the size of the window are adjusted adap after all I/Os have been considered, then the I/Odlattened
the algorithm proceeds to achieve feasibility. to remove any overlapslatteningconsists of examining each over
The spans of each net are maintained so that the change in wire-<committed slot and shifting the 1/Os on either side to make room
length of the nets can be quickly evaluated. The centers of gravity for the excess.
of the clones are used as the coordinates of the logic blocks for the
wirelength calculations. 2.7 Performance of NAP
The delays of all the edges (source-to-sink connections) are up- To evaluate our placement algorithm we ran NAP using the ar-
dated after each tree has been placed, and their criticalities are upchitecture and benchmarks from the FPGA Place-and-Route Chal-
dated for use in the analytical placement. The delay of a source-to-lenge [1] and compared the results with VPR version 4.3 run with
sink connection is the sum of the delays associated with a shortesthe path_timing_driven option. All ten combinational bench-
path through the routing architecture; in this case, the sum of the marks were placed by VPR. NAP was run with both fixed pad lo-

delays for the pips, switches and wire segments. cations using the pad locations produced by VPR and also without
. . fixed pad locations. For each benchmark the array size is deter-
2.5 Sca“ng for Iarge array sizes mined by the smallest square array that will accommodate both the

The algorithm is applied hierarchically by clustering the grid logic blocks and I/O padsiés is the only design for which the ar-
locations into which the clones must be placed. For example, a ray size is constrained by the number of I/O pads). The placements
60 x 60 grid using a cluster size of 3 becomes ax2ZZD grid with are validated by a separate program which takes as input the place-
each grid position (slot) capable of holding 9 logic blocks. This ment output file and also reports the wirelength and delay. Table 2
improves the efficiency by allowing placement constraints to be re- gives the results in term of wirelength, delay and running time in
solved at a coarser level. All delay and wirelength calculations use minutes on a SUN Ultra 5 360Mhz. We also ran VPR and NAP
the full coordinate system; the coordinates of the grid position at on a synthetic design for which the optimal wirelength and delay
the center of the slot are used as the position for each clone in thatis known: a grid of size 5& 50 similar to the circuit in Figure 2.
slot. Once feasibility or near feasibility is attained at the coarser Table 3 shows the results of VPR and NAP placing this design on a
level, the current placement is expanded with each grid position 50x 50 array (100% full).
inheriting an interpolated version of the history of its slot. Forthe The results in Tables 2 and 3 are reported in terms of the addi-
first few iterations after expansion, clones are constrained to remaintive delay model used in NAP. As VPR is optimizing a capacitive
within the slot boundaries in order to reestablish an equilibrium. delay model we also evaluated the placements using VPR with the

. route_only andtiming driven options. Before attempting to
2.6 Moving I/Os route VPRyreports the Estimated Critical Path: these results are re-

In the preceding sections we have assumed the positions of theported in Table 4 under the heading “Est.” The placements were
1/0 blocks were given and fixed. This might be the case in prac- routed with the minimum number of tracks achieved in the FPGA
tice, but when the placement of the 1/Os is not constrained, their Place-and-Route Challenge [1] and as expected, none of them were
placement should be determined as part of the placement optimiza-successfully routed as these placements were optimized for delay.
tion. In order to calculate the analytical placement described in We also routed each placement with 20%, 50% and 100% addi-
Section 2.3 the 1/O positions must be known. tional tracks beyond the minimum [1] and report these results in

Initial positions for the 1/Os are calculated from th& and 3¢ Table 4. A routing failure is indicated by RF. In Table 5, the results
smallest eigenvectors of the Laplacian derived from the netlist [3]. from Table 4 are normalized to the best result achieved within each
The fanout netmodel was used to convert the netlist to a graph. routing experiment.

1A net with f sinks was represented in the graphfgdges each of weight /.

