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Abstract

We present a graph theoretical methodology that reduces
the implementation complexity of a vector multiplied by a
scalar. The proposed approach is called MRP (minimally
redundant parallel) optimization and is presented in FIR
filtering framework to obtain a low-complexity multiplier-
less implementation. The key idea is to expand the design
space using shift inclusive differential coefficients together
with computation reordering using a graph theoretic ap-
proach to obtain maximal computation sharing. The trans-
formed architecture of a filter is obtained by solving a set
cover problem of the graph. A simple algorithm based on
a greedy approach is presented. The proposed approach
is merged with common sub-expression elimination. The
simulation results show that70% and16% improvement in
terms of computational complexity over simple implementa-
tion (transposed direct form) and common sub-expression,
respectively, when using carry lookahead adder synthesized
from synopsys designware library in .25µ technology.

1 Introduction

Digital filtering is the most frequently used computation
in digital signal processing(DSP) systems. In many ap-
plications such as high speed and low power communica-
tion transceivers, fixed coefficientfinite impulse response
(FIR) filters are routinely employed as custom designed dig-
ital blocks. With the continual need for improving the data
rates at reduced power dissipation, it is preferred for filters
to be implemented in application specific integrated circuits
rather than DSP core. In this paper, we examine the sub-
ject from the viewpoint of reducing thecomputational re-
dundancythat is defined as theexcess computation over the
minimum number of bit operations needed for a given se-
quence of operations[5].

Multiplierless FIR filter implementation has been a topic
of special interest in DSP system design area. Simple
implementations using signed-powers-of-two (SPT) and
canonical signed digit (CSD) number representations are re-
ported by many researchers [11]. Many approaches, which
try to find another quantization reducing the implementa-
tion cost in the vicinity of optimal solution, can not guar-
antee to satisfy the desired frequency response. Some re-
cently proposed scheme such as [10] reduces the dynamic
range of computation for lower power, but is not effective
when there is weak correlation between coefficients. Some
other approaches such ascommon sub-expression elimina-
tion (CSE) focus on the realization of low-complexitymul-
tiple constant multiplications[3, 8, 9]. However, because
the structure from CSE approach is highly irregular, it is ex-
tremely difficult and expensive to pipeline the design to in-
crease the operating speed. Also, in deep sub-micron tech-
nologies, the effectiveness of these algorithms is reduced
due to the expensive interconnect cost.

In this paper, we use an graph based approach exploiting
the arithmetic equivalence to identify non-redundant com-
putations[4, 5, 6]. The proposed approach is merged with
the philosophy of CSE to further improve the results.Shift
inclusive differential coefficient(SIDC) [4] is used to max-
imize complexity reduction. The optimization problem is
formulated as a graph where filter parameters are appropri-
ately defined as vertices and edges. Low-complexity imple-
mentation of a fully parallel filter is obtained by using well-
known graph problems. An algorithm based on greedy ap-
proach is presented to solve the optimization problem. This
can be combined with all the previously cited complexity
reduction schemes in a judicious manner. Even though this
paper demonstrates the proposed approach for the case of
FIR filter implementation, it can be directly applied to any
applications which can be expressed as avector scaling op-
eration[5] like transposed direct form IIR filters.
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2. Differential coefficients and graph

An M -tap linear time-invariantFIR filtering operation
is described asy(n) =

∑M−1
i=0 cix(n − i) =

∑M−1
i=0 P

(n)
i

whereci is theith coefficient andx(n− i) is the data sam-
ple at the time instancen − i. P

