

Energy-Aware Adaptive Checkpointing in Embedded Real-Time Systems*

Ying Zhang and Krishnendu Chakrabarty
Department of Electrical & Computer Engineering

Duke University
Durham, NC 27708, USA

E-mail: { yingzh, krish} @ee.duke.edu

Abstract
 We present an integrated approach that provides fault
tolerance and dynamic power management for a real-time
task executing in an embedded system. Fault tolerance is
achieved through an adaptive checkpointing scheme that
dynamically adjusts the checkpointing interval during task
execution. Adaptive checkpointing is then combined with a
dynamic voltage scaling scheme to achieve power reduction.
The resulting energy-aware adaptive checkpointing scheme
uses a dynamic voltage scaling criterion that is based not
only on the slack in task execution but also on the
occurrences of faults during task execution. Simulation
results show that compared to previous methods, the
proposed approach significantly reduces power consumption
and increases the likelihood of timely task completion in the
presence of faults.

1. Introduction

 Embedded systems often operate in harsh environmental
conditions that necessitate the use of fault-tolerant
computing techniques to ensure dependability. These
systems are also severely energy-constrained since system
lifetime is determined to a large extent by the battery
lifetime. In addition, many embedded systems execute real-
time applications that require strict adherence to task
deadlines [1]. In this paper, we present an integrated
approach that provides fault tolerance and dynamic power
management for a real-time task executing in an embedded
system.
 Dynamic voltage scaling (DVS) has emerged as a
popular solution to the problem of reducing power
consumption during system operation [2, 3, 4]. Many
embedded processors are now equipped with the ability to
dynamically scale the operating voltage. Since a reduction in
voltage results in a corresponding drop in the processor
speed, a number of techniques have been proposed recently
to balance real-time responsiveness with low-energy task
execution.*

*Supported in part by DARPA and Army Research Office under
Award No. DAAD19-01-1-0504. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the view of the
DARPA and ARO agencies.

 Fault tolerance is typically achieved in real-time systems
through on-line fault detection [5], checkpointing and
rollback recovery [6]. Figure 1 il lustrates checkpointing and
rollback recovery. At each checkpoint, the system saves its
state in a secure device. When a fault is detected, the system
rolls back to the most recent checkpoint and resumes normal
execution.
 Checkpointing increases task execution time and in the
absence of faults, it might cause a missed deadline for a task
that completes on time without checkpointing. In the
presence of faults however, checkpointing can increase the
likelihood of a task completing on time with the correct
result. Without checkpointing, a fault necessitates the restart
of the task. Frequent checkpointing reduces re-computation
time due to faults, but it increases task execution time. On
the other hand, infrequent checkpointing has less impact on
task execution in the absence of faults, but it increases the
amount of rollback that must be performed after a fault is
detected. Therefore, the checkpointing interval, i.e., duration
between two consecutive checkpoints, must be carefully
chosen to balance checkpointing cost (the time needed to
perform a single checkpoint) with the rollback time.
 Dynamic power management and fault tolerance for
embedded real-time systems have been studied as separate
problems in the literature. DVS techniques for power
management do not consider fault tolerance [2, 3, 4], and
checkpoint placement strategies for fault tolerance do not
address dynamic power management [7, 8, 9]. We present an
integrated approach that facilitates fault tolerance through
checkpointing and power management through DVS. To the
best of our knowledge, this is the first approach that
addresses these two issues in conjunction. The main
contributions of this paper are as follows.
• We introduce an adaptive checkpointing scheme that

dynamically adjusts the checkpointing interval during task
execution, based on the frequency of fault occurrences and
the amount of time remaining before the task deadline.

• The proposed adaptive checkpointing scheme is tailored to
handle not only a random fault-arrival process, but it is
also designed to tolerate up to k fault occurrences.

• Adaptive checkpointing is then combined with a DVS
scheme to achieve power reduction and fault tolerance
simultaneously. The resulting energy-aware adaptive
checkpointing scheme uses a dynamic speed scaling
criterion that is based not only on the slack in task

1530-1591/03 $17.00 2003 IEEE

Figure 1: Checkpointing and rollback recovery.

execution but also on the occurrences of faults during task
execution.

