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Abstract

Software self-testing of embedded processor cores
which effectively partitions the testing effort between low-
speed external equipment and internal processor
resources, has been recently proposed as an alternative to
classical hardware built-in self-test techniques over which
it provides significant advantages.

In this paper we present a low-cost software-based
self-testing methodology for processor cores with the aim
of producing compact test code sequences developed with
a limited engineering effort and achieving a high fault
coverage for the processor core. The objective of small
test code sequences is directly related to the utilization of
low-speed external testers since test time is primarily
determined by the time required to download the test code
to the processor memory at the tester’s low frequency.

Successful application of the methodology to a RISC
processor core architecture with a 3-stage pipeline is
demonstrated.

1 Introduction

The widely accepted System-on-Chip (SoC) design
paradigm consists in most cases of one or more embedded
processor cores surrounded by other cores for program
and data storage, communication with peripherals, analog
and mixed-signal functions, etc. Although SoC designs
provide a significant step towards enriching functionality
and reducing development time, their testing appears to be
a difficult task. Test data volume required for external
testing of SoC designs is excessive while the increasing
gap Dbetween tester frequencies and SoC operating
frequencies makes at-speed testing almost infeasible.

The opposite extreme of external testing, hardware
built-in self-test moves the testing task from external test
equipment to internal resources, synthesized particularly
for this purpose. At-speed testing is achieved, while
overall test costs are reduced [1]. Unfortunately, hardware
self-test for embedded processors adds significant area
and performance penalties that can not be afforded in
carefully performance and power-optimized processor
designs.

As an efficient alternative, software-based self-testing
methodologies for embedded processors have been
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proposed. Software-based self-testing has a non-intrusive
nature since it utilizes processor functionality and
instruction set to perform self-testing. Thus, it does not
add performance, area or power overheads in an
optimized processor design. Self-testing approaches have
been proposed in the literature, [2]-[8] and a review of
some of them is given in [9]. An outline of the embedded
software-based self-testing concept is shown in Figure 1.

Software-based self-testing of processor cores
partitions the test resources needed to test a processor
between tester memory for test program/data storage, and
internal processor resources, i.e. its instruction set and
functional modules. Software-based self-testing can be
proved to be a low test cost methodology for processors as
we show in this paper, and if appropriately applied, it has
both low test development cost and low test application
cost. The objectives of an effective software-based self-
testing methodology for processor cores are: (a) high fault
coverage, (b) small test program and data size, (c) small
test execution time. The last two objectives, determine the
overall test application time and the dominating one is the
size of the test program and data since they are both
downloaded from the (potentially low speed) tester in the
on-chip memory, while execution of the test program is
performed at higher processor speed.
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Figure 1: Software-based self-testing concept outline



An important issue in software self-test program
development is whether gate-level implementation details
of the processor are availiable. A generic software-based
self-testing methodology should only be based on high
RT-level description of the processor and its instruction
set architecture, thus providing a technology independent
test development strategy. That applies both to the case
where low level netlist is not available (‘hard’ IP versions)
or in the case where technology re-mapping is required.

Previous approaches proposed in [2]-[5] apply
functional self-testing to processor cores and rely on the
use of pseudorandom instruction sequences and
operations/operands. Due to the high level of abstraction
of the approaches and their pseudorandom nature,
structural fault coverage is usually low, although test
programs with excessively large execution times are used.

In [6], a well-developed structural testing methodology
for processor cores was presented. At the first stage, the
test preparation stage, pseudorandom pattern sequences
are developed for each processor component in an
iterative method taking into consideration the constraints
imposed by its instruction set. Subsequently, test
sequences are encapsulated into self-test signatures that
characterize each component and consist of the seed and
the configuration of the pseudorandom TPG, along with
the number of test patterns. Alternatively, component tests
can be extracted by structural ATPG and downloaded
directly in embedded memory by the tester. At the second
stage, the fest application stage, the component self-test
signatures are first expanded on-chip by a software-
emulated LFSR (test generation program) into
pseudorandom test patterns, then stored in embedded
memory and finally applied to the component by software
test application programs. The pseudorandom nature of
the approach of [6] leads to large self-test program, large
memory requirements and excessive test application time.
This methodology can be applied to relatively small
processor cores [6] and only in the case that the gate-level
netlist of the processor is available. It has been noted in
[6] that architectural constraint extraction is a difficult
task and that not all such constraints can be extracted from
structural descriptions. In the case of larger “real”
processors and even if a netlist is available, constrained
test generation for the processor components using
sequential ATPG is a very time consuming task, which
may either lead to an unacceptable low fault coverage, or
may generate a very large test set to achieve an acceptable
one. Experimental results provided in [6] prove the
superiority of software-based self-testing for processors
over both Full Scan and hardware Logic BIST.

