
Performance-directed Retiming for FPGAs
using Post-placement Delay Information

Ulrich Seidl
Technical University of Munich

80290 Munich, Germany

Klaus Eckl
Synopsys GmbH

85609 Aschheim, Germany

Frank Johannes
Technical University of Munich

80290 Munich, Germany

Abstract

In today’s deep-submicron designs, the interconnect de-
lays contribute an increasing part to the overall perfor-
mance of an implementation. Particularly when targeting
field programmable gate arrays (FPGAs), interconnect de-
lays are crucial, since they can easily vary by orders of mag-
nitude. Many existing performance-directed retiming meth-
ods use simple delay models which either neglect routing
delays or use inaccurate delay estimations. In this paper, we
propose a retiming approach which overcomes the problem
of inaccurate delay models. Our retiming technique uses
delay information extracted from a fully placed and routed
design and takes account of register timing requirements.
By applying physical constraints, we ensure that the delay
information remains valid during retiming. In our experi-
ments, we achieved up to 27% performance improvement.

1. Introduction

Field programmable gate arrays (FPGAs) have become
a widely accepted technology especially for implementing
low volume designs. Their ability to rapidly implement dif-
ferent designs without a time and cost intensive manufactur-
ing process has greatly contributed to their success. Today,
even very big designs like processors can be packed on one
single FPGA. Common FPGA architectures are, e.g., the
Xilinx Virtex and the Altera Apex series.

In this paper, we focus on timing optimization by retim-
ing for the Xilinx Virtex FPGA series. Those FPGAs con-
sist of an array of configurable logic blocks (CLBs) together
with programmable interconnects. Each CLB consists of
two similar slices whereas each slice contains 2 logic cells
(LCs). Each logic cell (see Fig. 1) contains a 4-input look-
up table (LUT) that is capable of implementing any combi-
national function with up to 4 inputs. The output of the LUT
feeds one output of the LC directly and another through a
flip-flop. The implementation of a circuit on a FPGA is
achieved by configuring the CLBs and programming the
various routing resources.

F4
F3
F2
F1

XQ

X

T
U
L

QD

CLK

Figure 1. Simplified logic cell (LC)

A major disadvantage of FPGAs compared to ASICs is
their inferior performance. The overall performance of a
design depends on logic and interconnect delay. Nowadays,
the interconnect delay already contributes about 50% to the
overall delay. This percentage will even increase when fea-
ture sizes continue to shrink. Therefore, the consideration
of interconnect delay is mandatory when applying perfor-
mance oriented optimizations to a design. Due to the nu-
merous different routing resources like switch matrix, long
lines, hex lines, double lines, and direct connections, the
prediction of these delays is quite a delicate issue. In con-
trast to the logic delays, which are well known for FPGAs,
the interconnect delays can easily vary from a tenth of the
delay of a LC to ten times the delay of a LC. Due to the lim-
ited routing resources, the distance of two connected LCs
is not sufficient for delay estimation. The knowledge of the
absolute placement of the source and sink LCs is necessary
to precisely predict interconnect delays.

Retiming is a circuit transformation that improves circuit
performance by moving registers across combinational el-
ements. For successfully guiding performance-directed re-
timing the consideration of register timing requirements and
the application of precise interconnect delay information is
crucial. We propose to extract interconnect delay informa-
tion after completely placing and routing a design to guide a
retiming transformation. To ensure that the delay informa-
tion remains valid during the optimization step we model
physical constraints in an extended retiming graph which
still fits well into common retiming algorithms. We demon-
strate, how to achieve the optimum solution by applying the
exact FEAS retiming algorithm.

1530-1591/03 $17.00 2003 IEEE

The remainder of this paper is organized as follows:
Section 2 gives a brief overview of related work. Back-
ground material regarding retiming and the FEAS algorithm
is given in Section 3. Section 4 describes our approach. We
show how to add physical constraints to the retiming graph
and how to model register timing requirements. Experimen-
tal results are provided in Section 5.

2. Related Work

Retiming is an optimization technique for sequential cir-
cuits originally proposed by Leiserson and Saxe [8]. It is
based on relocating registers for improving circuit perfor-
mance or decreasing circuit area. Many improvements have
been reported since then. In the following we want to briefly
overview the published approaches for performance opti-
mization that are related to our work.

In [13], Shenoy and Rudell show how to efficiently apply
retiming to large circuits. They provide acceleration tech-
niques for the original FEAS algorithm. Later on, in [12]
another acceleration technique is proposed which exploits
the equivalence of clock skew optimization and retiming.

