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Abstract pose a memory organization supporting function calls for
programmable embedded systems that reduces the system
This paper presents a on-chip stack based memory or-level power/energy dissipation and at the same time gives
ganization that effectively reduces the energy dissipation inmarginal improvements in performance.
programmable embedded system architectures. Most em- In the context of software development for embedded
bedded systems use the notion of stack for implementatiosystems, Modular programming[8] has gained tremendous
of function calls. However, such stack data is stored in pro- significance in the development of embedded system soft-
cessor address space, typically in the main memory and acware. The efficient use of modules (called as functions)
cessed through caches. Our analysis of several benchmarkgases the tasks of understanding, re-usability of code, inde-
show that the callee saved registers and return addressegpendent software development and assists code size reduc-
for function calls call constitute a significant portion of the tion. However, in the context of a programmable embedded
total memory accesses. We propose a separate stack-basesl/stem architecture, this demands a focus towards efficient
memory organization to store these registers and return ad-implementation of function calls. For every function call
dresses. Our experimental results show that effective use ofhat occurs during program execution, the application saves
such stack-based memories yield significant reductions inand retrieves the context by saving a few registers before
system power/energy, while simultaneously improving thethe execution of call and retrieving them once the function
system performance. Application of our approach to the call execution is complete. Such register-saves contribute to
SPECIint95 and MediaBench benchmark suites show a re-a significant portion of the total memory accesses for many
duction of up to 32.5% reduction in energy in L1 data cache, applications, resulting in a significant increase in the power
with marginal improvements in system performance. dissipation. Since the register saves and restores can be im-
plemented using a Last-In-First-Out (LIFO) policy, efficient
stack memory organizations could be used for saving these
registers. In this paper, we propose the use of a separate on-
chip stack based memory organization for implementation
of function calls that leads to improved performance, and
more significantly, reduced power/energy consumption.
The paper is organized as follows. In Section 2, we
present the motivation behind our proposal to use a sep-

tery life in portable battery operated devices. Also, reliabil- arate stac_k megmor_y o;ggmza_t;)on :;)r regucnon n p()jowerk
ity concerns and higher packaging costs for absorbing theConsumption. Section 3 describes how the proposed stac

heat dissipated in highly dense chips have made the poweFnemory organization can be integrated into_ existing pro-
dissipation problem even more significant. Researchersgrammable embedded system designs. Section 4 elaborates

have proposed various technigues from the algorithmic and®" € Setup used for our experiments, the models used for
system level[6, 15] to circuit and layout level[15, 16]. estimation of energy dissipation, and presents results show-

Also different dynamic voltage scaling algorithms[19, 17] ing the efficacy of our technique in terms of reduction in

and dynamic power management[13] strategies are pro_energy dissipation. Related work is presented in Section 5

posed to reduce the power dissipation. While some of and Section 6 concludes with a discussion of future work.

the power reduction techniques improve performance, some
techniques degrade performance. In this paper, we pro-

1. Introduction

Current day embedded system designers are facing con
flicting requirements of higher performance and lower
power consumption. Power/Energy consumption in particu-
lar has received increased attention as it determines the ba
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2. Motivation B Retum Addresses B Calee-saved Registers

In this section, we present different application statistics
for the SPECint 95 and MediaBench benchmarks that moti-
vate the necessity of a separate stack memory organization.
First we describe the protocol typically used for the execu-
tion of a function call on a processor. Then we show some
experimental results that form the basis of our proposal for
a separate stack memory organization.

Although the machine code for implementing a function
call depends on the source language, on the compiler,
and on the architecture, compilers for most processors
and popular source languages (e.g., C) generate code thal
follow a similar generic protocol. A typical assembly code
for a function call follows the steps listed below. (Note that
when function B is called from function A, A and B are
referred to as caller and callee functions respectively.) Benchmark

Percentage of Total Memory
References

Caller initiated steps: Figure 1. Plot showing percentage of stack
accesses of the total memory references
e Save caller-saved registers
Figure 1 shows the percentage of memory accesses
e Pass arguments to callee caused due to stack accesses for several SPECint 95 and
MediaBench benchmarks. The experiments were run us-

Execute call instruction . . . - .
¢ ing the sim-cache simulator within the SimpleScalar tool

Callee initiated steps: set [5]. The sim-cache simulator is modified to count the
_ stack accesses and also for counting the maximum depth of
e Allocate memory for local variables call functions during the execution of an application. The

SimpleScalar architecture consists of 9 callee-save registers
and a designated return address register. So potentially there
e Execute the function call can be 20 stack accesses per function call (10 stores and 10
loads). However, some function calls need not have any
¢ Retrieve the return address and callee-saved registers stack accesses. Even saving of the return address can be
avoided if there is no other function call from the current
function. In such a case, the return address register would