Design VPR NAP

Array Moving Pads Fixed Pads Moving Pads
size x,ywl | delay]| time x,ywl | delay]| time x,ywl | delay]| time
alud 40 3.352.62| 352 | 11.84| 3.422.78| 318 | 8.36 || 3.342.90| 361 | 9.23

apex2 44 4.063.59| 412 | 22.21 | 4.123.69| 376 | 9.13 || 3.923.98| 437 | 10.19
apex4 36 5.253.99| 330 | 13.44|| 4.864.15| 342 | 6.99 || 4.194.81] 396 | 13.80
des 63 4.113.90| 377 | 20.58| 4.284.06| 458 | 6.33 || 5.214.77| 369 | 6.17
ex1010| 68 3.763.81| 821 | 84.22|| 3.744.03| 782 | 54.51| 4.034.19| 754 | 67.00
exs5p 33 5455.22| 300 | 7.24 || 5.375.28| 312 | 27.91| 5.035.73| 300 | 16.70
misex3 | 38 3.913.40| 369 | 10.23 || 3.833.62| 303 | 6.12 || 3.753.70| 309 | 6.08

pdc 68 4.895.21| 728 | 90.37| 4.905.18| 609 | 69.09| 4.845.23| 676 | 62.61
seq 42 3.814.07| 339 | 17.58|| 3.753.90| 326 | 9.78 || 3.753.82| 352 | 11.33
spla 61 4.024.02| 590 | 59.77 || 4.384.08| 553 | 52.31|| 3.914.51| 562 | 46.82

Table 2: Results for VPR in timing mode and NAP in terms of wirelength, delay and running time in minutes. NAP was run both
with fixed pads (obtained from the VPR placement) and with moving pads starting with the spectral pad placement.

VPR NAP
Moving Pads Fixed Pads Moving Pads
Design Est. | +20% [+50% | +100% Est. | +20% | +50% [+100% Est. | +20% | +50% | +100%
alu4 78.6| 80.4| 80.4 80.3|| 72.3| 820| 76.2 7441 81.3| 88.6| 84.6 82.2

apex2 89.8| 90.6| 90.6 90.6|| 84.6| 87.3| 884 86.0|| 97.3| 104.3| 98.6 90.1
apex4 73.0 RF| 88.3 73.0| 753 RF| 77.2 772 86.7 RF | 96.3 87.9
des 82.6| 829| 829 83.5| 98.1| 985| 984 985| 80.6| 835| 820 82.0
ex1010|| 171.6| 187.0| 175.7| 176.6| 166.4| 172.7| 167.3| 167.3| 159.6 RF | 1655 161.7
ex5p 67.0 RF | 68.5 68.5| 68.8| 100.7| 70.6 70.6 || 68.7 RF | 69.3 69.0
misex3 || 81.8| 108.9| 82.0 82.0|| 68.7| 82.6| 70.0 69.4| 69.4| 108.7| 70.6 715
pdc 154.7| 175.7| 156.0| 159.0(| 132.8| 181.3| 137.5| 136.3| 144.2| 157.1| 146.1| 1449
seq 75.3| 80.4| 76.6 76.6|| 73.1| 105.3| 78.4 745| 77.3| 104.1| 79.8 81.0
spla 127.8 RF| 129.1| 128.5]| 120.0 RF | 123.7| 122.6| 121.8 RF | 124.2| 1255

Table 4: Results for VPR in timing mode and NAP in terms of critical path as measured by VPR. The estimated critical path is in
109 seconds, as well as the routed result with 20%, 50% and 100% more tracks than the minimum [1].

