Fastand Accurate Multipr ocessorAr chitecture Exploration with
Symbolic Programs

Vladimir D. Zivkovié
Ed Deprettere
LIACS- LeidenUniversity
TheNetherlands
{lale,edgd @liacs.nl

Abstract

In system-leel platform-basedembeddedsystemsde-
sign,themappingmodelis a crucial link betweertheappli-
cation modeland the architecture model. All threemodels
mustmatc whendesign-spacexploration hasto be fast
and accurate, and when exploration methodsand design
methoddhaveto be closelyrelated. For the mediaprocess-
ing application domainwe presentan architectuie model
andcorrespondingnappingmodelthat meettheserequire-
mentdetterthanpreviouslyproposednodels A casestudy
illustratesthis improvement.

1. Intr oduction

Theincreasingnterestin embeddedystemsasheight-
enedtheneedfor methodologiesndtoolssuitablefor mod-
elling, simulation,and designof embeddedsystems. We
focuson heterogeneousmbeddedystemsj.e., thosethat
mix programmable configurable,and dedicatedcompo-
nents. Thesesystemsare of particularinterestsincethey
are usedas underlyingplatformsin multimediaand com-
municationsproducts. Such embeddedsystemstend to
becomeincreasinglycomplex and they are not easily de-
signed. More and more they have to meetnon-functional
constraintghatdesignersave to incorporaten their mod-
els. Modelsbecomemore accuratevhenmore detailsare
added. However, this also increasesystemmodel devel-
opmentand simulationeffort andtime. To overcomethis
problem,the evaluationof designchoicesshouldbe moved
to theearly phase®f thedesignprocessThecostof model
constructiorandmodelevaluationis loweratthehigherlev-
elsof abstractionsuchthattherearemoreopportunitieso
explore alternatve realizationsat theselevels. Therefore,
methodologieghat dealwith the explorationof embedded
systemsaatthe systemlevel areof interest.

We assumadn this paperthat the Y-chartapproach[1]

1530-1591/03 $17.00 & 2003 IEEE

Erwin deKock
PietervanderWolf
Philips Research.aboratories
TheNetherlands

{erwin.de.lock,pietervan.demwolf } @philips.com

is followed. Thus,the application,architectureand map-
ping modelsareseparatedh threelayers,eachbeingspeci-
fied appropriatelyGiventhattheapplicationf interestare
streamingbasedwe assumeéhatthey arespecifiedasKahn
ProcesdNetworks (KPN) [2]. A KPN is one of mary so-
calledModels of Computation(MoC). A KPN consistsof
executableprocesseshat communicategpoint-to-pointover
unboundedFIFO channelsand synchroniseby meansof
blocking reads The mappinglayer recevesa representa-
tion derived from the KPN applicationmodel, and trans-
forms this representatiorio a representatiorthat matches
more closelythe architecturenodel onto which the appli-
cationis to bemapped.

In [3] we investigatedesign-Spacé&xploration(DSE)
approachedor streamingapplications. We obsened that
the exploration approachesnainly differ in terms of the
mappinglayerrepresentationd/Ve identifiedtwo extremes,
onebeingthe symbolicinstructiontracerepresentatiorthe
otheronebeingthe executablecontrol data-flowgraphrep-
resentationThe formerrepresentatiohasled to the Trace
Driven (TD) co-simulatiorexplorationapproachyhilst the
latter representatiofis the designers approachwe referto
asthe Contmwol Data-Flow Graph (CDFG) approach. For
example,in the SPADE framework [4] the mappinglayer
transformsapplicationtracesto architecturetraces. Sim-
ilarly, but not strictly accordingto the Y-chart, tools pre-
sentedn [5] transformCDFGs.