Most processor architectures have designated register§©t b modified by the callee-function thereby eliminating
for storing return address and registers that caller and called€ N€€d for saving the return address register.
need to save. Callee-saved registers and caller-saved reg- 12ble 1 shows different metrics for each benchmark
isters are saved only if the callee function attempts to use: . C0lUmn 2 shows the benchmark program, Column 2
the corresponding registers during its execution. Similarly, ShOWs the total number of instructions executed for the
the return address register is saved only if there is a neste§°responding benchmark, Column 3 indicates the total
function call from the callee function. While the local vari- unction calls in the benchmark execution, Column 4 in-
ables and the arguments for the callee function are accesseflicates the maximum call depth during the execution, Col-
randomly during the function execution, the callee saved-UMn 5 indicates the total memory references in the bench-
registers and the return address register are stored and rdnark execution, Column 6 indicates the number of return
trieved only once. Also these registers can be saved anddress accesses (stores+loads), and Column 7 indicates
retrieved in a LIFO order. Traditionally these registers are (€ callee-save register accesses in the program execution
saved in main memory accessed through different levels of(Stores+loads). We make the following observations based
caches. In this work, we propose to use a separate memor{" data from Table 1 and Figure 1:
module, an on-chip stack, for storing the callee-saved reg-
isters and return address register instead of storing them in
main memory. Henceforth we refer to the callee-save reg-
ister and return address register stores and loads as stack
accesses. 1All values are in Millions, except for call depth values

e Save callee-saved registers and return address

e Exit from function call

e Stack accesses (return address and saved register -
reads and writes) contribute to an average of 25.5%
of the total memory accesses.




Program Total | Total Call | Memory | Return | Callee
Instrs. | Calls | Depth Refs. | Addr. Reg.

(mil) | (mil) (mil) (mil) (mil)

compress 35.7 0.9 9 13.4 0.5 0.7
perl 2391.5| 435 23 1044.1 77.4 | 354.7
gcc 1273.2 | 17.2 41 513.0 276 | 1710
go 16389.6 | 178.2 33 4745.6 65.8 | 706.5
vortex 9051.6 | 188.7 29 4763.0| 372.1| 14735
m88ksim 493.0 7.4 13 127.3 8.9 22.9
ipeg 15.8 0.1 12 0.5 0.1 0.6
mpeg 171.2 15 17 329 2.7 4.6
g721 276.9 2.7 9 48.0 1.8 8.9
rasta 39.0 0.6 15 12.2 0.5 2.8
fft 137.2 2.3 10 31.7 11 7.6

Table 1. Various metrics for SPECint 95 and

MediaBench for stack memory analysis

to understand the new instructions. Although this might be
a feasible implementation, the implementation cost would
be significant considering the modifications needed for both
compiler and processor hardware. However, in addition to
the power savings in the L1 Data caches, this method will
yield savings on the data address bus. This is because ac-
cesses to the stack within the processor requires that only
the load/store signals be communicated unlike traditional
cache accesses that require the whole address.
Memory-mapped stack In this method, we propose to
map the stack module to the processor data address space.
In this case, the compiler needs to be modified so that it
uses the address space corresponding to the stack for the
register-saves and restores. The graphical view of this mem-
ory mapping is shown in Figure 3 and can be compared

e The maximum call depth of 41 is observed for ‘GCC’ with the traditional implementation in Figure 2. In the
benchmark. Since for each call a maximum of 10 reg- memory-mapped method, the stack accesses go directly to a
isters can be saved, the worst-case situation requires stack memory which shares the address space with the main
stack of size 410 words.

memory. The other data reads/writes in the program execu-
tion go to the data cache (DCache). Note that although the

Itis to be noted that an access to stack (because of itsgiack is shown along side the main memory, the stack is still
smaller stack size and absence of tag match) would con-jntended to be on-chip and only the address space is shared

sume lesser power/energy than a cache access. Since §gih the main memory.

many as 42% (for VORTEX) of the total memory accesses
are diverted from a high power consuming memory module
to low power module, we believe that use of a stack mem-
ory organization will help reduce system level power dissi-
pation significantly. Although the reductions are shown for
the execution of various benchmarks on the SimpleScalar
architecture, we believe that the same characteristics would
be valid for most of the popular embedded processor archi-
tectures.

3. Stack Memory Organization

A traditional embedded processor memory architecture
is shown in Figure 2. The processor core has separate in-
struction and data buses connecting to instruction and data
caches respectively. The memory hierarchy consists of an-
other level of unified cache (L2 Cache) before accesses are
made to main memory. In this section we describe two
design methods: In-processor stack and Memory-mapped
stack for integrating the hardware stack into the system level
design. We elaborate on each of these methods and give
some critical analysis on the overheads involved in each of
the proposed implementations.