Even et al. [4] alleviate initial state computation by re-
versing the original FEAS algorithm of Leiserson and Saxe.
Through the use of required times instead of arrival times
their approach prefers forward register moves while still
achieving a solution with equivalent performance. Further
on, [20, 15] take the initial state problem into account.

In [16, 17, 6, 7], the authors show that retiming can prin-
cipally handle more sophisticated timing models. These
approaches are preferably used when the so-called “path
monotonicity constraint” does not hold. This means that
an increasing length of a path does not always lead to an
increasing overall delay along that path. Furthermore, the
author of [11] shows how to handle register setup and hold-
time requirements that introduce short paths.

In [1], retiming is combined with physical planning in
order to refine delay information. Neumann and Kunz [9]
reveal the attractive properties of the FEAS algorithm and
introduce a delay model that considers load dependent de-
lays of fanout trees.

The retiming approaches of [22, 10, 2, 3] target the
FPGA architecture. Unfortunately they use the inaccurate
unit delay model that neglects the routing delays.

The approach of Touati et al. [19] applies retiming af-
ter placement and routing. Thereby they can extract pre-
cise routing delay information. They use the very common
FPGA architecture Xilinx XC 3000/4000 for their experi-
ments. By applying physical constraints they ensure that
the former placement stays applicable. Therefore, the rout-
ing delay information remains valid during retiming. How-
ever, by applying physical constraints to retiming they re-
strict the mobility of registers too much, such that the opti-

mization does not yield any improvement. When using the
retiming transformation to pipeline a design, improvements
are reported.

Singh and Brown [14] apply the vpr tool to FPGA de-
signs to determine post placement routing delay informa-
tion. Unlike Touati et al., they accept a certain degree of
logic replication which leads to placement changes. This
partially invalidates the routing delay information used dur-
ing retiming. They try to minimize the discrepancy of their
routing delay information by keeping the number of place-
ment changes small.

Although retiming is a very effective circuit optimization
technique, it has not yet found wide acceptance in industrial
practice. This is mainly for two reasons: First, the verifica-
tion of a retimed circuit is not straightforward. However, the
advances in recent years [18, 21, 5] hopefully will evolve to
approaches that can solve the problems that are currently
widely encountered. Second, the use of inaccurate delay
models that base on theoretic assumptions often lead to un-
usable results in practice.

This paper addresses the second problem affecting the
acceptance of retiming. Through the use of precise inter-
connect delay information and the consideration of regis-
ter timing requirements we can achieve convincing results
that perfectly reflect the real performance of the final imple-
mentation. Like in [19], we completely prevent placement
changes, but in contrast to them our approach preserves
enough optimization potential to yield significant perfor-
mance improvements when applied to FPGAs. In order to
accomplish experiments we target the modern Xilinx Virtex
architecture. However, since our approach is quite generic it
is also applicable to other common FPGAs, e.g., the Altera
Apex architecture.

3. Basics of Retiming

In the following we introduce basic notations for the re-
timing transformation.

3.1. Retiming Graph

The retiming graph is an edge-weighted directed graph
G = (V,E,d,w). The vertices V represent the combinational
logic blocks of the circuit, the edges E correspond to inter-
connects between the combinational blocks. Each vertex v
in V has a nonnegative real-valued label d(v) that denotes
the combinational delay of v. Each edge e in E is a directed
connection between two vertices u and v and is written as
u

e
−→ v. Each edge u

e
−→ v has a nonnegative integer-valued

label w(e) that corresponds to the number of registers along
the interconnect between u and v. An example of a circuit
with corresponding retiming graph is shown in Fig. 2.

The minimum feasible clock period Φ(G) of a circuit
depends on the delay of the longest path. To improve cir-
cuit performance, retiming tries to shorten the longest path.

D Q

w = 1
a b c d

r(a) = 0 r(b) = 0 r(c) = 0 r(d) = 0

w = 0 w = 0

b c
a

d

Figure 2. Circuit with retiming graph

Therefore, an integer-valued vertex label r(v) called the re-
timing value is assigned to each vertex v in V . The retiming
value r(v) denotes the number of registers that have to move
backwards across the vertex v during retiming.

