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Abstract

This paper presents a on-chip stack based memory or-
ganization that effectively reduces the energy dissipation in
programmable embedded system architectures. Most em-
bedded systems use the notion of stack for implementation
of function calls. However, such stack data is stored in pro-
cessor address space, typically in the main memory and ac-
cessed through caches. Our analysis of several benchmarks
show that the callee saved registers and return addresses
for function calls call constitute a significant portion of the
total memory accesses. We propose a separate stack-based
memory organization to store these registers and return ad-
dresses. Our experimental results show that effective use of
such stack-based memories yield significant reductions in
system power/energy, while simultaneously improving the
system performance. Application of our approach to the
SPECint95 and MediaBench benchmark suites show a re-
duction of up to 32.5% reduction in energy in L1 data cache,
with marginal improvements in system performance.

1. Introduction

Current day embedded system designers are facing con-
flicting requirements of higher performance and lower
power consumption. Power/Energy consumption in particu-
lar has received increased attention as it determines the bat-
tery life in portable battery operated devices. Also, reliabil-
ity concerns and higher packaging costs for absorbing the
heat dissipated in highly dense chips have made the power
dissipation problem even more significant. Researchers
have proposed various techniques from the algorithmic and
system level[6, 15] to circuit and layout level[15, 16].
Also different dynamic voltage scaling algorithms[19, 17]
and dynamic power management[13] strategies are pro-
posed to reduce the power dissipation. While some of
the power reduction techniques improve performance, some
techniques degrade performance. In this paper, we pro-

pose a memory organization supporting function calls for
programmable embedded systems that reduces the system
level power/energy dissipation and at the same time gives
marginal improvements in performance.

In the context of software development for embedded
systems, Modular programming[8] has gained tremendous
significance in the development of embedded system soft-
ware. The efficient use of modules (called as functions)
eases the tasks of understanding, re-usability of code, inde-
pendent software development and assists code size reduc-
tion. However, in the context of a programmable embedded
system architecture, this demands a focus towards efficient
implementation of function calls. For every function call
that occurs during program execution, the application saves
and retrieves the context by saving a few registers before
the execution of call and retrieving them once the function
call execution is complete. Such register-saves contribute to
a significant portion of the total memory accesses for many
applications, resulting in a significant increase in the power
dissipation. Since the register saves and restores can be im-
plemented using a Last-In-First-Out (LIFO) policy, efficient
stack memory organizations could be used for saving these
registers. In this paper, we propose the use of a separate on-
chip stack based memory organization for implementation
of function calls that leads to improved performance, and
more significantly, reduced power/energy consumption.

The paper is organized as follows. In Section 2, we
present the motivation behind our proposal to use a sep-
arate stack memory organization for reduction in power
consumption. Section 3 describes how the proposed stack
memory organization can be integrated into existing pro-
grammable embedded system designs. Section 4 elaborates
on the setup used for our experiments, the models used for
estimation of energy dissipation, and presents results show-
ing the efficacy of our technique in terms of reduction in
energy dissipation. Related work is presented in Section 5
and Section 6 concludes with a discussion of future work.
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2. Motivation

In this section, we present different application statistics
for the SPECint 95 and MediaBench benchmarks that moti-
vate the necessity of a separate stack memory organization.
First we describe the protocol typically used for the execu-
tion of a function call on a processor. Then we show some
experimental results that form the basis of our proposal for
a separate stack memory organization.

Although the machine code for implementing a function
call depends on the source language, on the compiler,
and on the architecture, compilers for most processors
and popular source languages (e.g., C) generate code that
follow a similar generic protocol. A typical assembly code
for a function call follows the steps listed below. (Note that
when function B is called from function A, A and B are
referred to as caller and callee functions respectively.)