 We assume throughout that faults are intermittent or
transient in nature, and that permanent faults are handled
through manufacturing testing or field-testing techniques
[10]. We also assume a “soft” real-time system in which
even though it is important to meet task deadlines, missed
deadlines do not lead to catastrophic consequences [11].
 The rest of the paper is organized as follows. Section 2
introduces some relevant background material on
checkpointing. Section 3 presents our adaptive
checkpointing scheme for real-time systems. In Section 4,
we describe how dynamic voltage scaling (DVS) is
incorporated into the adaptive checkpointing scheme.
Conclusions and directions for future work are presented in
Section 5.

2. Checkpointing in real-time systems
 In this section, we present a classification of
checkpointing schemes for real-time systems that have been
presented in the literature.
2.1 On-line scheme versus off-line schemes
 An off-l ine checkpointing scheme determines the
checkpointing interval for a task a priori, i.e., before task
execution. Most known checkpointing schemes for real-time
systems belong to this category [9, 12, 13]. A drawback here
is that the checkpointing interval cannot be adapted to the
actual fault occurrence during task execution. An on-line
scheme in which the checkpointing interval can be adapted
to fault occurrences is therefore more desirable. However,
current on-line checkpointing schemes [8] provide only
probabilistic guarantees on the timely completion of tasks, as
described next.
2.2 Probabilistic versus deterministic guarantees
 Some checkpointing schemes, e.g. [9, 12], assume that
faults occur as a Poisson process with arrival rate λ. These
schemes use a checkpointing interval that maximizes the
probability that a task completes on time for a given fault
arrival rate λ. Hence the real-time guarantees in these
schemes are probabilistic. Other checkpointing schemes,
e.g., [13], offer deterministic real-time guarantees under the
condition that at most k faults occur during task execution. A
drawback of these k-fault-tolerant schemes is that they
cannot adapt to actual fault occurrences during task
execution.
2.3 Equidistant versus var iable checkpointing interval
 Equidistant checkpointing, as the term implies, relies on

the use of a constant checkpointing interval during task
execution. This is typically used with off-line checkpointing
schemes. It has been shown in the literature that if the
checkpointing cost is C and faults arrive as a Poisson
process with rate λ, the mean execution time for the task is

minimum if a constant checkpointing interval of λ/2C is
used [12]. We refer to this as the Poisson-arrival approach.
However, the minimum execution time does not guarantee
timely completion of a task under real-time deadlines. It has
also been shown that if the fault-free execution time for a
task is E, the worst-case execution time for up to k faults is
minimum if the constant checkpointing interval is set to

kEC / [13]. We refer to this as the k-fault-tolerant
approach. A drawback with these equidistant schemes is that
they cannot adapt to actual fault arrivals. For example, due
to the random nature of fault occurrences, the checkpointing
interval can conceivably be increased halfway through task
execution if only a few faults occur during the first half of
task execution. Another drawback of equidistant
checkpointing schemes is that they do not exploit the
advantages offered by DVS for dynamic power
management. For these reasons, we consider on-line
checkpointing with variable checkpointing intervals.
2.4 Constant versus var iable checkpointing cost
 Most prior work has been based on the assumption that
all checkpoints take the same amount of time, i.e., the
checkpointing cost is constant. An alternative approach,
taken in [8], but less well understood, is to assume that the
checkpointing cost depends on the time at which it is taken.
We use the constant checkpointing cost model in our work
because of its inherent simplicity.
 Our goal in this paper is to develop a two-priority
energy-aware checkpointing scheme for real-time systems.
The first priority is to meet the real-time deadline under
faulty conditions. The second priority is to save energy
consumption for real-time execution in faulty conditions.