Thesetwo extremeapproachesachhave their own pros
andcons.To begin with, thetwo approacheaimatdifferent
objectives (explorationvs. design)thatare hardto recon-
cile. Next, the CDFGrepresentatiois morepowerful than
theTD representatiobecausén CDFGscontrolconstructs
are presentandthe representatiomoversall datasets. In
the TD representatioronly the datadependentesultsof
control constructsare represented. However, the CDFG
representatiomastwo drawvbacks: (1) CDFGsare usually
morecomplex thansymbolicinstructiontracesand(2) the

CDFGrepresentatiois anexecutablaepresentationmap-
ping this representatiomto anarchitecturémpliesthatthe
architecturenodelhasto capturebothfunctionalbehaiour
andtiming behaviour. Therefore the level of reusabilityof
architecturesor differentCDFGsis restricted.Simply, dif-
ferentapplicationsassumalifferentCDFG representations,
and,hencedifferentarchitectureCDFGs. Stepby step,the
designemovesto the detaileddesignstagesandhe over-
looks other designchoices. This resultsin a longertime
neededor DSE. Thelimitation of the TD representatiors
apparentn e.g.,the SPADE explorationframework, where
the communicatioraspectf the non-functionalarchitec-
ture modelsare very closeto communicationstructureof
the applicationmodels. Sincelimited informationis cap-
turedin thetraces,only simpletransformationganbe per
formed. Of course thereis nothingwrong with this tight
couplingbetweerapplicationandarchitecturanodelswhen
they do matchasrequired. However, a typical “generic”
modelof architecture (MoA) is notthe KahnMoC. Hence,
MoC andMoA do not match. Therefore mappingrequires
moreinformationthanonly tracesof symbolicinstructions.

In [3] we proposeda hybrid representationf the appli-
cationmodelasaninput to the mappinglayer that unifies
thebestof the TD andthe CDFG representationdn short,
theapplicationmodelrepresent#self to the mappinglayer
in termsof asymbolicCDFG calledsymbolicprogram(SP)
- asopposedo symbolicinstructions- plusa control trace
in which the outcomesof conditional constructsare con-
veyedto the mappinglayer. In addition,the symbolicpro-
gram allows the annotationof possibly parallel symbolic
instructions,i.e., offers a coarsemodelof instructionlevel
parallelism Becausehis representatiotis more powerful
thanthelinearsymbolicinstructiontracerepresentatiorthe
architecturemodel,in particularthe processinginit model
is morepowerful.

At afirst glance,a symbolicprogrammay look similar
to DF* andgrey boxmodelg[5]. However, the DF* models
arefor synthesianainly, while with the symbolicprogram
we aimat DSEtoo. Moreover, it seemghatdesignersnust
possessolid“know-how” in orderto beableto derive DF*
models.On the contrary symbolicprogramscanbe easily
generatechutomaticallyfrom an alreadyavailable process
network. Thus,DF* andgrey boxmodelsarecloserto con-
trol data-flav graphsthanto symbolicprograms.

The restof the paperis organisedasfollows. First, we
givesomegeneratemarksaboutsymbolicprogramsn Sec-
tion 2. Thearchitecturenodelsuitablefor the correspond-
ing DSEapproachs describedn Section3. In Sectiord we
presenthe performance/costumbersobtainedvhenusing
thesemodelsin a simple,yet representatie casestudy Fi-
nally, we draw someconclusionsn Sectionb5.

2. The Symbolic Program Approach

On the left-handside of Figure 1, the typical sequence
of actwities usinginstructiontracesis depicted. After the
sourcecodeof anapplicationmodelis annotatedthemodel
is executedon a single data-set. Tracesof the execution
of an applicationmodel are collectedand transformedto
architecture-leel traces,which are then consumedby an
architecturesimulator

Application model (YAPI)

TRANSFORMATION STEPS

Low ACCURACY High ACCURACY

High SIMULATION SPEED Low SIMULATION SPEED

Figure 1. The SP Hybrid mapping approach

Similarly, on theright-handsideof Figure1, the typical
flow of actiities using control data-flav graphsis shown.
The sourcecodeof an applicationmodelis parsedandthe
structureof applicationprocessess preseredin aform of
CDFGs.The CDFGsarethentransformediuring mapping
onto the specifiedarchitecture. The resultingCDFGsare
compiled/synthesiseihto the implementationrmodel(e.g.,
anobjectcodeor ahardwaremodel),whichis thenexecuted
an architecturesimulator During this executiona data-set
is processedas opposedo the instructiontraceapproach
describedormerly.