In [7], [8] we introduced a high level structural
software-based self-test methodology for embedded
processor cores, showing that small deterministic test sets,
applied by compact test programs provide significant
improvement when applied to the same simple processor
design, Parwan, that was used in [6]. Compared to [6], the

methodology described in [7], [8] requires about 20%
smaller test program, 75% smaller test data and almost
90% smaller test application time (test cycles). Both
methodologies achieve a single stuck-at fault coverage
slightly higher than 91% for Parwan.

In this paper, we investigate the test quality that a low
cost greedy software-based self-test methodology can
achieve when applied to a complex processor core
implementing a popular RISC architecture of significant
size and complexity. Our methodology is high level
because it is based on the Instruction Set Architecture
(ISA) of the processor and its Register Transfer (RT) level
description and does not require either architectural
constraint extraction or sequential ATPG for the processor
components. The RT level description is almost always
available and is much more easily manageable than a
detailed gate-level netlist. This is a very important
parameter when “real” complex processors are
considered.

The proposed methodology has two main objectives
both aiming to achieve low test cost: (a) the generation of
as small as possible code sequences with (b) as small as
possible engineering effort and test development time. The
first objective increases the efficiency of test resource
partitioning by software-based self-testing: achieving an
acceptable fault coverage with a small test sequence leads
to smaller download times at the low frequency of the
external tester. The second objective reduces test
development cost and time-to-market.

The key points for the success of the proposed
methodology are: (a) appropriate simple categorization of
processor components in classes with the same properties
and component prioritization for test development,
b)development of self-test routines based on compact
loops of instructions, (c¢) development of a “library” of
small test sets that provide very high fault coverage for
most types and architectures of the processor components.
We remark that the approach proposed in [6], although it
is based on structural testing targeting processor
components, does not include any component
classification part so that components are given different
priorities for test program development.

Section 2 describes the proposed methodology, the
component classification, the test priority criteria and the
component test development. Section 3 describes the
RISC processor case study. Experimental results
presented in Section 4 demonstrate that the two low test
cost objectives of the proposed methodology, small test
development time and small test application time, are
satisfied. Finally, section 5 concludes the paper.

To our knowledge this is the first paper that achieves
complete application of a software-based self-testing
methodology to a processor core of significant size and
complexity and leads to a single stuck-at fault coverage of
more than 92% without any performance or area penalty
and with a self-test code size of approximately 1K words.



2 Proposed Software-Based
Self-Test Methodology

Figure 2 illustrates the various steps of our low cost
component-based self-test methodology which follows a
top-down approach. We study the processor as an RT
level design, consisting of a set of components. First, we
classify the components in three classes: functional,
control and hidden to evaluate their importance for testing
of the entire processor and we target them in a descending
order of importance so that the larger and easily accessible
(therefore easily testable) components are targeted first
and a high fault coverage is achieved with reasonable
effort. The resulting self-test program is very small since
small routines consisting of compact loops are used for
each of the components.

Classification of
processor components
(functional, control, hidden)

v

Ordering of component classes
following test priority criteria
(relative size,controllability,observability)

v

Test routine development for components

Figure 2: Proposed methodology outline

The proposed methodology does not require constraint
extraction for the processor or sequential ATPG. It can be
characterized as a greedy methodology seeking the
highest possible fault coverage targeting the largest and
more easily testable processor components first. For this
reason, its application provides a low test cost solution,
i.e. a testing strategy with small test development cost and
small test program application cost. Application of the
methodology to the target RISC processor of this paper
was very successful. The limit of the applicability of the
methodology may appear in processor cores where
significant parts of the architecture (focusing performance
improvement) are not easily accessible by processor
instructions.