3. Adaptive checkpointing
 We are given the following parameters for a real-time
task: deadline D; execution time E when there are no fault in
the system (E < D); an upper limit k on the number of fault
occurrences that must be tolerated; checkpointing cost C.
We make the following assumptions related to task
execution and fault arrivals:
• Faults arrive as a Poisson process with rate λ.
• The task starts execution at time t = 0.
• The times for rollback and state restoration are zero.
• Faults are detected as soon as they occur, and no faults

occur during checkpointing and rollback recovery.
 We next determine the maximum value of E for the
Poisson-arrival and the k-fault-tolerant schemes beyond
which these schemes will always miss the task deadline. Our
proposed adaptive checkpointing scheme is more likely to
meet the task deadline even when E exceeds these threshold
values. If the Poisson-arrival scheme is used, the effective
task execution time in the absence of faults must be less than

Deadline

Checkpointing
interval

Normal execution

Checkpoint
Rollback

Fault
occurrence

Checkpoint

Task
release time

Procedure interval(Rd,Rt,C,Rf,λ)
1. Exp_fault = λRt;
2. if (Exp_fault ≤ Rf) {
3. if (Rt > Thλ(Rd,λ,C)) then
 chk_interval = I3(Rt,Rd,C);
4. else if (Rt > Th(Rd,Rf,C)) then
 chk_interval = I2(Rt,Exp_fault,C);
5. else chk_interval = I2(Rt,Rf,C);}
6. else { if (Rt > Thλ(Rd,λ,C)) then
 chk_interval = I3(Rt,Rd,C);
7. else chk_interval = I1(C, λ);}
8. return chk_interval;

Procedure adapchp(D,E,C, k,λ)
1. Rt = E; Rd = D; Rf = k; Itv = interval(Rd,,Rt,C,Rf, λ);
2. while (Rt > 0) do{
3. if (Rt > Rd) break;
4. Case 1: During normal execution, do{
 4.1 Insert checkpoints with interval length Itv;
 4.2 Update Rt, Rd;}
5. Case 2: Upon fault occurrence, do{
 5.1 Roll back and restore status;
 5.2 Rf = Rf − 1;
 5.3 Itv = interval(Rd,Rt,C,Rf,λ);
 5.4 Resume execution;} }

Figure 2: Procedure for calculating the checkpointing interval.

the deadline D if the probability of timely completion of the
task in the presence of faults is to be nonzero. This implies

that DCCEE ≤−+)1)/2/((λ , from which we get the

threshold:

)2/1/()(CCDE th λλ ++= (1)

Here)1)/2/((−λCE refers to the number of checkpoints.

The re-execution time due to rollback is not included in the
formula for Eλth. If E exceeds Eλth for the Poisson-arrival
approach, the probability of timely completion of the task is
simply zero. Therefore, beyond this threshold, the
checkpointing interval must be set by exploiting the slack
time instead of util izing the optimum checkpointing interval
for the Poisson-arrival approach. The checkpointing interval
Im that barely allows timely completion in the fault-free case
is given by DCIEE m =−+)1/(, from which it follows

that)/(ECDECI m −+= . To decrease the checkpointing

cost, we set the checkpointing interval to mI2 in our

adaptive scheme (details are given in Section 3.1).
 A similar threshold on the execution time can easily be
calculated for the k-fault-tolerant scheme. In order to satisfy
the k-fault-tolerant requirement, the worst-case re-execution
time is incorporated. The following inequality must hold:

 DkECkCkECEE ≤+−+ /)1)//((.

This implies the following threshold on E:

 2)()(2)2)((kCCDkCkCCDEkth ++−++= (2)

If the execution time E exceeds Ekth, the k-fault-tolerant
checkpointing scheme cannot provide a deterministic
guarantee to tolerate k faults.

3.1 Checkpointing algor ithm
 The adaptive checkpointing algorithm attempts to
maximize the probability that the task completes before its
deadline despite the arrival of faults as a Poisson process
with rate λ. A secondary goal is to tolerate, as for a possible,
up to k faults. In this way, the algorithm accommodates a

Figure 3: Adaptive checkpointing procedure.

pre-defined fault-tolerance requirement (handle up to k
faults) as well as dynamic fault arrivals modeled by the
Poisson process. We list below some notation that we use in
our description of the algorithm:

1) λλ /2),(1 CCI = denotes the checkpointing interval for

the Poisson-arrival approach.

2) kECCkEI /),,(2 = denotes the checkpointing interval

for the k-fault-tolerant approach.

3))/(22),,(3 ECDECICDEI m −+== denotes the

checkpointing interval if the Poisson-arrival approach is
not feasible for timely task completion.

4) Rt denotes the remaining execution time. It is obtained by
subtracting from E the amount of time the task has
executed (not including checkpointing and recovery).