Est. +20% +50% +100%
design [VPR NAPT | NAPm || VPR | NAPT [NAPm || VPR | NAPT | NAPm || VPR | NAPT | NAPm
alud [1.09] 1 | 112 || 1 | 1.02| 11 | 1.06] 1 | LiL [1.08] 1 11

apex2 | 1.06 1 1.15 1.04 1 1.19 1.02 1 112 1.05 1 1.15
apex4 1 1.03 1.19 RF RF RF 1.14 1 1.25 1 1.06 1.2

des 1.02| 1.22 1 1 1.19 1.01 1.01| 1.2 1 1.02| 1.2 1

ex1010(| 1.08 | 1.04 1 1.08 1 RF 1.06 | 1.01 1 1.09 | 1.08 1

ex5p 1 1.03 1.03 RF 1 RF 1 1.03 1.01 1 1.03 1.01
misex3 || 1.19 1 1.01 1.32 1 1.32 1.17 1 1.01 1.18 1 1.03
pdc 1.16 1 1.09 112 | 1.15 1 1.13 1 1.06 1.17 1 1.06
seq 1.03 1 1.06 1 131 1.29 1 1.02 1.04 1.03 1 1.09
spla 1.06 1 1.01 RF RF RF 1.04 1 1 1.05 1 1.02

Table 5: Relative results in terms of critical path for VPR, NAP with fixed pins and NAP with moving pins. Each placer’s result is
divided by the minimum result within the experiment.

multiple threads on each host
' Our current parallel implementation uses multi-casting for in-

= = = terprocessor communication. Using IP multicasting (UDP sock-
(e e o ({ BElinE ets) allows a processor to generate a single message which is then
g g g g broadcast at the switch level (almost) simultaneously to all of the
12 12 12 other processors (within a limited “scope”). The amount of traffic
is dramatically reduced since each update message now requires
only 1 message rather th&h— 1 whereN is the number of proces-
sors [11]. The overhead involved in IP multicasting is about 4 times
less than unicast sockets. This feature helps the processors remain
in closer synchronization during the execution of the algorithm.

We have conducted experiments with the IPv4 multi-cast routing
and have experienced less than 1 percent drop in packets, but with
a ten-fold increase in speed. The round trip delay of a multi-cast
Figure 8: Multi-cast and Multi-threaded parallel processing. packet is about 0.25 msec, and all the processors receive the same
message approximately at the same time. This is in sharp contrast
to TCP uni-casting which is reliable but delivers with much larger

3. PARALLEL VERSION delay variations.

In the parallel version of our placement algorithm, each proces- ~ The main obstacle in using IP multicasting is its unreliable na-
sor is assigned a subset of the trees to place. Each processor confire. IP multicasting is unreliable because packets may be dropped
municates the positions of the clones in its trees when they are mod-Or arrive out-of-order. There is extensive research in the networking
ified. Hence each processor has information about the positions ofarea related to recovery of packet losses in multicast networking.
all of the clones necessary to calculate the positions of the clonesThe recovery techniques generally involve timeout, retransmission
in its assigned trees. Figure 7 gives a high-level description of the 8 Well as sending ACK and NACK mechanisms [11].
parallel algorithm. ~ Our solution to this reliability problem is to take advantage of the

The trees are allocated by sorting them into decreasing size andinherent tolerance in the negotiation paradigm. First, each packet
allocating them one by one to the processor which currently has thehas @ sequence number. Hence out-of-order packets are detected
subset of smallest size. This is a static allocation. and tolerated temporarily and subsequently forgiven if they don’t

Each processor keeps track of the iterations of every processor tolnvolve movements of the same clone, as illustrated in Figure 9.
avoid getting too far ahead of the others (out of synch). When the Due to the decomposition of the netlist into trees and the fact that_
number of shared locations and uncollapsed blocks drops below aclones are placed as the trees are traversed, the chance that a series
certain threshold, a designated processor takes over and complete8f out-of-order packets involve the same clone is almost nil. Fur-
the placement on its own. This is necessary for convergence of thether, minor packet loss is harmless if a subsequent packet related

SUN ultra SUN ultra SUN ultra SUN ultra

IGMP HP switch

negotiation paradigm [4]. to the same clone is received; as illustrated in Figure 9. So far,
we have observed IP multicast reliability problems only in the first
3.1 Communications aspects of P-NAP category with no fatal effects.