To improve the performance of a circuit we have to
change the retiming values r of the vertices according to
rules established by the specific retiming algorithm that is
used. The retimed graph Gr = (V,E,d,wr) can easily be de-
rived from the original graph G by computing the retimed
edge weight wr(e) for each edge u

e
−→ v in E:

wr(e) = w(e)+ r(v)− r(u) (1)

To achieve a legal retiming the number of registers on
each edge u

e
−→ v has to be nonnegative:

wr(e) = w(e)+ r(v)− r(u) ≥ 0 (2)

Example: We assume that all gates have unit delay. Let
the longest path of the circuit in Fig. 2 consist of the vertices
a, b, and c. Therefore, the minimum feasible clock period is
Φ(G) = 3. To improve the circuit performance we increase
the retiming value r(c) by one. According to equation (1)
this leads to wr(b

e
→ c) = 1 and wr(c

e
→ d) = 0. Since (2) is

fulfilled, the achieved solution is legal. This retiming trans-
formation moves the register at the output of vertex c back
to the input of vertex c. The resulting minimum feasible
clock period is Φ(Gr) = 2.

Even though our actual implementation uses the more
advanced reverse retiming algorithm [4], for reasons of clar-
ity, we prefer to explain the fundamental ideas of our ap-
proach on the basis of the well-known FEAS algorithm.
However, the basic ideas of our approach are applicable to
both algorithms.

3.2. The FEAS Algorithm

The FEAS algorithm [8] is a renowned approach for
performance directed retiming. It checks if there exists a
legal retiming for a given clock period c with O(|V ||E|)
time complexity. If the given clock period is feasible it

returns the retiming value r for each vertex. Due to the
various improvements like the acceleration technique men-
tioned in [13] it has gained wide acceptance.

To determine the retiming values r, the FEAS algorithm
relies on arrival times. The arrival time at(v) of a vertex v
is determined by the largest delay seen along any combina-
tional path that terminates at the output of vertex v:

at(v) = d(v)+ max
u∈FI(v)

{at(u) | w(u
e
→ v) = 0} (3)

FI(v) denotes the set of fanin vertices of v. The minimum
feasible clock period is given by

Φ(G) = max
v∈V

{at(v)}. (4)

To check if a given clock period c is feasible, the FEAS
algorithm executes the following steps on the retiming
graph G:

1. For each vertex v ∈V , set r(v) = 0.

2. Repeat the following steps |V |−1 times:

(a) Compute graph Gr with the current values for r.

(b) Compute arrival time at(v) ∀v ∈V .

(c) Increase r(v) by 1 for each v where at(v) > c.

3. If Φ(Gr) > c, then no feasible retiming exists. Other-
wise the proposed clock period c can be achieved by
applying the current retiming values r.

The FEAS algorithm only checks a given clock period
c for feasibility and in case it is feasible it returns retim-
ing values. In order to find the minimum feasible clock
period, the FEAS algorithm usually runs within a binary
search loop over a range of clock periods.

4. Performance-directed Retiming for FPGAs

When trying to optimize the performance of FPGA de-
signs with the FEAS algorithm, we first have to enhance it
in order to consider interconnect delays. Furthermore, we
show how to model register timing requirements. Addition-
ally, we have to ensure that the interconnect delay informa-
tion remains valid during the optimization process.

4.1. Considering Interconnect Delays

For the Xilinx Virtex FPGA architecture we can assume
that the LUTs within the slices are responsible for the logic
delay dlogic (see Fig. 3). The delay of the internal connec-
tions within each slice is negligible. The interconnect delay
d(u

e
→ v) comprises all delays between a slice output and

the input of the successor slice.

dic3dic1 dic2 dlogicdlogic

L
U
T

L
U
T

Slice Slice

Routing

Input
Switch
MatrixMatrix

Switch
Output

Figure 3. Two Slices with interconnects

Accurate interconnect delays can be determined after
placement and routing. To consider them within the FEAS
algorithm we have to enhance the arrival time calculation
by the interconnect delay. Especially the edges u

e
−→ v with

w(u
e
→ v) > 0 need special attention. We have to find out

how the register interacts with the arrival time of v. The ar-
rival time of registers is defined to be zero. Since the register
is usually located in the same slice as the driving LUT u the
interconnect delay d(u

e
→ v) must be added to the register

output. The arrival time at(v) can be determined as

at(v) = d(v)+max

{

at(u)+ d(e) ; w(e) = 0
d(e) ; w(e) ≥ 1

where u ∈ FI(v) and e : u
e

−→ v.
(5)