Finally, in themiddle of Figure1, thesymbolicprogram
flow is shavn. Thisapproachhasemepgedin aneffort to ob-
tain afastandaccurateexplorationapproactihatis closeto
the designtrajectory[3]. As expected,symbolicprograms
arelocatedsomavherein-betweenthe two extremesmen-
tionedabove. Ononehand symbolicprogramsareobtained
in asimilarway ascontroldata-flav graphs- by parsingthe
applicationsources. On the other hand, control informa-
tion is obtainedby gatheringthe control tracesthat come
out of theexecutionof anannotatedpplicationmodel. The
control-traces, of course valid for a singledata-setsince
the datais processedrior to the architecturesimulation.
As a consequencdhe architecturanodeldoesnot needto
capturethe functional behaviour, while still being able to
handledatadependenbehaiour correctly[4].

Figure 1 also shows the positioning of the three ap-
proacheswith respectto accurag and simulation speed.
Symbolicprogramsallow designerg1) to performdesign-
stepsasin thecaseof detaileddesign(indicatedwith dashed
linesin Figurel), (2) torunfastsimulationsof architectures
beingexplored,and(3) to have moreaccuratsmumberghan
in thecaseof trace-drvensimulationg6]. An examplewith
the pseudocodeof a symbolic programandits correspon-
dencewith realsourcecodeis shovn in Figure2. Thelist-
ing on the left side givesa pieceof the C++ codewhich
specifieghefunctionalityof oneKPN processThecontrol
flow andthe coarsecommunicatiorandcomputatiorarein-
dicatedwith bold letters,while the othercodeis abstracted.
Suchabstractioeadsusto thelisting in themiddle,which
is the symbolic programof the original specification. Fi-
nally, the symbolic CDFG on the right side in Figure 1
shavs the CDFG-like equivalent of the derived symbolic
program.

void ND5 :: main () { {
1* block of code */

for (k=0; k<T; k++) { LOOP [cond 1 (paraneters)] {
/* block of code */
for (j=0; j<N; j++) { LOCP [cond 2 (paraneters)] {
/* block of code */
if >0) { SELECTION [cond 3 (par.)] {
/* block of code */
read (in12, a); RI2 (parameters, size) ||
read (inl1, b); R11 (paraneters, size) ; }
Ll o coe
else
Yelsel ot code o1 SELECTION [cond 4 (par.)] {

read (in13, a);
read (in11, b);
I* block of code */

RI3 (paraneters, size) ||
RI1 (paraneters, size) ; }

E0 (parameters, stages);

exec("vectorize",a,b,c,d);
j<N-1) { SELECTION [cond 5 (par.)] {

if
J* block of code */
write (out19, c);
write (out18, d);
/* block of code */
}else {
7+ Bllock of code */
write (out19, c);
)/‘ bl ock of code */

} }
}
}))

The source code of the ND5 process A Symbolic Program of the ND5 process

W9 (paraneters, size) ||
W8 (parameters, size)

SELECTION [cond 6 (par.)] {

WO (parameters, size) ; }

A Symhbolic CDFG

Figure 2. An example symbolic program

3. The Symbolic Program Ar chitecture Models

In the previous sectionwe have motivatedthe symbolic
programapproachHerewe elaborateon architecturamod-
els that supportthe evaluationof the timing behaiour of
systemsbeing designed. Thereare a few key issuescon-
cerning architecturemodelsfor system-lgel exploration:
(1) easeof modelling, (2) accurag, and (3) simulation
speed. The accuray is determinedoy modelling capabil-
ities. Modelling restrictionsmay hampercorrectmodelling
andleadto inaccurateesults.

Particularly, we focus on systemsbasedon execution
units connectedvia a point-to-point communicationnet-
work. In the model,the units communicatd¢okens,so data
is not really processedt the architecturelevel. We also
assumethat execution units do not supportmultitasking.
However, we want to underlinethat this is just a first it-
erationof our work, andthatin the nearfuture we will also
cover othertypesof communicatiometworksaswell asan

explicit modelof sharednemory We will alsosupportmul-
titaskingon executionunits.

Starting from an available processnetwork, e.g., the
KPN network! shavn in Figure3, a designercandescribe
andexamineanarchitecturenstancaisingasetof symbolic
programmoduleswe currently provide. Sucharchitecture
instancds shown in Figure4. Therearethreebasicgeneric
architecturenoduletypes:

1. SymbolicProgramUnits (SPU),
2. Read-ofWrite Interfacesand
3. First-In-First-Out(FIFO) buffers.

Figure 3. An application PN (QR unfold 1)

While the purposeof symbolic programunits is to model
the instructionlevel parallelisnt, the purposeof the other
two modulesdis to allow modellingof tasklevel parallelism
thatis usedby executingdifferenttaskson differentSPUsin
parallel.In therestof this sectiorwe describeheproperties
of eachof thesemodules.