2.1  Processor components classification

We classify the components that appear in a processor
core RT level description in the following three classes.

Q Functional components. The components of a
processor that are directly related to the execution of
instructions and their existence is directly implied by
the format of one or more instructions. Such
components are usually the Arithmetic Logic Unit
(ALU), the shifter, the multiplier, the register file, etc.
These components either store data or perform a
specific function on data.

Q Control components. The components that control
either the flow of instructions/data inside the
processor core or from/to the external environment
(memory, peripherals). Such components are usually
the program counter logic, instruction and data
memory control registers and logic, etc. These
components are not directly related to specific
functions of the processor and their existence is not
implied by any instruction format of the processor.

Q Hidden components. The components that are added
in a processor architecture usually to increase its
performance but they are not visible to the assembly
language programmer. They include pipeline registers
and control and other performance increasing
components related to Instruction Level Parallelism
(ILP) techniques, branch prediction techniques, etc.

2.2 Test priority criteria

For a low-test cost high-level software-based self-
testing methodology that aims to develop small test
programs in a small test development time the three
classes of components have different test priorities. By
test priority we mean the order in which test programs will
be developed for each component. High priority
components will be considered first while low priority
components will be considered afterwards and only if the
achieved  fault coverage is not sufficient. The
characteristics of a module that determine its priority in
our methodology are its relative size and the
controllability and observability of the component by
processor instructions.

First of all, we deal with the processor components that
have the largest contribution to the overall processor fault
coverage. As it is obvious, these are the largest
components of the processor, which include most of the
stuck-at fault of the entire processor.

If exact sizes (gate counts) of the components of the
processor are available then their relation is known and
components of the same class (functional, control, hidden)
are sorted in descending sizes.

If the processor core is available in a hard form, i.e.
neither gate netlist nor a synthesizable HDL model of the
processor is available, then this data could be obtained
from the processor IP supplier. In the worst case that such
data cannot be available in any way, then it is reasonable
to make some assumptions on the component sizes. The
following three observations are in most cases valid.

O The register file of the processor is one of the largest
components. This fact is particularly true in RISC
processors with a load/store architecture, which have
a large number of general-purpose registers.

Q The hardware multiplier and/or divider, if exist, are
also two of the largest components. This fact is
particularly true in RISC processors as well as in
DSPs. We note that the methodology is very well
applied to DSP cores.



Q The functional components of the processor that
perform all arithmetic and logic operations of the
processor are much larger than the corresponding
control logic which controls their operation. This size
difference got larger when processor generations
moved from internal busses of 8-bits and 16-bits to
those of 32-bits or 64-bits. Additionally, in DSPs
where many functional components of the same type
co-exist, the processor size dominating factor is the
size of the functional components.

Therefore, the first class of processor components, the
functional components, have the highest test priority due
to their relative size.

The other characteristic of a module that determines its
priority in our methodology is the controllability and
observability of the component by processor instructions,
i.e. how easy it is to apply a specific test input to the
component and how easy it is to observe its outputs at the
processor primary outputs. The definitions of
controllability and observability of a processor component
are the following.

Processor component controllability: the shortest
instruction sequence required to apply a test pattern to the
component inputs.

Processor component observability: the shortest
instruction sequence required to propagate a component
outputs to the primary outputs of the processor.

Processor components may have two different types of
inputs and outputs, control inputs/outputs and data
inputs/outputs. Control inputs/outputs come from control
components towards functional components or the other
way round. Data inputs/outputs come from internal
registers or from the input/output data ports of the
processor core. Component controllability  and
observability related to data inputs/outputs is higher than
to control inputs/outputs and hence functional components
have higher controllability and observability than control
and hidden components.

Table 1 summarizes the controllability and
observability of the three classes of components defined
earlier and the priority given to their test development by
the proposed methodology.