(n)
i is the partial prod-

uct ci x(n − i) at the time instancen. Transposed direct
form (TDF) of FIR filter recasts theinner productbased fil-
ter equation as a product of a scalar (the input data) with a
vector (the filter coefficients). This allows resource sharing
which is the basis for CSE [3, 9, 8]. UsingDifferential coef-
ficients, P (n)

i = (ci− cj)x(n− i)+P
(n−i+j)
j [5]. The goal

is to maximally simplify the computation of(ci − cj)x(n)
by identifying aP

(n−i+j)
j which must be computed prior to

cix(n− i).
Let G = {V, E} be a graph representation for the op-

timization problem. Then, a vertexvi(∈ V ) represents a
coefficientci and the edge weightei,j(∈ E) indicates the
cost of resources to multiply a data sample with the differ-
ential coefficientcj − ci. Depending on the number rep-
resentation of the coefficients and implementation of mul-
tiplication, ei,j can have a different value. If array multi-
plier is used for multiplication,ei,j represents the number
of adder-arrays that is equal to the number of non-zero bits
in the binary representation of a differential coefficient.

Because we target implementation of the TDF of FIR
filter, x(n) is the common input to all taps of FIR filter.
The simple graph consisting of two vertices (vi and vj)
and one edgeei,j representsx(n) × cj can be obtained by
x(n)× ci + x(n)× ei,j . Hence, any sub-graph covering all
the vertices in the graph representation of a filter leads to an
unique multiplierless implementation of an FIR filter. Es-
pecially, a minimum spanning tree is a preferable solution
leading to an implementation of a filter with small delay [5].

3 The MRP Approach

3.1 SID coefficients

Assuming a multiplicationci · x(n) has been computed
already, any product of2L · ci · x(n) (L > 0) is easily ob-
tained byL-bit shift of ci · x(n) to the left. Because shift
operation can be simply implemented by hard wiring, the
computational cost of shift operation is negligible. Com-
bining these two approaches of shifting and differential co-
efficients,P (n)

j = 2Lcix(n) ∓ (cj ± 2Lci)x(n). This al-

lows us more flexibility in obtainingP (n)
j from P

(n)
i . In the

sequel, coefficientcj − 2Lci will be referred to as ashift
inclusive differential(SID) coefficient, and the operator ‘–’
may represent either anaddor asubtractoperation.

Complexity reduction of a filter is achieved by iden-
tifying ci which has to be computed prior tocj making

edges with colors
C1±±±±2L C0

edge with colors 
C0±±±±2L C3

C0

C2

C1 C3

Figure 1. Graph representation using SIDC

SIDC a simple number including fewer non-zero bits for
j = 0, 1, · · · ,M − 1. If we represent this problem as a
graph, then there can exist several edges between two ver-
tices andcj can be visited fromci using any one of the
edges. The least expensive way to visitcj from ci will be
the simplest implementation of(cj − 2Lci)x(n).

Figure 1 shows the directed graph for a 4-tap filter. There
are2(W +1) edges directed fromci to cj for all i, j each of
which represents the cost (edge weight) of SID coefficients
cj − 2Lci for a particular value ofL(0 ≤ L ≤ W ). Nega-
tive value of L is not considered, because it has a potential
of re-quantization unless the number of bits are extended
beyond theleast significant bit(LSB) increasing the actual
wordlength of intermediate computations. Hence, there are
a maximum of2(W + 1)(M − 1)M distinct colored edges
in the graph.

Our goal is to identify the order of computations which
reduces the overall effort required to compute the filter out-
put. The resulting implementation is named as aminimally
redundant parallel implementation(MRPI) and a filter that
is implemented in MRPI is called a MRP filter (MRPF).

3.2 Problem definition

We want to compute filtering operationC · x(n) where
C = [c0 c1 · · · cM−1] for an M -tap filter and target dedi-
cated fully parallel implementations for high-speed applica-
tions. Hence, the goal is to find a sub-graph which covers all
vertices minimizing the cost of implementation. Especially,
a minimum spanning tree [2] is preferred solution due to
smaller tree depth that is directly related to the filter delay.