5) Rd denotes the time left before the deadline. It is obtained
by subtracting the current time from D.

6) Rf denotes an upper bound on the remaining number of
faults that must be tolerated.

7) The threshold Thλ(Rd,λ,C) is obtained by replacing D
with Rd in (1).

8) The threshold Th(Rd,Rf,C) is obtained by replacing D
with Rd and k with Rf in (2).

 The procedure interval(Rd,Rt,C,Rf,λ) for calculating the
checkpointing interval is described in Figure 2, and the
adaptive checkpointing scheme adapchp(D,E,C,k,λ) is
described in Figure 3. The adaptive checkpointing procedure
is event-driven and the checkpointing interval is adjusted
when a fault occurs and rollback recovery is performed.
 In Figure 2, we first calculate the number of faults
Exp_fault that are expected to occur in the remaining time Rt
(Line 1). If Exp_fault is less than or equal to Rf, the k-fault-
tolerant requirement is deemed to be more stringent than the
Poisson-arrival criterion (Line 2). In Line 3, a check is
performed to see if Rt exceeds the threshold Thλ(Rd,λ,C). If
this condition is satisfied, the checkpointing interval is set to
I3(Rt,Rd,C). In Line 4, a check is performed to see if Rt
exceeds threshold Th(Rd,Rf,C) but is below Thλ(Rd,λ,C). If
this condition is satisfied, the checkpointing interval is set to
I2(Rt,Exp_fault,C). If the k-fault-tolerant threshold is met,
the checkpointing interval is set to I2(Rt,Rf,C) in Line 5.
Lines 6-7 handle the case when the k-fault-tolerant

requirement is deemed to be less stringent than the Poisson-
arrival criterion.
 In Figure 3, Line 1 initializes the parameters. In Line 2, a
check is performed to see if the task has been completed.
Line 3 checks for the deadline constraint. Line 4 handles the
case for normal execution. It inserts checkpoints and updates
Rd and Rt. Line 5 handles the case for fault occurrences.

3.2 Simulation results on adaptive checkpointing
 We carried out a set of simulation experiments to
evaluate the adaptive checkpointing scheme (referred to as
ADT) and to compare it with the Poisson-arrival and the k-
fault-tolerant checkpointing schemes. Faults are injected into
the system using a Poisson process with various values for
the arrival rate λ. Due to the stochastic nature of the fault
arrival process, the experiment is repeated 10,000 times for
the same task and the results are averaged over these runs.
We are interested here in the probability P that the task
completes on time, i.e., either on or before the stipulated
deadline. As in [11], we use the term task utilization U to
refer to the ratio E/D.
 For λ < 0.002 and U < 0.7 (low fault arrival rate and low
task utilization), the performances of the three schemes,
measured by the probability of timely completion of the
task, are comparable. For λ > 0.002 and U > 0.7 (relatively
high fault arrival rate as well as high task utilization), the
adaptive checkpointing scheme clearly outperforms the other
two schemes; the results are shown in Table 1. The value of
P is as much as 30% higher for the ADT scheme. Note that
even though the results are reported only for D = 10000, C =
10, and k = 10, similar trends were observed for other values
of D, C, and k. For λ < 0.002 and U ≥ 0.9 (low fault arrival
rate and high task utilization), the ADT scheme outperforms
the other two schemes; see Table 2.
 To further illustrate the advantage of the ADT scheme, we
note that if we set U = 0.99 and k = 1 (using the values of D
and C as before), the value of P drops to zero for both the
Poisson-arrival and the k-fault-tolerant schemes if λ >
3×10−5. In contrast, the proposed ADT scheme continues to
provide significant higher value of P as λ increases (Table
3).
 For λ > 0.002 and U ≥ 0.9 (high fault arrival rate and
high task utilization), the ADT scheme again outperforms
the other two schemes. The results are not shown here due to
lack of space.
 In conclusion, we note that the ADT scheme is more
likely to meet task deadlines when the task utilization is high
and the fault arrival rate is not very low. In many cases, up
to 50% increase is obtained in the probability of timely task
completion.