Component Controllability/ Test
Class Observability Priority
Functional High High
Control Medium Medium
Hidden Low Low

Table 1: Component classes test priority

Therefore, according to our methodology, the
functional components of the processor have the highest
test priority for test development and are targeted first
since their size dominates the processor area and have
high observability and controllability. The second and
third step of proposed methodology outlined in Figure 2,

are expanded and illustrated to Figure 3. Phase A develops
test program for the functional components, Phase B for
the control and Phase C for the hidden components.

As we will demonstrate in the next sections, the
proposed methodology provides very high fault coverage
for a complex processor model, even when test program
development is performed only for Phase A. Phase A is
the one that deals with the high priority components, i.e.
functional components, the required engineering effort is
very low while the achieved overall test cost is also very
low as justified by the very small test program size and
the very small test program execution time.

When moving from Phase A to Phase B and to Phase C
component test development complexity increases since
the target components are of decreasing accessibility with
processor instructions. Therefore, if a high fault coverage
(above an acceptable level) is gained only targeting Phase
A components then the necessary test development effort
is very low while the resulting test program is very small.
As we see in the next sections this is the actual situation in
the RISC processor core studied.

Classification of processor components
(functional, control, hidden)

v

Ordering of functional components
(descending size order)

v

Test routine development for functional
components

v
| Ordering of control components |

v

Test routine development for control
components

v
| Ordering of hidden components |

v

Test routine development for hidden
components

Phase A

Phase B

Phase C

Figure 3: Proposed methodology expanded to phases

2.3 Test routine development

In this subsection we elaborate on the test routine
development at the component level which is performed
as shown in Figure 4. The proposed methodology is
component-based and thus it deals separately with
component operations as they are extracted from the RT
level description of the processor. The first step of the
component level test development shown in Figure 4 is
the identification of the operations of the component
under test. At the second step, the set of instructions,
which excite the component operations is identified. The
final step at the component level is to develop self-test
routines based either on known or new test sets for the
components.
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Figure 4: High-level component-based test development

Most processor components (particularly the functional
components like registers, register files, arithmetic and
logic units) have a very regular or semi-regular structure
(arrays of identical cells, tree-like structures of
multiplexers/demultiplexers, memory element arrays, etc)
which can be efficiently tested with small and regular test
sets. Major consideration in test development at the
component level is that the derived programs must be
small and have a small number of clock cycles for their
execution. Both these factors lead to reduced test
application time.

3  The Plasma/MIPS Processor Model

We applied the proposed methodology to a recently
developed RISC processor model called Plasma/MIPS
CPU core, which supports interrupts and all MIPS I user
mode instructions except unaligned load and store
operations (which are patented) and exceptions. The CPU
core is implemented in VHDL with a 3-stage pipeline
[10].

Table 2 shows the classification of the Plasma/MIPS
components in the classes described earlier. Apart from
the components shown in Table 2, few gates/flip-flops
surround them. We call these: Glue Logic.

Component Name Component Class

Register File Functional
Multiplier/Divider Functional
Arithmetic-Logic Unit Functional
Barrel Shifter Functional
Memory Control Control
Program Counter Logic Control
Control Logic Control
Bus Multiplexer Control
Pipeline Hidden

Table 2: Plasma/MIPS components classification

4 Experimental results

The Plasma/MIPS processor VHDL model has been
synthesized in a 0.35 um library and led to a design
operating at 66 MHz frequency. The resulting gate counts
for each component and the processor overall are shown
in Table 3. A 2-input NAND gate is the gate count unit.
Mentor Graphics tools were used for VHDL synthesis,
functional and fault simulation (Leonardo, ModelSim and
FlexTest products, respectively).

Component Name Gate
Count
Register File (RegF) 9,906
Multiplier/Divider (MulD) 3,044
Arithmetic-Logic Unit (ALU) 491
Barrel Shifter (BSH) 682
Memory Control (MCTRL) 1,112
Program Counter Logic (PCL) 444
Control Logic (CTRL) 223
Bus Multiplexer (BMUX) 453
Pipeline (PLN) 885
Glue Logic (GL) 219
Plasma/MIPS Processor 17,459

Table 3: Plasma/MIPS components gate counts

We have applied the proposed methodology to the
Plasma/MIPS processor core and developed different self-
test programs for the components starting with the four
components of the first class, the functional components
(Phase A). The self-test program statistics are given in
Table 4 in number of 32-bit words and number of clock
cycles for program execution.