Symbolic Symbolic Symbolic Symbolic
Program Program Program Program
Unit Unit Unit Unit
T T 11 TTT TT TT
Write Write Read Write Write Read
Interface Interface| |Interface| |Interface| |Interface| |Interfact
T

Point-To-Point — ‘
Communication
Network

Figure 4. A symbolic program architecture
3.1 The Symbolic Program Unit - SPU

The aim of the symbolicprogramunit is to allow high-
level modellingof boththeinstructionlevel parallelismand
the reuseof available processingesources.The resultsof
the casestudyperformedin [6] indicatethatthe high-level
tracedriven executionunit in [4] hasto be modifiedin or-
derto beableto handleboththehorizontal(VLIW -like)and
vertical (superscalalik e) typesof parallelism.We needthe
modellingsupportfor both typesof parallelismdueto the
factthatembeddeglatformsareheterogeneouddowever,
descendinglown to the lower levels of abstractionwould

1Circlesindicateprocessesdgesndicateinfinite FIFOs.
2Actually, SPUsmodelhigh-level manifestationsf ILP.

male this unit too dedicated,inflexible and, hence, not
reusableWe provide a solutionto this problemby combin-
ing theconcepbf symbolicprogramg7] andthesimulation
engineof System8]. Notethatsymbolicprogramarchi-
tecturesarenon-functionaksmentionabove. Thesymbolic
programunit containgparallelprocessingesourceshatare
parametrisedOn onehand,this internalparallelismof the
architecturenoduleallows aflexible deploymentof the po-
tentially parallelload originatingfrom the applicationpro-
cessandthus, it allows designergo modelboth staticand
dynamicinstructionscheduling[9] at a very high-level of
abstraction. On the other hand, the potential parallelism
available at compile time is easily expressedusing sym-
bolic programs. Jointly, thesetwo propertiesresultin the
symbolicprogramunit thatis illustratedin Figure5.

Theunitin Figure5 canbedividedin two parts: (1) the
front-endpart that scheduleghe programon the available
resources a numberof Read,Write, and ExecuteUnits -
and(2) the back-endoartthatdispatchesheinstructionsto
theseresources.Front-endand back-endparts communi-
catevia the finite FIFO buffer®, calledinstruction stream
The width of eachbuffer cell is definedby the numberof
resourcesnd,from thehighlevel pointof view, determines
whethera VLIW -like or a superscalalike moduleis to be
instantiated Thefront-endpartresembles conditionalex-
ecutionwhile theback-endgartresembleanunconditional
executionof instructions.

Symbolic PE Specification Info Mapping Specification Info

Program File in Architecture Spec. File in Mapping Spec. File
OFF LINE OFF LINE OFF LINE

SYMBOLIC
PROGRAM

FRONT END PART BACK END PART

RUN-TIME
MAPPING
LAYER

SYMBOLIC PROGRAM

Figure 5. The symbolic program unit model

The front-endis subdvidedin two units, eachof which
have an independenthreadof execution. Theseare (1)
the ProgramUnit, that parseghe symbolicprogram,reads
the control trace, and generateghe streamof potentially
parallelsymbolicinstructions,and(2) the Front-EndCon-
troller, which restrictsthis “partial order” of symbolicin-
structionsinto the onethatcanbe handledby the available
resourcesThe programunit andfront-endcontrollercom-
municatevia a FIFO buffer*. Thesizeof thebuffer restricts
the numberof symbolicinstructionsthat canbe fetchedin
adwance. Sincemultiple symbolicinstructionsare now al-
lowed to be processedn parallelit is easierto exploit at

3TheinstructionstreamFIFO buffer is markedwith « in Figure5.
4This FIFO buffer is markedwith sx in Figure5.

run-timethe compile-timetransformationshatexposesuch
parallelism[10] on symbolic programsthan on symbolic
instructiontraces. Additionally, in order to facilitate the
overlappingof executionof symbolicinstructionsin hard-
ware,the sameunit builds arandomlyaccessibléablewith
dependencieamongsymbolicinstructionsthatarealready
fetchedby thefront-endcontrollerbut arenot completedy
theback-endcontroller

The back-endpart consistsof the Back-EndController,
thatdispatchesheworkloadandsynchronisetheoperation
of the resourceswith the input flow of symbolicinstruc-
tions,andanumberof read write, andexecuteunits. Again,
all units have their own threadof execution. The back-end
controllercan useinformation aboutdependencieamong
the pendingsymbolicinstructionswhich is availablein the
table. Thereforejt canperformrun-timereorderingwhich
is equivalentto superscalaexecution[9]. As aresult,both
thereadandthewrite units canbe reusedby differentread
or write symbolicinstructions(respectiely).