For convenience of explanation,a color ξ of an edge is
defined as the value ofcj − 2Lci for a particular value
of L. In a graph representation ofM -tap filter, there are
M vertices each of which has maximum cardinality of
2(W + 1)(M − 1) when0 ≤ L ≤ W . The solution re-
quiring the smallest amount of resources to implement the
productC · x(n) consists of a set of colors whose edges
visit all vertices at least once, such that the total cost of im-
plementation of these colors is minimum. Suppose an edge
colork is selected, then so are all edges with the same color
in the graph. That is, the computation result ofk · x(n) can

2



be reused everywhere requiring the colork. Moreover, all
the shifted values ofk · x(n) are also available without any
additional computational cost. Hence, we define a class of
suchk and its shifts as acolor class. The smallest element
of a color class is referred to as aprimary color and other
elements are calledsecondary colors.

In addition, acolor set of a coloris defined as a set of
vertices which can be visited by a primary color and its sec-
ondary colors. From color sets of colors, we can compute
two properties of a color;frequencyandcost. The size of
color set is store infrequency indicating the number of
computation re-use requiring only one addition.costof a
color indicates the number of resources required for a prod-
uct of x(n) by the value of the color. Then, our goal is to
find the lowest cost set of colors such that the edges in these
sets cover all of the vertices in the graph. This is a well
known NP-complete problem calledweighted minimum set
cover(WMSC) and it can be solved using a good heuristic
approach [2, 4].

3.3 Decision strategy

In order to select the best color for a solution set, we
introduce abenefit function, f, which reflects the relative
amount of complexity reduction by a color. The benefit
function is defined as

f = β · frequency − (1− β) · cost (0 ≤ β ≤ 1) (1)

A color with smaller cost is preferred while higher value
of frequency is preferred. β can then be used to favor
more vertex coverage versus lower cost of implementing
the color. Hence,f reflects the amount of computations
which can be saved. That is, the largerf is, the more pre-
ferred the color is. In addition, the value ofβ can be used
to consider the effect of interconnect cost of the technol-
ogy. In deep sub-micron technologies, it may be cheaper
to compute more than to share more because of the drive
requirement caused by computation re-use. This particu-
lar issue is modeled in the proposed approach to demon-
strate that the decisions for choosing the final solution can
be changed based on information about the technology —
although we do not propose a solution to choose the ac-
tual value ofβ for a given technology.β = 0.5 indicates
that interconnect cost is negligible and the benefit function
equally weights the drive requirements stemming from high
frequency of a color with the cost of implementing the color.
0 ≤ β < 0.5 gives more weight to interconnection cost
while 0.5 < β ≤ 1.0 emphasizes choosing colors with less
cost and high frequency.

3.4 Greedy approach

Now, we present the first part of the proposed algorithm
which is referred to asstage A[4].

Step 1 As a first step, the coefficients of the filter are normalized
by the largest coefficient.

Step 2 We can divide coefficients into two sets: primary coeffi-
cients and secondary coefficients as we did for colors. All sec-
ondary coefficients are removed and only the primary coefficients
with the smallest value are kept, since no computation is required
to implement partial products involving the secondary coefficients.

Step 3 Build a graph (vertices and edges) with primary coeffi-
cients and remove all secondary colors from graph.

Step 4 Construct color sets and compute the cost, the frequency
and the benefit function (equation (1)) for all colors.

Step 5 Solve the weighted minimum set cover problem.

1. Initialize minimum set cover (MSC)-Solution set to empty set

2. while (Color Sets are not empty)do

(a) Select a color which has the largest value of benefit
function and add the color to MSC-Solution set

(b) Remove all vertices covered by the selected color from
Color Sets

(c) Update frequencies of all colors and recalculate the
benefit function of each color

Step 6 Check if there are vertices having the same value with any
color belonging to MSC-Solution set. If there is, all incoming
edges to the vertex is eliminated, because no predecessor to the
vertex is necessary.