4. ADT-DVS: Adaptive checkpointing with DVS
 We next show how adaptive checkpointing scheme can
be combined with DVS to obtain fault tolerance and power
savings in real-time systems. We consider adaptive intra-
task voltage scaling, wherein the processor speed is scaled

Probability of timely

completion of tasks, P

U = E/D

Fault arrival

rate λ (×10−2)
Poisson-
arrival

k-fault-
tolerant

ADT

0.24 0.505 0.476 0.532 0.80
0.28 0.229 0.243 0.273
0.24 0.204 0.168 0.235 0.82
0.28 0.052 0.042 0.092

(a)
Probability of timely

completion of tasks, P
λ

(×10−2)

U = E/D
Poisson-
arrival

k-fault-
tolerant ADT

0.76 0.887 0.888 0.909 0.26
0.78 0.655 0.666 0.715
0.76 0.864 0.823 0.872 0.30
0.78 0.589 0.597 0.626

(b)
Table 1: (a) Variation of P with λ (b) Variation of P with U,

for D = 10000, C = 10, and k = 10.
Probability of timely

completion of tasks, P

U = E/D

Fault arrival

rate λ (×10−4)
Poisson-
arrival

k-fault-
tolerant ADT

1.0 0.902 0.945 0.947 0.92
2.0 0.770 0.786 0.831
1.0 0.659 0.649 0.774 0.95
2.0 0.372 0.387 0.513

 (a)
Probability of timely

completion of tasks, P
λ

(×10−4)

U = E/D
Poisson-
arrival

k-fault-
tolerant ADT

0.92 0.902 0.945 0.947 1.0
0.94 0.747 0.818 0.852
0.92 0.770 0.786 0.831 2.0
0.94 0.573 0.558 0.643

(b)
Table 2: (a) Variation of P with λ (b) Variation of P with U,

for D = 10000, C = 10, and k = 1.
Probability of timely

completion of tasks, P

U = E/D

Fault arrival

rate λ (×10−5)
Poisson-
arrival

k-fault-
tolerant ADT

1.0 0.893 0.000 0.907
3.0 0.000 0.000 0.732

0.99

5.0 0.000 0.000 0.515
 Table 3: Variation of P with λ, for D = 10000, C = 10, and k=1.

up in response to a need for increased slack for
checkpointing, and scaled down to save power if the slack
for a lower speed is adequate. We consider a two-speed
processor herethe extension to more than two speeds
appears to be straightforward and it is left for future work.
For the sake of simplicity, we use the terms processor speed
and processor frequency interchangeably.
 We use the same notation as described in Section 3.1. In
addition, we are given the following:

Procedure adap_dvs(D,N, c,k,λ)
1. Rc = N; Rd = D; Rf = k;
2 .if (test(Rc, f1) ≤ Rd) f = f1; else f = f2;
3. Itv = interval(Rd,Rc/f, c/f,Rf,λ);
4. while (Rt>0) do{
5. if (Rt > Rd / f) break;
6. Case 1: During normal execution, do{
 6.1 Insert checkpoints with interval length Itv;
 6.2 Update Rc, Rd according to speed f;}
7. Case 2: Upon fault occurrence, do{
 7.1 Roll back and restore status;
 7.2 Rf =Rf − 1;
 7.3 if (test(Rc) ≤ Rd) f = f1; else f = f2;
 7.4 Itv = interva(Rd,Rc/f,c/f,Rf,λ);
 7.5 Resume execution; } }

1) A single processor with two speeds f1 and f2. Without loss
of generality, we assume that f2 = 2f1.
2) The processor can switch its speed in a negligible amount
of time (relative to the task execution time).
3) The number of computation cycles N for the task in the
fault-free condition.
 The objective here consists of two priorities. The first
priority is to maximize the probability that the task meets its
deadline in the presence of faults. The second priority is to
reduce energy consumption through DVS.
 We note that if supply voltage Vdd is used for a task with
N single-cycle instructions, the energy consumption is