Caller initiated steps:

• Save caller-saved registers

• Pass arguments to callee

• Execute call instruction

Callee initiated steps:

• Allocate memory for local variables

• Save callee-saved registers and return address

• Execute the function call

• Retrieve the return address and callee-saved registers

• Exit from function call

Most processor architectures have designated registers
for storing return address and registers that caller and callee
need to save. Callee-saved registers and caller-saved reg-
isters are saved only if the callee function attempts to use
the corresponding registers during its execution. Similarly,
the return address register is saved only if there is a nested
function call from the callee function. While the local vari-
ables and the arguments for the callee function are accessed
randomly during the function execution, the callee saved-
registers and the return address register are stored and re-
trieved only once. Also these registers can be saved and
retrieved in a LIFO order. Traditionally these registers are
saved in main memory accessed through different levels of
caches. In this work, we propose to use a separate memory
module, an on-chip stack, for storing the callee-saved reg-
isters and return address register instead of storing them in
main memory. Henceforth we refer to the callee-save reg-
ister and return address register stores and loads as stack
accesses.

Figure 1. Plot showing percentage of stack
accesses of the total memory references

Figure 1 shows the percentage of memory accesses
caused due to stack accesses for several SPECint 95 and
MediaBench benchmarks. The experiments were run us-
ing the sim-cache simulator within the SimpleScalar tool
set [5]. The sim-cache simulator is modified to count the
stack accesses and also for counting the maximum depth of
call functions during the execution of an application. The
SimpleScalar architecture consists of 9 callee-save registers
and a designated return address register. So potentially there
can be 20 stack accesses per function call (10 stores and 10
loads). However, some function calls need not have any
stack accesses. Even saving of the return address can be
avoided if there is no other function call from the current
function. In such a case, the return address register would
not be modified by the callee-function thereby eliminating
the need for saving the return address register.

Table 1 shows different metrics for each benchmark1

. Column 2 shows the benchmark program, Column 2
shows the total number of instructions executed for the
corresponding benchmark, Column 3 indicates the total
function calls in the benchmark execution, Column 4 in-
dicates the maximum call depth during the execution, Col-
umn 5 indicates the total memory references in the bench-
mark execution, Column 6 indicates the number of return
address accesses (stores+loads), and Column 7 indicates
the callee-save register accesses in the program execution
(stores+loads). We make the following observations based
on data from Table 1 and Figure 1:

• Stack accesses (return address and saved register -
reads and writes) contribute to an average of 25.5%
of the total memory accesses.

1All values are in Millions, except for call depth values



Program Total Total Call Memory Return Callee
Instrs. Calls Depth Refs. Addr. Reg.
(mil) (mil) (mil) (mil) (mil)

compress 35.7 0.9 9 13.4 0.5 0.7
perl 2391.5 43.5 23 1044.1 77.4 354.7
gcc 1273.2 17.2 41 513.0 27.6 171.0
go 16389.6 178.2 33 4745.6 65.8 706.5
vortex 9051.6 188.7 29 4763.0 372.1 1473.5
m88ksim 493.0 7.4 13 127.3 8.9 22.9
jpeg 15.8 0.1 12 0.5 0.1 0.6
mpeg 171.2 1.5 17 32.9 2.7 4.6
g721 276.9 2.7 9 48.0 1.8 8.9
rasta 39.0 0.6 15 12.2 0.5 2.8
fft 137.2 2.3 10 31.7 1.1 7.6

Table 1. Various metrics for SPECint 95 and
MediaBench for stack memory analysis

• The maximum call depth of 41 is observed for ‘GCC’
benchmark. Since for each call a maximum of 10 reg-
isters can be saved, the worst-case situation requires a
stack of size 410 words.

It is to be noted that an access to stack (because of its
smaller stack size and absence of tag match) would con-
sume lesser power/energy than a cache access. Since as
many as 42% (for VORTEX) of the total memory accesses
are diverted from a high power consuming memory module
to low power module, we believe that use of a stack mem-
ory organization will help reduce system level power dissi-
pation significantly. Although the reductions are shown for
the execution of various benchmarks on the SimpleScalar
architecture, we believe that the same characteristics would
be valid for most of the popular embedded processor archi-
tectures.

3. Stack Memory Organization

A traditional embedded processor memory architecture
is shown in Figure 2. The processor core has separate in-
struction and data buses connecting to instruction and data
caches respectively. The memory hierarchy consists of an-
other level of unified cache (L2 Cache) before accesses are
made to main memory. In this section we describe two
design methods: In-processor stack and Memory-mapped
stack for integrating the hardware stack into the system level
design. We elaborate on each of these methods and give
some critical analysis on the overheads involved in each of
the proposed implementations.