In a negotiation-based algorithm, there are no constraints on the Ata finer-grain level, our parallel placer is implemented as mul-

number of tenants which can occupy a resource; instead the cost of“ple threads. There is one programming thread that is responsible

using a resource with multiple occupants is the mechanism used to!(Or receiving, checking, and buffering incoming packets [8]. There

resolve resource conflicts. Our experience with our parallel router is another main thread that is res_ponsuble for p'."’!cefne”t and send_ln_g
) R . the updates out as packets. This thread partitioning assures mini-

has revealed that tight synchronization among the processors ISt um interorocess communication overhead and improves the ro-

not required, as long as the costs are updated eventually and cor; P p

rectly [4]. bustne_ss of thg parallel _placer. The access and upd_ate of the packet

Available technology to support inter-processor communication buffer is coordinated using *locks” for mutual exclusion.

exists at the computer network level and board level. Processors3 2 Results of parallel NAP

communicate through “sockets” at the network level with loose

synchronization. Threads programming and corresponding oper-

ating system support are widely available to facilitate fine-grain

threads to communicate tightly. We exploit both of these oppor-

In P-NAP, processors communicate with each other by sending
and receiving messages. The network serves as the medium for
transferring messages. There is no guarantee regarding the order or
S timing of the arrival of the messages to a processor. This is a source
tunities in our placer. S

of nondeterminism in the parallel placer. Table 6 shows results of

Currently our parallel placer runs on loosely coupled SUN Ul- : . - .

X . : P-NAP using multiple processors. Since a processor computes in
tra 5 workstations. Each processor is assigned a subset of the tree

nanoseconds and each communication takes milliseconds, it is not
cover to place and the processors exchange messages to commun|-

. o . surprising to see that speedups are more prominent in the larger de-
cate location changes of the clones. The negotiation paradigm tol-". .
) T . signs épla, pdc) than in the smaller ones. Although our parallel
erates a large degree of latency in the accuracy of this information, . .
: - : : L .. " placer has not been fine-tuned, we are glad to see that it converges
since in all but the final phases of the algorithm this information is L X
S, . for the very dense circuigx1010. Typically, we observe no sub-
used to evaluate the cost of resources; it's not crucial to know that . . .) e
- . stantial degradation of delays and wirelengths; one surprise is that
12 rather than 8 clones want a particular location. Furthermore, . : A
. . P-NAP yields better delay than the serial NAP for some circuits.
each processor only informs others of ttengeof the location

of a clone. This is a very important design feature of the parallel

placer and will be explai);led%urther. In grder to completepplace- 4. CONCLUSIONS

ment successfully, the algorithm does need to know with complete We have developed a negotiated-analytical placement algorithm
accuracy the resource utilization in the final phases, and so one pro{NAP) and implemented a serial placer. The NAP algorithm has
cessor takes over near the end. been parallelized to run on a network of workstations. Experiments

P-NAP(netlist, FPGA architecture)

Cover the netlist with trees
Allocate trees to processors
while the placement is not feasible
for eachtreeT; assigned to me
Calculate analytical placeme¥tof T
for each noden;j in T
find position forn; in window centered & j minimizing
clonecost+ history_cost+ sharedcost+ Iteration(mod 2 Awirelength
if the position of the node changed
send out the new position of the node
endfor
Read and process all of the messages in the buffer
Update delays and edge weights
Update clone centers
Send out the current delay
endfor
Update history costs
Send out a message with the current iteration
while(my iteration is> avg.iteration +2)
Read and process messages
endwhile
endwhile
end

Figure 7: Parallel placement algorithm.