proportional to ddNV 2 . We also note that the clock period

is proportional to 2)/(tdddd VVV − , where Vt is the transistor
threshold voltage. We assume here without loss of generality
that Vt = 0.8 V, and the supply voltage Vdd1 corresponding to
speed f1 is 2.0 V. Using the formula for the clock period, we
find that the supply voltage Vdd2 corresponding to speed f2 is
2.8 V.
 Let Rc be the number of instructions of the task that
remain to be executed at the time of the voltage scaling
decision. Let c be the number of clock cycles that a single
checkpoint takes. We first determine if processor frequency f
can be used to complete the task before the deadline. As
before, let Rd be the amount of time left before the task
deadline. The checkpointing cost C at frequency f is given
by: C = c/f. Let test be an estimate of the time that the task
has to execute in the presence of faults and with
checkpointing. The expected number of faults for the
duration test is λtest. We are assuming here that the
checkpointing cost is negligible compared to the time for
forward execution and rollback recovery, hence even though
no faults occur during checkpointing, the expected number
of faults is λtest.To ensure λtest-fault-tolerance during task
execution, the checkpointing interval must be set

to)/(/)/(fcCtCt estest λλλ == . Now, the parameter

test can be expressed as follows:

)/(

/

fc

fR

f

c

f

c
t

f

R
t c

est
c

est λλ
λ ++= (3)

 The first term on the right-hand side of (3) denotes the
time for forward execution, the second term denotes the
recovery cost for λtest faults, and the third term denotes the
checkpointing cost. From (3), we get

)/1(

)/1(

fcf

fcR
t c
est λ

λ
−

+
= .

 We consider the voltage scaling (to frequency f) to be
feasible if dest Rt ≤ . This forms the basis of the energy-

aware adaptive checkpointing procedure adap_dvs described
in Figure 4. At every DVS decision point, an attempt is
made to run the task at the lowest-possible speed.

4.1 Simulation results on ADT_DVS
 We compare the adaptive DVS scheme, denoted by

Figure 4: Energy-aware adaptive checkpointing procedure.

ADT_DVS, with the Poisson-arrival and k-fault-tolerant
schemes in terms of the probability of timely completion and
energy consumption. We use the same experimental set-up
as in Section 3.2. In addition, we consider the normalized
frequency values f1 = 1 and f2 = 2. First we assume that both
the Poisson-arrival and the k-fault-tolerant schemes use the
lower speed f1. The task execution time at speed f1 is chosen
to be less than D, i.e., DfN <1/ . The task utilization U in

this case is simply)/(1DfN . Our experimental results are

shown in Table 4. The ADT_DVS scheme always leads to
timely completion of the task by appropriately choosing
segments of time when the higher frequency f2 is used. The
other two schemes provide a rather low value for P, and for
larger values of λ and U, P drops to zero. The energy
consumption for the ADT_DVS scheme is slightly higher
than that for the other two schemes; however, on average,
the task runs at the lower speed f1 for as much as 90% of the
time. The combination of adaptive checkpointing and DVS
utilizes the slack effectively and stretches the task
completion time to as close to the deadline as possible.
 Next we assume that both the Poisson-arrival and the k-
fault-tolerant schemes use the higher speed f2. The task
execution time at speed f2 is chosen to be less than D, i.e.,

DfN <2/ , and the task util ization here is)/(2DfN . Table

5 shows that since even though ADT_DVS uses both f1 and
f2, adaptive checkpointing allows it to provide a higher value
for P than the other two methods that use only the higher
speed f2. The energy consumption for ADT_DVS is up to
50% less than for the other two methods for low to moderate
values of λ and U; see Table 6. When either λ or U is high,
the energy consumption of ADT_DVS is comparable to that
of the other two schemes. (Energy is measured by summing
the product of the square of the voltage and the number of
computation cycles over all the segments of the task.) This is
expected, since ADT_DVS attempts to meet the task
deadline as the first priority and if either λ or U is high,
ADT_DVS seldom scales down the processor speed.

Probability of timely

completion of tasks, P

U

Fault arrival

rate λ (×10−4)
Poisson-
arrival

k-fault-
tolerant ADT_DVS

0.5 0.790 0.704 1.000
1.0 0.648 0.508 1.000
1.5 0.501 0.367 1.000

0.95

2.0 0.385 0.244 1.000
 (a)

Probability of timely
completion of tasks, P

λ
(×10−4)

U

Poisson-
arrival

k-fault-
tolerant ADT_DVS

0.92 0.924 0.960 1.000
0.96 0.549 0.000 1.000

1.0

1.00 0.000 0.000 1.000
0.92 0.799 0.849 1.000
0.96 0.229 0.000 1.000

2.0

1.00 0.000 0.000 1.000
(b)

Table 4: (a) Variation of P with λ (b) Variation of P with U,
for D = 10000, c = 10, and k = 2.