In-processor stack: In this method, we propose to inte-
grate the stack into the existing processor architecture. This
necessitates two extra instructions: push and pop to store
and load contents from the stack. So the compiler with the
knowledge of stack hardware in the processor needs to as-
sociate the register-saves and restores to the push and pop
instructions respectively. In addition to the compiler mod-
ifications, this method will require the processor pipeline

to understand the new instructions. Although this might be
a feasible implementation, the implementation cost would
be significant considering the modifications needed for both
compiler and processor hardware. However, in addition to
the power savings in the L1 Data caches, this method will
yield savings on the data address bus. This is because ac-
cesses to the stack within the processor requires that only
the load/store signals be communicated unlike traditional
cache accesses that require the whole address.

Memory-mapped stack: In this method, we propose to
map the stack module to the processor data address space.
In this case, the compiler needs to be modified so that it
uses the address space corresponding to the stack for the
register-saves and restores. The graphical view of this mem-
ory mapping is shown in Figure 3 and can be compared
with the traditional implementation in Figure 2. In the
memory-mapped method, the stack accesses go directly to a
stack memory which shares the address space with the main
memory. The other data reads/writes in the program execu-
tion go to the data cache (DCache). Note that although the
stack is shown along side the main memory, the stack is still
intended to be on-chip and only the address space is shared
with the main memory.
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Figure 2. Traditional processor memory archi-
tecture

DCache

ICache

Cache
L2

Data bus

Data address bus

Instruction bus

address bus

Instruction 

Core

Processor

Main
Memory

Stack

(512x32)

Figure 3. Stack based processor memory ar-
chitecture
Table 2 shows the comparison of the design changes that

would be needed for each of the proposed implementation
methods. If the processor data address space is not critical,



we suggest the use of memory mapped stack implementa-
tion since it does not require any changes to the processor
core.

Implementation Address Compiler Processor
type Mapping Changes Changes
In-processor NO YES YES
Memory mapped YES YES NO

Table 2. Comparison of implementation
changes for proposed methodologies

In both the proposed methodologies, the critical design
issue is to decide the size of the stack. In embedded system
domain, since the application is often known, the maximum
depth of function calls can be evaluated by running exhaus-
tive simulations. The stack depth can then be calculated as
the product of maximum function call depth and the max-
imum callee register saves per function call. However, in
some applications, it may not be possible to determine the
maximum function call depth. In such cases, an extrapo-
lated value could be used to determine the stack size. To
account for the eventuality of a stack overflow, the memory
management unit could be modified to enable the saving
and retrieval of stack registers from the L1 data cache when
the stack is full. In our analysis, we assume that the stack
size can be determined and hence the memory management
unit would not incur any significant power or performance
overhead.

4. Experimental Setup and Results

We consider a traditional processor memory architec-
ture, with processor accessing memory through separate L1
instruction and data cache, and an unified L2 cache show
in Figure 2 as the reference architecture. We assume that
both L1 and L2 caches are on-chip. For showing the effi-
ciency of the proposed technique we simulate the memory-
mapped stack methodology. The graphical view of the pro-
posed architecture is shown in Figure 3. This technique re-
quires identifying the stack reads and writes at the compile
phase and generating code by mapping these reads/writes
to the stack address space. However, in our experiments,
we use the simulator to emulate the changes required in the
compiler by identifying the memory loads and stores cor-
responding to the stack. In our experiments we consider a
512x32 SRAM based stack. Although a more efficient and
low power custom stack could be designed, for the sake of
simplicity in modeling the power, we use a SRAM based
stack in our experiments. The size of the stack is decided
based on the maximum stack depth that can be reached dur-
ing the program execution as explained in Section 2. The
SPECint 95 and MediaBench benchmarks are used in the
experiments to show the efficiency of our proposed tech-
nique.