The algorithm which is described above decides aMSC-
Solution setand generates spanning graph consisting of
one or several disconnected graphs. For a fast and low-
complexity implementation, spanning tree with minimum
tree height should be identified from each disconnected
graph. Theall pairs shortest path algorithm[2] can be used
to select a root vertex of a tree. Theall pairs shortest path
algorithm computes a matrix including shortest distances of
all pairs of vertices. If two vertices belong to the same con-
nected graph, the corresponding element of distance matrix
includes the minimum distance between these two vertices.
Otherwise, distance matrix has∞ as an element. Hence, ap-
plication ofall pairs shortest path algorithmto the graphs
defined by the stage A generates a sparse matrix shown in
Figure 3(a). Each sub-matrixMl corresponds to the dis-
tance matrix of each connected sub-graph.

Considering a sub-matrixMl, each row,rt, contains the
shortest distance to the vertices belonging to the same con-
nected graph. Letmt be the maximum value of a row,
rt. Then, the value ofmt implies the maximum depth
of leaf vertex (tree height) when vertexvt is selected as a
root. Hence, by comparing the values ofmt, root vertex
can be determined by selecting a vertex having the small-
est value ofmt. Once roots of trees are defined, the struc-
tures of spanning trees are easily determined by selecting
minimum cost edges which connects predecessors and suc-
cessors among WMSC-Solution color set from root to leaf
vertices.
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3.5 Example Implementation of MRPF

We present an example filter implementation by the pro-
posed algorithm. Let us consider an asymmetric8-tap FIR
filter with coefficientsC = {c0, c1, c2, c3, c4, c5, c6, c7} =
{7, 66, 17, 9, 27, 41, 56, 11}. Because all the coefficients
are primary, all coefficients are further processed. Figure
2 is the complete graph of the example filter showing some
colors. From the graph, color set is constructed computing
the frequency and cost of each color.

C0

C4

C2

C7

C5C3

C1

C6

=

5, … 5, …

5, 47, …
10(=5), 41, 27, …
10(=5), 7, 3 …

3, 23, 45, …

3, 5, 49, …

3, 15, 57, …

3, 21, …

20(=5), 3, 1, …

3, 65…

3, 7, 27…

Figure 2. Complete directed graph

In this example, color 3 and 5 are the best candidates
for solution set and it can be verified that all vertices of
the graph are covered by colors 3 and 5 (Figure 2). The
resulting sub-graph (two disconnected graphs) by the solu-
tion set,{3, 5}, is shown as solid arrows in Figure 2. Sup-
posec0 andc1 are determined as roots by applying all pairs
shortest path algorithm to the sub-graph. Then, the result-
ing spanning trees can be easily determined by selecting
a minimum cost edge which belongs to the solution set,
K = {k1, k2} = {3, 5}. Figure 3(b) shows the resulting
spanning trees with tree height of two. For convenience of
explanation, aSEEDset is defined as an union of the solu-
tion color set and all roots of spanning trees. In case of the
example filter,SEED = {c0, c1, k1, k2} = {7, 66, 3, 5}.
The resulting implementation is shown in Figure 4.

The structure of the filter is composed of two parts. One
is theSEED multiplication networkand the other isover-
head add network. SEED multiplication network performs

Ci Ck Cj

Ci

Ck

Cj

∞∞∞∞

∞∞∞∞

M1

M2

MN

Ci Ck Cj

Ci

Ck

Cj

∞∞∞∞

∞∞∞∞

M1

M2

MN

(a) Sparse matrix for
MRPI sub-graph

C0

C4C2

C7 C5

C3

C1

C6

k1 + c0<<1

k1 << 3 + c2

-k1<<3 + c1>>1
k2<<2 + c0

- k2<< 1 + c2<<3

- k2<<1 + c1

(b) Spanning tree of 8-tap example filter

Figure 3. Sparse matrix and Spanning trees

SEED Multiplication Network

C1C0

x(n)

k1 k2

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Z-1
y(n)

>> 1

<<1

<<2

<<3

<<1

<<1

Overhead 
Add Network

<<3

-

-

-

Figure 4. Filter structure of example filter

simple vector scaling operations which compute the mul-
tiplications of input data (vector) and each element (scalar)
of SEED. Overhead network finishes the desired multiplica-
tions (multiplication of input data and coefficients) by shift-
ing and adding the values computed in SEED multiplication
network. To compute a vertex (coefficient) that does not
belong to SEED, the predecessor of each vertex should be
computed in advance. The computation order of vertices is
already reflected in the structure of spanning trees. Hence,
the overhead add network has to show the exact image of
the spanning trees in Fig 3(b). The resulting implemen-
tation exploits full parallelism for higher performance and
maximal computation sharing for low power dissipation.