In-processor stack In this method, we propose to inte-
grate the stack into the existing processor architecture. This
necessitates two extra instructions: push and pop to store
and load contents from the stack. So the compiler with the
knowledge of stack hardware in the processor needs to as-

Ingtruction
address bus
" | ICache <—| .
Processor | Ingtruction bus L2 Main
Core Databus _,J Cache Memory
DCache
Data
address bus
Figure 2. Traditional processor memory archi-
tecture
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Figure 3. Stack based processor memory ar-
chitecture

sociate the register-saves and restores to the push and pop Table 2 shows the comparison of the design changes that
instructions respectively. In addition to the compiler mod- would be needed for each of the proposed implementation
ifications, this method will require the processor pipeline methods. If the processor data address space is not critical,



we suggest the use of memory mapped stack implementa-
tion since it does not require any changes to the processor
core.

Implementation | Address | Compiler | Processor|
type Mapping | Changes| Changes
In-processor NO YES YES
Memory mapped, YES YES NO

Table 2. Comparison of implementation
changes for proposed methodologies

Percentage Reduction in Energy

In both the proposed methodologies, the critical design
issue is to decide the size of the stack. In embedded system
domain, since the application is often known, the maximum
depth of function calls can be evaluated by running exhaus- Benchmark
tive simulations. The stack depth can then be calculated as
the product of maximum function call depth and the max-
imum callee register saves per function call. However, in

some applications, it may not be possible to determine the Note that compared to the traditional architectural imple-

maximum function call depth. In such cases, an extrapo- . :
; . mentation, the stack based architecture reduces the accesses
lated value could be used to determine the stack size. To

) to L1 data cache and L2 cache. The energy dissipation in
account for the eventuality of a stack overflow, the memory . .
; op . ° the processor core would remain the same. Also using the
management unit could be modified to enable the saving

. . stack based architecture, there is minimal variation in ac-
and retrieval of stack registers from the L1 data cache when : .
. . cesses to main memory. So we believe that the compared
the stack is full. In our analysis, we assume that the stack

. . to traditional implementation, the stack based architecture
size can be determined and hence the memory management. ; .
: . L will have reductions in L1 data cache and L2 cache. There-
unit would not incur any significant power or performance . Lo
fore only these units are modeled to see the reduction in
overhead. SR
energy/power. To compute the energy/power dissipations
we use the power models described in Wattch[4].

4. Experimental Setup and Results Figure 4 shows the percentage reductions in energy
We consider a traditional processor memory architec- dissipation in data cache achieved using thg stack based
ture, with processor accessing memory through separate L"chitecture.  The percentage reduction is calculated
instruction and data cache, and an unified L2 cache show?S Jored = 100 * [Epcacherrad — (EDCM;’LeStack +
in Figure 2 as the reference architecture. We assume thaf*Stack)l/ EDcacheTrad Where, Epcacherrad 1S the en-
both L1 and L2 caches are on-chip. For showing the effi- €r9Y d|SS|pat_|on in data ca_ch_e in trqdmonal archl_tecture,
ciency of the proposed technique we simulate the memory-EDcachestack IS the energy dissipation in data cache in stack
mapped stack methodology. The graphical view of the pro- Pased architecture anflls; . is the energy dissipation in
posed architecture is shown in Figure 3. This technique re-Stack. Since the energy dissipation in a cache depends on
quires identifying the stack reads and writes at the compile its size and ponflguratlon, the re_ductlc_)ns are shown for three
phase and generating code by mapping these reads/write&‘?presemat've data cache configurations. Tab!e 3 shows the
to the stack address space. However, in our experimentsSiZ€ and parameters of eaqh data cache cqnflguratlon. The
we use the simulator to emulate the changes required in th?rameters are expressed in term@\. of Lines x Block
compiler by identifying the memory loads and stores cor- SiZ€ X Associativity x Word Size).
responding to the stack. In our experiments we consider a
512x32 SRAM based stack. Although a more efficient and
low power custom stack could be designed, for the sake of
simplicity in modeling the power, we use a SRAM based
stack in our experiments. The size of the stack is decided
based on the maximum stack depth that can be reached dur-
ing the program execution as explained in Section 2. The
SPECint 95 and MediaBench benchmarks are used in the
experiments to show the efficiency of our proposed tech- Figure 4 shows a significant reduction in energy for all
nique. configurations of data cache for various benchmarks. It can

Figure 4. Plot showing % reduction in L1 data
cache energy for different configurations

Size | Parameters
Configl | 8 KB | 256x32x1x1
Config2 | 4 KB | 256x16x1x1
Config3 | 2KB | 128x16x1x1