Figure 4. Plot showing % reduction in L1 data
cache energy for different configurations

Note that compared to the traditional architectural imple-
mentation, the stack based architecture reduces the accesses
to L1 data cache and L2 cache. The energy dissipation in
the processor core would remain the same. Also using the
stack based architecture, there is minimal variation in ac-
cesses to main memory. So we believe that the compared
to traditional implementation, the stack based architecture
will have reductions in L1 data cache and L2 cache. There-
fore only these units are modeled to see the reduction in
energy/power. To compute the energy/power dissipations
we use the power models described in Wattch[4].

Figure 4 shows the percentage reductions in energy
dissipation in data cache achieved using the stack based
architecture. The percentage reduction is calculated
as %red = 100 ∗ [EDcacheTrad − (EDcacheStack +
EStack)]/EDcacheTrad where, EDcacheTrad is the en-
ergy dissipation in data cache in traditional architecture,
EDcacheStack is the energy dissipation in data cache in stack
based architecture andEStack is the energy dissipation in
stack. Since the energy dissipation in a cache depends on
its size and configuration, the reductions are shown for three
representative data cache configurations. Table 3 shows the
size and parameters of each data cache configuration. The
parameters are expressed in terms of(No. of Lines x Block
Size x Associativity x Word Size).

Size Parameters
Config1 8 KB 256x32x1x1
Config2 4 KB 256x16x1x1
Config3 2 KB 128x16x1x1

Table 3. Different L1 data cache configura-
tions used in experiments

Figure 4 shows a significant reduction in energy for all
configurations of data cache for various benchmarks. It can



be observed from Figure 4 that the percentage reduction in
energy for data caches using stack hardware, reduces with
the size of data cache. This is because for smaller data
cache sizes the energy dissipation per access would be more
and more comparable to the energy dissipated in the stack
per access. However, smaller sizes of data cache could in-
creases the miss rate, requiring more accesses to L2 cache.
This not only affects the performance (because the L2 cache
has a higher latency) but also increases the energy dissipa-
tion in L2 cache. For VORTEX, it can be observed that per-
centage reduction in energy for larger data cache (config1)
is less than that for a smaller data cache (config2). This is
because for the smaller data cache configuration (config2)
and stack, the miss rate in the cache reduced considerably
compared to the implementation without a stack memory.
Since a miss contributes to more dissipation in energy than
a hit, for VORTEX, the percentage reductions in the cache
for config2 is higher than that of config1. The maximum re-
duction in energy dissipation is achieved for PERL, 32.5%
in config1. On average, the percentage reduction reduc-
tion in energy dissipation for data cache (config1) is 19.5%
for various SPECint95 and MediaBench benchmarks. The
average energy reductions in data cache for MediaBench
benchmarks (JPEG, MPEG, G721, RASTA, and FFT) are
seen to be less than that for SPECint95 benchmarks (COM-
PRESS, PERL, GO, GCC, VORTEX, and M88KSIM). This
could be because of the smaller data set used for the Me-
diaBench benchmarks which leads to reduced number of
misses in data cache2. Nevertheless, we still observe sig-
nificant energy reductions for the MediaBench benchmarks
as well.

Figure 5. Plot showing % reduction in L2
cache energy for various configurations
Figure 5 shows the percentage reduction in L2 cache en-

ergy using the stack based architecture compared to the tra-

2Note that a cache miss consumes more power than a hit because of an
additional write in tag array and data array due to cache replacement.

ditional architecture for the different data cache configura-
tions listed in Table 3. As expected, the energy dissipation
reductions were seen to be proportional to the reduction in
accesses to L2 Cache. Because of the reduction in accesses
to data cache with the use of stack hardware, the accesses
to L2 cache are also reduced. However, since the accesses
to L2 cache due to misses in L1 Instruction cache do not
change significantly, the overall reduction in accesses to L2
cache is not significant. The percentage reduction in en-
ergy has been observed to be 1.9% on average for config1
over the benchmarks on which experiments are conducted.
As stated earlier, we think the reductions in L2 cache en-
ergy for the MediaBench benchmarks have been minimal
because of fewer misses at the L1 data cache.