4.2. Register Timing Requirements

Whenever we have to consider register timing require-
ments it is not appropriate to determine the minimum feasi-
ble clock period Φ(G) according to equation (4). To ensure
proper circuit function we additionally have to take regis-
ter setup-times tset and sequential propagation delays dseq
(sometimes denoted as “Clock-to-Q” delays) into account.
The input signal of the register has to be stable tset before the
clock-trigger and the output signal becomes available dseq
after the clock-trigger. The register timing requirements can
be understood as delays which are attributed to a register.
Each path that starts at a register is extended by the sequen-
tial propagation delay dseq and each path that ends at a regis-
ter is extended by the setup-time tset . Therefore, by consid-
ering register timing requirements we introduce additional
delays that move through the retiming graph G whenever a
retiming value of a vertex is changed. In the following, we
define a new retiming graph G∗ = (V,E,d∗,w) that can han-
dle register timing requirements without introducing delays
that move through the design during retiming.

Each design is composed of combinational paths that ei-
ther start at a register or an input vertex pi and either end at
a register or an output vertex po. The classification of com-
binational paths and the resulting delay is given as follows:

1. Path-type: Register −→ Register:
d(p) = dseq + . . .+ tset

2. Path-type: Register −→ Output-pad:
d(p) = dseq + . . .+d(po)

3. Path-type: Input-pad −→ Register:
d(p) = d(pi)+ . . .+ tset

4. Path-type: Input-pad −→ Output-pad:
d(p) = d(pi)+ . . .+d(po)

Since each FPGA register has the same sequential propa-
gation delay dseq and setup-time tset we can easily introduce
a new retiming graph G∗ without delays which are bound to
registers. Each combinational path of the original retiming
graph G is virtually shortened by the sequential propagation
delay dseq at the source and the setup-time tset at the sink.
Further on, we can neglect the register timing requirements
within G∗. The delays d∗ of the input vertices PI(V) and
output vertices PO(V) of the retiming Graph G∗ are deter-
mined by

d∗(v) = d(v)−dseq ∀v ∈ PI(V),

d∗(v) = d(v)− tset ∀v ∈ PO(V).
(6)

Applying retiming to G∗ will result in a clock period
Φ(G∗

r). To obtain the real clock period Φ(Gr) of the re-
timed circuit we have to consider the path shortening due to
dseq and tset :

Φ(Gr) = Φ(G∗
r)+dseq + tset (7)

4.3. Introducing Physical FPGA Constraints

So far we have shown how to use interconnect delay
information to guide a performance-directed retiming of
a circuit. Furthermore, we have to take precautions that
the delay information gathered after placement and rout-
ing remains valid during retiming. Because retiming does
not affect the combinational blocks, their delay remains un-
changed. Hence, we only have to ensure that the intercon-
nect delays do not change.

The interconnect delays can be divided into 3 groups ac-
cording to Fig. 3. While the delays of the output and in-
put switch matrix dic1 and dic3 are almost homogeneous
throughout the whole design, the delay dic2 heavily varies
depending on the absolute placement of the two connected
slices. In order to avoid invalidation of interconnect delays
during retiming, we have to ensure that the original place-
ment of each slice stays applicable.

In the given FPGA architecture, a path from one LUT
to its successor LUT can carry none or one register. No

change of interconnect delay will be observable, whether
we use the register or not since the modification is restricted
to the output switch matrix. Using more than one register
on a given connection between two LUTs would imply in-
troducing additional slices which in turn would require un-
desirable changes in the placement. Therefore, we restrict
the weight of edges in the retiming graph G∗:

wr(u
e
→ v) ≤ 1 ∀e ∈ E (8)

This constraint can be realized in the retiming graph G∗

by taking advantage of the fact, that the number of registers
on a cycle can not change. By inserting a constraint cycle
for each edge, we restrict the edge weights to be at most 1.
In doing so, we have to take special precautions not to intro-
duce combinational paths. The introduction of a constraint
cycle is illustrated in Fig. 4:

w(k
e
→ u) w(v

e
→ k)

w(u
e
→ v)

u v

k

Figure 4. FPGA Constraint cycle

Let u
e

−→ v be an edge of the retiming graph G∗ with
weight w(u

e
→ v). The dashed edges and the vertex k repre-

sent the constraint cycle. The delays of the introduced edges
are determined as d(v

e
→ k) = d(k

e
→ u) = 0. The delay d(k)

of vertex k is set to the currently targeted clock period c∗.
We restrict the influence of vertex k on the arrival times of
the vertices u and v by imposing a weight of at least one to
its incoming and outgoing edge:

w(v
e
→ k) ≥ 1

w(k
e
→ u) ≥ 1

(9)