Table 3. Different L1 data cache configura-
tions used in experiments



be observed from Figure 4 that the percentage reduction inditional architecture for the different data cache configura-
energy for data caches using stack hardware, reduces wittions listed in Table 3. As expected, the energy dissipation
the size of data cache. This is because for smaller dataeductions were seen to be proportional to the reduction in
cache sizes the energy dissipation per access would be moraccesses to L2 Cache. Because of the reduction in accesses
and more comparable to the energy dissipated in the stacko data cache with the use of stack hardware, the accesses
per access. However, smaller sizes of data cache could into L2 cache are also reduced. However, since the accesses
creases the miss rate, requiring more accesses to L2 cachéo L2 cache due to misses in L1 Instruction cache do not
This not only affects the performance (because the L2 cachechange significantly, the overall reduction in accesses to L2
has a higher latency) but also increases the energy dissipaeache is not significant. The percentage reduction in en-
tion in L2 cache. For VORTEX, it can be observed that per- ergy has been observed to be 1.9% on average for configl
centage reduction in energy for larger data cache (configl)over the benchmarks on which experiments are conducted.
is less than that for a smaller data cache (config2). This isAs stated earlier, we think the reductions in L2 cache en-
because for the smaller data cache configuration (config2)ergy for the MediaBench benchmarks have been minimal
and stack, the miss rate in the cache reduced considerablpecause of fewer misses at the L1 data cache.

compared to the implementation without a stack memory. To evaluate the total clock cycles for execution of the
Since a miss contributes to more dissipation in energy thanapplication in each configuration, we used a 1 cycle latency
a hit, for VORTEX, the percentage reductions in the cache for accesses to L1 caches and stack, 6 cycle latency for ac-
for config2 is higher than that of configl. The maximum re- cessesto L2 cache, and a 18 cycle latency for main memory
duction in energy dissipation is achieved for PERL, 32.5% accesses. However, the improvement in performance is not
in configl. On average, the percentage reduction reducsignificant and varied from 2% to a maximum of 5%. The
tion in energy dissipation for data cache (configl) is 19.5% improvement in performance was expected to be marginal
for various SPECint95 and MediaBench benchmarks. Thebecause both the stack and L1 data cache accesses are as-
average energy reductions in data cache for MediaBenchsumed to have the same latency. The improvements how-
benchmarks (JPEG, MPEG, G721, RASTA, and FFT) are ever are because of the reduced number of misses in L1
seen to be less than that for SPECint95 benchmarks (COM-data cache when the stack based memory subsystem is used.
PRESS, PERL, GO, GCC, VORTEX, and M88KSIM). This Note that since stack accesses account for significant per-
could be because of the smaller data set used for the Me<centage of total accesses (apprx. 25.5% for SPECint 95 and
diaBench benchmarks which leads to reduced number ofMediaBench), if the stack access latency can be reduced,
misses in data cactfe Nevertheless, we still observe sig- there would be a significant improvement in performance
nificant energy reductions for the MediaBench benchmarksin addition to the reductions in energy.

as well.

5. Related work

The work related to this paper can broadly be classified
under three categories: different memory organizational
techniques for low power, optimizations related to function
calls, and use of stacks in system designs.

The memory subsystem in programmable embedded
systems has long been identified as a major contributor
for the total system level power dissipation. Previous re-
search has generated related work on several fronts, focus-
ing mainly on various cache configurations and memory or-
ganizations for low power. Su and Despain evaluated dif-
ferent low power techniques like block buffering and sub-
banking[20]. Kin et al. proposed a filter cache[9] as an-
other level of caching for reducing the power dissipation
at the cost of performance. The Loop cache[l11] is pro-
posed to reduce the power dissipation in instruction cache.
Figure 5. Plot showing % reduction in L2 The loop cache exploits the locality in loops by storing the
cache energy for various configurations loop in a cache closer to the processor. The loop cache

Figure 5 shows the percentage reduction in L2 cache en-gjiminates the need for tag comparison and because of its

ergy using the stack based architecture compared to the tragmajier size yields significant power reductions. Scratch

2Note that a cache miss consumes more power than a hit because of aPad memories_(SPM)[14] are often used in em_bedded Sys-
additional write in tag array and data array due to cache replacement. ~ tem to read/write the most often used data during program

‘ Config! & Config2 O Configd ‘

% Reduction in L2 Cache Energy
Dissipation

Benchmark




execution. Effective exploitation of a SPM can improve ory management unit because of the stack based memory

program performance (by reducing effective data accessorganization.

time) and reduce energy consumption as on chip memories

consume less per access energy than off chip DRAMs[3].7. Acknowledgements
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