Design 1 proc 2 proc 3 proc

x,ywl | delay]| time xywl [delay]| time xywl | delay]| time

alud 3.422.78| 318 | 8.36 || 3.462.77| 340 | 5.63 || 3.462.90| 343 | 4.68

apex2 | 4.123.69| 376 | 9.13 || 4.083.79| 386 | 6.69 || 4.093.89| 410 | 6.12

apex4 | 4.864.15| 342 | 6.99 || 4.994.16| 339 | 5.69 || 4.894.26| 354 | 4.54

des 4.284.06| 458 | 6.33 || 5.064.80| 398 | 3.85 | 4.994.82| 410 | 3.96

ex1010| 3.74 4.03| 782 | 54.51| 3.954.42| 776 | 47.81| 3.854.19| 758 | 44.30
ex5p 5.375.28| 312 | 27.91| 5.895.70| 298 | 21.26| 5.965.85| 291 | 22.5

misex3 | 3.833.62| 303 | 6.12 || 3.933.86| 309 | 5.41 || 4.043.76] 306 | 5.03

pdc 4.905.18| 609 | 69.09| 4.985.25| 650 | 40.78| 4.985.32| 657 | 37.65
seq 3.753.90| 326 | 9.78 || 3.873.96| 350 | 7.92 || 3.803.91| 339 | 7.61

spla 4.384.08| 553 | 52.31|| 4.474.22| 572 | 30.48|| 4.504.08| 533 | 26.53

Table 6: Results of multiple processors running P-NAP in terms of wirelength, delay and running time in minutes. P-NAP was run
with fixed pads (obtained from the VPR placement).

SUN ultra

g -

SUN ultra

SUN ultra

SUN ultra

T1

T1

]

]

T1

g T2
B

C
A

IGMP

HP switch

SUN ultra

9o

SUN ultra

SUN ultra

out-of-order delivery

SUN ultra

N

T1

T1

A

N

B

packet loss

®

IGMP

HP switch

Figure 9: Packet delivered out-of-order and packet loss.

6.

REFERENCES

[1] V. Betz. FPGA Place-and-Route Challenge.

http://www.eecg.toronto.edu/ vaughn/challenge
/challenge.html.

[2] V. Betz and J. Rose. VPR: A New Packing, Placement and

(3]

(4]

(5]

(6]

Routing Tool for FPGA Research. Beventh International
Workshop on Field Programmable Logic and Applications
pages 213-222, London, England, 1997.

P. K. Chan, M. Schlag, and J. Y. Zien. Spectkakay

ratio-cut partitioning and clustering. ldvanced Research

in VLSI, 1993 University of Washington Symposium on
Integrated Systempages 123-142, MIT Press, Cambridge,
MA, March 15-16 1993.

P. K. Chan, M. D. F. Schlag, C. Ebeling, and L. McMurchie.
Distributed-Memory Parallel Routing for
Field-Programmable Gate ArrayEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
CAD-19(8):850-862, August 2000.

C.-K. Cheng and E. S. Kuh. Module placement based on
resistive network optimizationEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
CAD-3(3):218-225, July 1984.

M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee.
Parallel algorithms for FPGA placement. The Great Lakes
Symposium on VLSChicago, March 2000.

have demonstrated that our serial as well as parallel placers per- [7] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich.

form well with benchmark circuits. Challenges ahead include fine-
tunning the parallel placer to attain more speedup and controlling

the non-determinism.

5. ACKNOWLEDGMENTS

The authors thank Xilinx, UC MICRO, and SUN Microsystems

for their support.

(8]
(9]

[10]

[11]

GORDIAN: VLSI Placement by Quadratic Programming
and Slicing OptimizationlEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
10(3):356-365, Mar. 1991.

S. J. Norton and M. D. DiPasqual€hread time : the
multithreaded programming guid@rentice Hall, 1996.

Y. Sankar and J. Rose. Trading quality for compile time:
Ultra-fast placement for FPGAs. Proceedings of
International ACM/SIGDA Symposium on
Field-Programmable Gate Arraypages 157-166,
Monterey, California, USA, Feb. 1999.

M. Senn, U. Seidl, and F. Johannes. High quality
deterministic timing driven FPGA placement. InfA0
International ACM/SIGDA Symposium on Field
Programmable Gate Array$lonterey, California, February
2002. Poster Abstract.

W. R. StevensUNIX Network Programming, 2nd ed.
Prentice Hall, 1999.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