4 MRPI as an Architectural Transformation

In previous section, we showed how the computational
complexity can be reduced by manipulating arithmetic re-
lation between given coefficients. The proposed technique
extracts the most basic computations necessary from which
the remaining computations can be obtained using a sim-
ple overhead add operation. This is as if the elements of
SEED form a basis upon which the remaining computations
can be found using very simple overhead add operations.
It is interesting to note that the SEED multiplication net-
work performs a vector scaling operation! Hence, we can
recursively use the MRPI approach on the SEED network
to break it into another SEED and overhead network. Sim-
ilarly, any other complexity reduction approach can be ap-
plied to SEED multiplication network. For example, com-
putation sharing multiplication algorithm [1] orcommon
sub-expression elimination(CSE) [3, 9] can be candidates
for such reduction. In this paper, we use CSE proposed by
[3] to provide a logical optimization in preference to the
arithmetic approach of MRPI to reduce the complexity of
SEED network to reap the benefits of both approaches.

The block diagram of resulting filter structure by com-
bining CSE and MRPI is shown in Figure 5. Application of
CSE to SEED multiplication network results in two sub-
blocks. One sub-block computes the multiplications be-
tween input data and sub-expressions and the other sub-
block finishes multiplications required by SEED multipli-
cation network whose size is a fraction of the size of the
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Common Sub-expression Block

Add Network for SEED

SEED Multiplication Network

Over-head Add Network

x(n)

y(n)

Common Sub-expression BlockCommon Sub-expression Block

Add Network for SEEDAdd Network for SEED

SEED Multiplication Network

Over-head Add NetworkOver-head Add Network

x(n)

y(n)

Figure 5. Filter structure of MRPI+CSE
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Figure 6. Uniformly scaling: MRPF vs Sim-
ple(SPT)

original filter (Table 1) in general.
We finally conclude this section by pointing out very im-

portant advantages of the MRPI to the brute-force CSE ap-
proach. First, much more control on the selection of the fi-
nal solution set: the value ofβ can be used for skewing the
solution and roughly modeling the effect of interconnects.
Second, better architecture for pipelining: pipelining is de-
sired to be used to increase the speed of operation. Unlike
CSE (section 1), the proposed MRP approach nicely breaks
the solution into several networks and provides a natural
place to pipeline the filter. By slight modifications to the se-
lection algorithm, we can change the size of SEED network
to reduce the register overhead. The recursive application
of MRP to SEED network extends the level of pipelining
by providing an additional point where the registers can be
inserted to further speed up the filter.

5 Numerical Results

Several example filters are configured to have symmet-
ric property (Table 1), and the necessary resources for im-
plementation are computed. We assume all filters are im-
plemented in folded and transposed direct form [7]. The
overhead add operations due to folding-over of symmet-
ric filter is not considered because the overhead is identi-
cal for all cased irrespective of the type of implementation.
Three different number representations are considered. Fil-
ters based on CSE approach [3] use CSD number represen-
tation. For MRPI, sign-magnitude (SM) and SPT number
representation are considered. In addition, two different
scaling techniques are considered;uniformly scaled coef-
ficientsandmaximally scaled coefficients[5].