Probability of timely
completion of tasks, P

U

Fault arrival
rate (×10−4)

Poisson-
arrival

k-fault-
tolerant ADT_DVS

0.8 0.898 0.939 0.965
1.2 0.841 0.868 0.912
1.6 0.754 0.785 0.871

0.95

2.0 0.706 0.695 0.791
Table 5: Variation of P with λ,

for D = 10000, c = 10, and k = 1.
Energy consumption

U

Fault arrival

rate λ (×10−4)
Poisson-
arrival

k-fault-
tolerant ADT_DVS

2.0 25067 26327 21568
4.0 25574 26477 21642
6.0 25915 26635 21714

0.60

8.0 26277 26806 22611
 (a)

Energy consumption
λ

(×10−4)

U
Poisson-
arrival

k-fault-
tolerant ADT_DVS

0.10 4295 4909 2508
0.20 8567 9335 4791
0.30 12862 13862 7026
0.40 17138 17990 9223

5.0

0.50 21474 22300 15333
(b)

Table 6: (a) Variation of energy consumption with λ (b)
Variation of energy consumption with U, for D = 10000, c =
10, and k = 10.

5. Conclusions
 We have presented a unified approach for adaptive
checkpointing and dynamic voltage scaling for a real-time
task executing in an embedded system. This approach
provides fault tolerance and facilitates dynamic power

management. The proposed energy-aware adaptive
checkpointing scheme uses a dynamic voltage scaling
criterion that is based not only on the slack in task execution
but also on the occurrences of faults during task execution.
We have presented simulation results to show that the
proposed approach significantly reduces power consumption
and increases the probability of tasks completing correctly
on time despite the occurrences of faults.
 We are currently extending the proposed approach to a
set of multiple periodic tasks. We are also examining ways
to relax the restrictions of zero rollback and state restoration
costs, as well as the assumption of no fault occurrence
during checkpointing and rollback recovery.

References

[1] P. Pop, P. Eles and Z. Peng, “Schedulability analysis for
systems with data and control dependencies” , Proc. Euromicro
RTS, pp. 201-208, June 2000.
[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors” , Proc. Int. Symp. Low
Power Electronics and Design, August 1998.
[3] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-
time embedded systems on variable speed processors” , Proc. Int.
Conf. Computer-Aided Design, pp. 365-368, June 2000.
[4] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling
for real-time systems on variable voltage processors” , Proc. Design
Automation Conference, pp. 828-833, June 2001.
[5] K. G. Shin and Y.-H. Lee, “Error detection processModel,
design and its impact on computer performance”, IEEE Trans. on
Computers, vol. C-33, ppp. 529-540, June 1984.
[6] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig,
“Analytic Models for Rollback and Recovery Strategies in Data
Base Systems”, IEEE Trans. Software Eng., vol. 1, pp. 100-110,
March 1975.
[7] K. Shin, T. Lin and Y. Lee, “ Optimal Checkpointing of Real-
Time Tasks” , IEEE Trans. Computers, vol. 36, no. 11, pp. 1328-
1341, November 1987.
[8] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint
placement” , IEEE Trans. Computers, vol. 46, no. 9, pp. 976-985,
September 1997.
[9] S. W. Kwak, B. J. Choi and B. K. Kim, “An optimal
checkpointing-strategy for real-time control systems under transient
faults” , IEEE Trans. Reliability, vol. 50, no. 3, pp. 293-301,
September 2001.
[10] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic
Testing, Kluwer Academic Publishers, Norwell, MA, 2000.
[11] J. W. Liu, Real-Time Systems, Prentice Hall, Upper Saddle
River, NJ, 2000.
[12] A. Duda, “ The effects of checkpointing on program execution
time”, Information Processing Letters, vol. 16, pp. 221-229, June
1983.
[13] H. Lee, H. Shin and S. Min, “Worst case timing requirement
of real-time tasks with time redundancy” , Proc. Real-Time
Computing Systems and Applications, pp. 410-414, 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