Thus, we have isolated vertex k from the remaining cir-
cuit by at least two registers which intersect the cycle and
we have not introduced a combinational path. Furthermore,
the initial weights w(v

e
→ k) and w(k

e
→ u) have to be deter-

mined before retiming such that

w(u
e
→ v)+w(v

e
→ k)+w(k

e
→ u) = 3. (10)

As the delay d(k) of k is c∗, a legal retiming that meets
the targeted clock period c∗ will yield

wr(v
e
→ k) ≥ 1 and

wr(k
e
→ u) ≥ 1.

(11)

With a total number of three registers on the constraint
cycle (10) and with equation (11) we can conclude, that
one of the three registers is freely movable. Thus, we have
ensured that at most one register is available for the edge
u

e
−→ v and equation (8) holds.

4.4. Limiting the Number of Introduced Con-
straints

Since the computational effort of the FEAS algorithm is
related to the total number of edges and vertices of the re-
timing graph G∗, we want to minimize the number of con-
straint cycles. Therefore, we initially start retiming without
any physical constraints. Whenever retiming reports fea-
sibility we inspect each edge whether equation (8) is ful-
filled. For edges that violate the condition we introduce a
constraint cycle. Whenever we detect violating edges we re-
set the returned retiming values and run the FEAS algorithm
for the same clock period again. We can even further reduce
the number of introduced constraint vertices by sharing one
constraint vertex with all constraint cycles that belong to in-
put edges and sharing another vertex with all constraint cy-
cles that belong to output edges. This is permissible since
the retiming value has to be the same for each input vertex
as well as for each output vertex.

In our experiments, we observed that we usually can ap-
ply all necessary constraints with one additional FEAS run
during the binary search loop while introducing less than
3%∗ |E| constraint vertices on average.

5. Experimental Results

To demonstrate the performance improvements achieved
by our approach, we used the sequential circuits from the
LGSynth93 benchmark. They were mapped to the Xilinx
Virtex architecture with Synopsys design tools. For each
design, we chose an individual FPGA size such that it pro-
vides just sufficient slices and input-/output resources for
the implementation. The designs were placed and routed
for optimal performance with the Xilinx par tool. By it-
eratively tightening the performance constraints for par we
optimized the placement and routing of each design for the
minimum achievable clock period Φ(G).

The best implementation was used to extract intercon-
nect delay information which we took to guide our retim-
ing approach. After applying retiming we took the original
placement and reran the router. The best achievable clock
period Φ(Gr) of the retimed circuit is reported in Table 1
and compared to the formerly achieved clock period Φ(G).

Even though we have achieved improvements for smaller
designs, we only report results for designs larger than 100
slices. In our opinion, only large enough designs can rea-
sonably demonstrate the effectiveness of our approach.

Our approach achieves an improvement of up to 27% in
terms of the clock period. The average improvement for
the benchmark circuits is 10%. Retiming the largest design
(s38584.1) with our actual implementation takes 17 seconds
cpu-time on a 900 MHz Pentium III.

Table 1. Φ(G) before and Φ(Gr) after retiming.

Design #Slices Φ(G) Φ(Gr) Imprvmnt.

daio receiver1 100 16.86 16.42 2%
diffeq2 376 20.04 16.93 16%
dsip 459 14.87 12.87 13%
ecc 121 15.95 12.24 23%
elliptic2 950 34.78 25.55 27%
frisc2 1161 42.70 34.89 18%
mm30a 149 70.26 70.26 -
parker1986 210 28.49 28.49 -
s1196 101 18.87 18.87 -
s1238 105 19.27 19.27 -
s53781 260 17.97 15.34 15%
s38584.11 1845 20.08 20.05 0%
tseng2 314 19.61 17.62 10%

Average 10%

In contrast to Touati et al. [19] we were able to show that
retiming can significantly improve the performance of de-
signs implemented on a common FPGA architecture. Since
the authors of [14] seem to use an artificial FPGA architec-
ture, our results are hardly comparable to theirs.

6. Conclusion

In this paper we have shown how to predictably increase
circuit performance by applying retiming to a circuit im-
plemented on a FPGA. We have exactly modelled register
timing requirements within the FEAS algorithm and used
delay information extracted after placement and routing to
guide the retiming transformation. Furthermore, by apply-
ing physical constraints we have ensured that the original
placement can be kept and that the delay information used
during optimization remains valid. By effectively minimiz-
ing the number of introduced constraints the computational
effort remains low. In our experiments, we achieved up to
27% performance improvement.