3.2 Communication Interfaces

Communicationinterfaces connectsymbolic program
unitsandFIFOs.We llustratethiswith atypical “producer
consumer’connectiorin Figure6.

Producer WRITE
FIFO
SPU INTERFACE|

Figure 6. Communication refinement

Consumer
SPU

An interfacerefinesa task-level communicatiorinto ex-
plicit buffer synchronisationdashedarrows in Figure 6)
and data-transfefwhite arrows in Figure 6). Theideais
to split coarsereadandwrite instructionsinto finer grained
primitives for explicit synchronisationand data-transfer
and consequentlyto allow overlappingof different syn-
chronisatiorinstructiong11]. Additionally, interfacessup-
port connectionshetweenreusablereadand write units at
one side and communicationchannelsat the other side.
Sincesymbolic programunits may reorderinstructions,it
is necessaryo matchsourcesand destinationf the pro-
ducedtokens. To this end, a small cross-barswitch inter-
connectnetwork is needed.This is illustratedin Figure 7
for the caseof the Readinterface(the similar holdsfor the
Write Interface).

Therearetwo typesof moduleghatcanberecognisedn
the interfacemodelintroducedin Figure7: (1) a FIFO In-
putController, whichrecevestherequestérom aparticular
readunit, and configuresthe connectionbetweenthe read
unit andthe correspondindg-IFO channel,and (2) a FIFO
InputUnit, whichinterfaceshecommunicatiorbuffer from
onesideandthereadunit masteiontheotherside. Thetype
of communicatiorbetweenthe readunit andthe FIFO in-
put unit is a pull handshak (i.e., the recever is a master

andthe senderis a slave), while the type of the commu-
nication betweena write unit anda FIFO outputunit is a
pushhandshak (i.e.,thesendeiis amasterandtherecever
is a slave) [12]. On the other hand,the FIFO input unit
communicatesvith its counterparin a peerinterface(i.e.,
the FIFO outputunit) using buffer synchronisatiorprimi-

tives[11]. For example whentheoutputunit writesatoken
toaFIFOQ,it will signaldatato its inputcounterpartwhich
may bein a blocked statebecauset performedchedk data
previously. A vice-versaexampleis whenthe input unit
readsa token from a FIFO, it will signalroomto its out-
put counterpartwhich maybein a blockedstatebecauset

executedched roompreviously.

—

SPU READ (FIFO) INTERFACE

i Crossbar — FIFO
nit ['
Bk 4_‘]' FIFO
Unit T |
™ ' FIFO

o, . — _
J

Unit
Figure 7. The Read Interface

FIFO

Finally, all interfaceunitshave anindependenthreadof
execution. The interfacedescription(the numberof units
theinterfacecontainsogethemwith themappindfile (map-
ping of application ports onto the architecture/intedce
ports)constitutetheinput parameteror this module.

3.3 FIFO Communication Buffers

The FIFO CommunicationBuffer is characterisedy
two parameters(l) adelayand(2) abuffer-size. Thebuffer
sizerepresentshe capacityof the buffer.

We split the buffer delayin two parts:(1) the partthatis
incorporatedn the buffer controllers(seeSection3.2) and
(2) the partthatrepresentshe delaythathasto passhefore
the notificationof aneventis recognisedy blocked buffer
controllers. Thus, we take into accountthe total commu-
nicationdelayinsteadof just the delay causeddy blocking
(synchronisation).

Additionally, insteadof usingthecoarseead/writecom-
municationprimitives,our buffer modelusesthe synchro-
nisation and data-transferprimitives introducedin [11].
Hence, our FIFO CommunicationBuffer model is more
refined and containsmore details than the SPADE buffer
model[4].