Phase A Phase A+B
Test Program (words) 885 965
Clock Cycles 3,393 3,552

Table 4: Self-test programs statistics

Fault simulation results after the application of the
Phase A developed test programs to the processor netlist
are illustrated in columns 2 and 3 of Table 5. The
components that have been targeted for Phase A test
development are marked in Table 5. According to our
methodology the highest priority components for test
development are the four functional components of the
Plasma/MIPS processor, for which four different test
programs were developed. The MOFC column of Table 5
shows the percentage of the processor overall fault
coverage which is missed at each of the components.

It is useful to note that the fault coverage results
obtained for the very simple Parwan processor in [6], [7],
[8] are a little higher than 91%, while fault coverages
obtained by earlier software-based self-testing approaches
were even lower.



Phase A Phase A+B

Component % % % %
Name FC MOFC FC MOFC
RegF NG 97.7 1.2 NG 97.7 1.2
MulD N 87.5 2.4 N 87.5 2.4
ALU N 96.6 0.1 N 96.6 0.1
BSH N 98.4 0.1 N 98.4 0.1
MCTRL 70.5 1.8 N 88.3 0.7
PCL 53.1 1.2 53.1 1.2
CTRL 77.5 0.4 78.9 0.4
BMUX 65.5 1.3 65.7 1.3
PLN 91.9 0.2 91.9 0.3
GL 94.3 0.1 96.9 0.1
Plasma 91.1 8.9 92.2 7.8

Table 5: Fault coverage on Plasma/MIPS with
successive Phase test development

In order to show how multiple phase test development
proceeds and the trade-off between increased fault
coverage and additional test cost in test program size and
execution time we consider Phase B, that is test
development for control class components. Moving to
Phase B component test development, the Memory
Controller component is targeted first since it has high test
priority among the control class components due to its
largest size (see Table 3) and greatest MOFC after Phase
A test application (see Table 5). Fault coverage results
after Phase B test development are illustrated in the two
rightmost columns of Table 5. If the fault coverage results
are not satisfactory, the rest of the components that follow
the Memory Controller in the control class ordering
should be targeted next but at an increasingly test cost. In
this case study, the only hidden class component, the
pipeline component, is tested satisfactory.

A key point in the success of the proposed
methodology is the efficiency of the library test sets both
in terms of test program compactness and fault coverage.
The Phase A results of Table 4 and Table 5 are based on
the use of a few deterministic (not ATPG generated) test
patterns which take advantage of the regularity of each
processor functional component architecture. These
patterns are applied by compact self-test routines with
high structural test coverage. The small test program size
has a direct impact on the download time from tester to
the on-chip memory and usually dominates the total test
time, while the other total test time component, test
execution time (clock cycles) is also very small. The
comparison with other software self-test approaches is
favorable since they would require long pseurorandom
pattern sequences application (increased test execution
time) for random pattern resistant components, or large
amount of test data (structural ATPG patterns)
downloaded from tester to on-chip memory (long test
download time).

We obtained very similar fault coverage results when
the processor was synthesized in a different technology
library. This fact demonstrates that the proposed
methodology is efficient in targeting different gate-level
netlists by exploiting RT-level architectural characteristics
driving down the test development cost.

5 Conclusions

We have described a software-based self-testing
methodology for processor cores and applied it to a
complex RISC processor architecture. The proposed
methodology does not require either manual or automatic
constraint extraction for the processor components, or any
sequential ATPG. It can be applied when just an RT level
description and the instruction set architecture of the
processor are known. The methodology aims to construct
small and fast self-test programs to achieve an overall low
test cost for the processor, i.e. low test development and
low test application costs. Utilization of low-speed, low-
cost external testers is highly improved by the proposed
methodology, since download time from tester to chip
done at the low frequency of the tester is very small. The
successful application of the methodology on the complex
architecture of the Plasma/MIPS model has been
analyzed.
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