References

[1] J. Cong and S. K. Lim. Physical planning with retiming. In
ICCAD Conference, pages 2 – 7, 2000.

[2] J. Cong and C. Wu. An improved algorithm for performance
optimal technology mapping with retiming in LUT-based
FPGA design. In ICCD Conference, pages 572–578, 1996.

[3] J. Cong and C. Wu. FPGA synthesis with retiming and
pipelining for clock period minimization of sequential cir-
cuits. In DAC Conference, pages 644–649, 1997.

1Design initially contains edges with w(e) > 1. This occurs when us-
ing a not explained feature of a slice that enables bypassing the LUT and
directly feeding the register. Constraints according (8) have been omitted
for such edges.

2Design originally contains bi-directional input-output buffers which
were split into uni-directional buffers to enable retiming.

[4] G. Even, I. Y. Spillinger, and L. Stok. Retiming revisited and
reversed. Trans. on CAD of Integrated Circuits and Systems,
pages 348–357, March 1996.

[5] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. AQUILA: An
equivalence verifier for large sequential circuits. In ASPDAC
Conference, pages 455–460, 1997.

[6] K. N. Lalgudi and M. C. Papaefthymiou. DELAY: An
efficient tool for retiming with realistic delay modeling. In
DAC Conference, pages 304–309, 1995.

[7] K. N. Lalgudi and M. C. Papaefthymiou. Retiming edge-
triggered circuits under general delay models. Trans. on
CAD of Integrated Circuits and Systems, pages 1393–1408,
dec 1997.

[8] C. E. Leiserson and J. B. Saxe. Optimizing synchronous
systems. Journal of VLSI and Computer Systems, pages 41–
67, Spring 1983.

[9] I. Neumann and W. Kunz. Placement driven retiming with
a coupled edge timing model. In ICCAD Conference, pages
95–102, 2001.

[10] P. Pan and C. L. Liu. Optimal clock period FPGA technol-
ogy mapping for sequential circuits. In DAC Conference,
pages 720–725, 1996.

[11] M. C. Papaefthymiou. Asymptotically efficient retiming un-
der setup and hold constraints. In ICCAD Conference, pages
396–401, 1998.

[12] S. S. Sapatnekar and R. B. Deokar. Utilizing the retiming-
skew equivalence in a practical algorithm for retiming large
circuits. Trans. on CAD of Integrated Circuits and Systems,
pages 1237–1248, oct 1996.

[13] N. Shenoy and R. Rudell. Efficient implementation of re-
timing. In ICCAD Conference, pages 226–233, 1994.

[14] D. P. Singh and S. D. Brown. Integrated retiming and place-
ment for field programmable gate arrays. In Int. Symposium
on Field-Programmable Gate Arrays, pages 67 – 76, 2002.

[15] V. Singhal, S. Malik, and R. K. Brayton. The case for re-
timing with explicit reset circuitry. In ICCAD Conference,
pages 618–625, 1996.

[16] T. Soyata and E. G. Friedman. Retiming with non-zero clock
skew, variable register, and interconnect delay. In ICCAD
Conference, pages 234–241, 1994.

[17] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr. Incor-
porating interconnect, register, and clock distribution delays
into the retiming process. Trans. on CAD of Integrated Cir-
cuits and Systems, pages 105–120, jan 1997.

[18] D. Stoffel and W. Kunz. Record & play: A structural fixed
point iteration for sequential circuit verification. In ICCAD
Conference, pages 394–399, 1997.

[19] H. Touati, N. Shenoy, and A. Sangiovanni-Vincentelli. Re-
timing for table-lookup field-programmable gate arrays. In
Int. Symposium on Field-Programmable Gate Arrays, pages
89–94, 1992.

[20] H. J. Touati and R. K. Brayton. Computing the initial states
of retimed circuits. Trans. on CAD of Integrated Circuits
and Systems, pages 157–162, jan 1993.

[21] C. A. J. van Eijk. Sequential equivalence checking with-
out state space traversal. In Design Automation and Test in
Europe (DATE), pages 618–623, 1998.

[22] U. Weinmann and W. Rosenstiel. Technology mapping for
sequential circuits based on retiming techniques. In Euro-
DAC Conference, pages 318–323, 1993.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