Figure 6 shows the comparison results of uniformly scal-
ing case using SPT. Each data is normalized by the corre-
sponding result of simple implementation. Even though the
results using SM are not shown here, we observe that the
efficiency of the proposed approach does not depend on the
number representation of coefficients. It means that from
any initial solution, MRP optimization technique can pro-
vide significant reduction of complexity. Especially for the
filters with larger than 200 filter taps, only 0.3 adder is re-
quired for multiplication per tap when wordlength of coeffi-
cients is16bit. It means that add operations to compute FIR
filter output dominate the power consumption rather than
the multiplication. On average, 60% of reduction in com-
plexity can be obtained from simple implementation when
using uniformly scaled coefficients. Figure 7 shows the
comparison results of maximally scaling case using SPT co-
efficients. Maximal scaling scheme increases the complex-
ity significantly. Especially, wordlength of coefficients has
strong relation to the implementation complexity. In case
of 8 and 12 bit wordlength, 60% average reduction in com-
plexity is obtained from simple implementation. However,
for large wordlength like 16 or 20 bit, complexity reduc-
tion ratio is 40% when using SPT number representation on
average.

Finally, Figure 8 shows the comparisons of CSE and
combination of MRPI and CSE. When compared with sim-
ple implementation using SPT for coefficients, combination
of logical (CSE) and arithmetic (MRP) optimization tech-
niques maximizes computation sharing resulting in66%
and74% average reduction in complexity for uniformly and
maximally scaling, respectively. To show the efficiency of
MRPI as an architectural transformation, all the simula-
tion results are normalized with the corresponding results
of CSE. The proposed approach shows17% and15% com-
plexity reduction for uniformly scaling and maximally scal-
ing respectively.

We clearly demonstrated that proper computation re-
ordering methodology exploiting arithmetic equivalence
maximizes the potential of computation sharing and is a ef-
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Example number 1 2 3 4 5 6 7 8 9 10 11 12
BW PM LS BW PM LS PM PM LS LS PM LS
LP LP LP LP BS BS BS LP BS LP BP BP

fp1 0.15 0.15 0.15 0.5 0.2 0.2 0.3 0.4 0.3 0.4 0.3 0.3
fs1 0.25 0.25 0.25 0.53 0.24 0.24 0.32 0.4175 0.32 0.4175 0.315 0.315
fp2 0.42 0.42 0.7 0.7 0.705 0.705
fs2 0.38 0.38 0.68 0.68 0.69 0.69

Rp(dB) 2 2 2 3 3 3 2 3 2 3 1 1
Rs(dB) 60 60 60 65 50 50 50 70 50 70 70 70

Filter order 20 35 60 80 98 126 164 214 232 260 301 350

Size of SEED with SPT 9 18 30 26 41 53 63 62 46 40 75 80
(roots,solution set) (3,6) (6,12) (9,21) (9,17) (17,26) (26,27) (29,34) (29,33) (22,24) (24,26) (27,48) (35,45)

Size of SEED with SM 9 17 30 27 46 46 44 63 47 77 79 61
(roots,solution set) (3,9) (6,11) (7,23) (10,17) (18,28) (14,32) (9,35) (32,31) (21,26) (21,56) (29,50) (25,36)

• BW: Butterworth, PM: Parks−Mclellan, LS: Least square, LP: Low Pass, BP: Band Pass, BS: Band Stop(Notch)
• Size of SEED indicates the number of elements belonging to SEED using 16 bit maximally scaled coefficients under depth constraint of 3

Table 1. Filter specs of example filters and the size of SEED set after MRP Transformation
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Figure 8. MRPF+CSE vs CSE(SPT)

fective approach in reducing the computational complexity
for high-performance and low-power design.

6 Conclusion

We presented a complexity reduction technique which
can be used to obtain multiplierless implementations of FIR
digital filters. The main idea is toreordercomputations and
to maximize computation sharing between different multi-
pliers. The reordering problem is mapped to graph and the
multiplierless solution is obtained by solving a set cover
problem on the graph. A simple algorithm based on a
greedy approach was presented. The proposed schemes can
be used together with other existing complexity reduction
approaches to further simplify the design. When combined

with CSE, we demonstrated a 70% and 16% reduction in
complexity from simple implementation and CSE on aver-
age, respectively.
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