To evaluate the total clock cycles for execution of the
application in each configuration, we used a 1 cycle latency
for accesses to L1 caches and stack, 6 cycle latency for ac-
cesses to L2 cache, and a 18 cycle latency for main memory
accesses. However, the improvement in performance is not
significant and varied from 2% to a maximum of 5%. The
improvement in performance was expected to be marginal
because both the stack and L1 data cache accesses are as-
sumed to have the same latency. The improvements how-
ever are because of the reduced number of misses in L1
data cache when the stack based memory subsystem is used.
Note that since stack accesses account for significant per-
centage of total accesses (apprx. 25.5% for SPECint 95 and
MediaBench), if the stack access latency can be reduced,
there would be a significant improvement in performance
in addition to the reductions in energy.

5. Related work
The work related to this paper can broadly be classified

under three categories: different memory organizational
techniques for low power, optimizations related to function
calls, and use of stacks in system designs.

The memory subsystem in programmable embedded
systems has long been identified as a major contributor
for the total system level power dissipation. Previous re-
search has generated related work on several fronts, focus-
ing mainly on various cache configurations and memory or-
ganizations for low power. Su and Despain evaluated dif-
ferent low power techniques like block buffering and sub-
banking[20]. Kin et al. proposed a filter cache[9] as an-
other level of caching for reducing the power dissipation
at the cost of performance. The Loop cache[11] is pro-
posed to reduce the power dissipation in instruction cache.
The loop cache exploits the locality in loops by storing the
loop in a cache closer to the processor. The loop cache
eliminates the need for tag comparison and because of its
smaller size yields significant power reductions. Scratch
pad memories(SPM)[14] are often used in embedded sys-
tem to read/write the most often used data during program



execution. Effective exploitation of a SPM can improve
program performance (by reducing effective data access
time) and reduce energy consumption as on chip memories
consume less per access energy than off chip DRAMs[3].
However, the designer still has to analyze the program to
partition the data between the off-chip memories and SPMs.

Inline function expansion has been proposed in the liter-
ature for eliminating overhead involved in function call in-
vocation and may lead to improved performance. This tech-
nique enlarges the scope of other optimizations which could
lead to enhanced performance[18]. Although this technique
eliminates the need for context save/restore, it could lead
to increased code size. Increased code size in turn could
have implications on instruction cache misses and hence the
power dissipation in instruction cache.

A lot of work has been presented in the literature on
stack computers in which all the computations for an appli-
cation rely on stack based memory organization[10]. More
recently, the instruction set corresponding to stack architec-
tures are used for compiling Java programs on a Java Virtual
Machines (JVM) because of their compact encoding[12]. In
the domain of high level synthesis, hardware stacks are pro-
posed to exploit regularity of accesses[2, 7]. Some DSPs[1]
and general purpose processors have a primitive hardware
stack (8-32 word deep) used for storing return addresses.
The stack was meant to eliminate cache misses during the
retrieval of return address. Although we too propose a hard-
ware stack, our focus is to reduce the power dissipation by
exploiting the accesses that occur in programmable proces-
sors during the execution of function calls.

6. Conclusions and Future Work
In this paper, we showed that storing and retrieving

the callee-saved registers and return address registers in
a separate stack memory organization yields significant
power/energy reduction compared to a traditional cache
based implementation. Experiments on the SPECint 95 and
MediaBench benchmarks show a reduction of up to 32.5%
in energy dissipation. Also, using this technique, the perfor-
mance improves marginally by 2-5%. In our experiments,
we considered a SRAM based stack implementation. Fu-
ture work will involve development of an efficient stack im-
plementation that exploits the stack characteristics for low
power. In addition to callee-saved registers, caller-saved
registers also can be stored and retrieved from the stack for
further reduction in power. However, not all caller-saved
registers can be stored in the stack. This is because a smart
compiler can store the caller-saved register once but might
want to retrieve it multiple times across different function
calls. Future work will involve modifying the compiler to
use the stack for storing the applicable caller-saved regis-
ters in addition to callee-saved registers and return address
register. Also we plan to quantify the overhead in the mem-

ory management unit because of the stack based memory
organization.
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