4. An Example CaseStudy

In orderto verify the accurag of our symbolicprogram
approachwe reusedthe casestudy reportedin [6] where

the parallelisedversionof the adaptive QR algorithmwas
mappedon an FPGAboard. The adaptie QR algorithmis
usedin thedomainof signalprocessinge.g.,for theadap-
tive beam-formingwith multiple antennag6]. For more
detailedinformationaboutthe QR algorithm,see[13]. We
briefly describehebenchmarkn thenext subsectionAfter
that,we describehe casesve examined.

4.1 The Benchmark

The QR algorithmwasgivenin an abstractrepresenta-
tion andthenpartitionedinto a processietwork asin Figure
3 usingatool called COMPAAN [14]. The QR processmet-
work wasmappednthe FPGAboardafterwards.The sys-
temarchitecturevasspecifiedsimilarly to theoneshavnin
Figure4. Eachprocessvasmappecdon a singleprocessing
unit, while processingunits communicatedhroughfinite
FIFO buffers. Additionally, eachprocessinginit wascon-
figuredto performseveral operationdgn parallel,and FIFO
accessesoming from differentunits were pipelined. Fi-
nally, the size of the FIFO bufferswassetto the valuethat
guaranteedeadlock-freexecution.

Table 1. Previous results

Nefwor:= | unfoldl [unfold3 | unfolds | t |
FPGA 29281 9771 6111 [~10h
SPADE 6049 2021 1285 | ~10m

SPADE+R/W || 107395 | 35951 | 22474 | ~30m

The systemwas instantiatedfor threedifferentprocess
networks describedn [15] and[6]: the QR network with
the unfold factorsequalto 1, 3, and5, respectiely. The
unfoldfactor assumeshatthe nested-looprogramsof the
original network areunfoldedby this factor Suchtransfor
mationis known asaloopunrolling [16] andis usedin com-
pilersin orderto increasehe instruction-level parallelism.
However, in [15] this transformationwvas usedto increase
task-level parallelisminsideapplicationnetworks. Thesim-
ulationresultsin cyclesandapproximatve simulationtimes
aregivenin Table1l. The FPGA caseis areferenceo both
mappingand very detailedVHDL cycle accuratesimula-
tion [15] [6]. As onecansee,althoughin the SPADE case
simulationstook significantly lesstime thanin the FPGA
casetheaccurayg of the SPADE simulationswasvery low.

4.2 Experimentsand Results

We alsoappliedour symbolic programapproacho the
casestudiesreportedin [15] and[6]. We examinedcases
whichillustrateeffectsof limited modelsandalsoin which
modelsareflexible enoughto capturecharacteristicef the
real architecture.Concretelyin Table2, Casel illustrates
symbolicprogramunitsthatschedulegheir programsurely

sequentialand that communicatevia non-pipelinedFIFO
buffers. Case? illustratessymbolicprogramunits that be-
have like VLIWs andthat communicateria non-pipelined
FIFO buffers. Case3 illustratesa more accuratemodel of
the real architecturen which the symbolic programunits
behave like VLIWs and communicatevia pipelined FIFO
buffers.

Simulationwasperformedisingthe SystemGsimulation
engine[8]. Simulationresultsandthe correspondingimu-
lationtimesareshown in Table2.

Table 2. Our results

| Mefeork= T unfol d1 | unfol d3 [unfolds | t

Casel

case 1 107951 36111 22590 <10s
case 2 41073 13787 8653 <10s
case 3 29458 9884 6202 <10s

Theresultsshavn in Table2 leadto thefollowing obser
vations:(1) thesymbolicprogramapproactvery accurately
modelthereality, and(2) themodelscanmoreeasilyrepre-
sentboth applicationandarchitecturgropertiescompared
to instructiontracesusedin [4]. We assumethat the re-
ality is representedby the FPGA numbersgivenin Table
1. By comparisorof the FPGA numberswith the numbers
for Case3 givenin Table2, we supportthe former obser
vation. The clarificationof the later obsenation requiresa
bit more explanation. In [3] we conductedan exploration
on a conceptualevel aboutthe possiblecausedor thein-
accurateresultsshovn in Table1. The preliminaryresults
shaved thatinaccuraciesre mainly dueto the lack of the
modellingcapabilitiesn [4]. Onthecontrary ourapproach
exploits multithreadingin symbolic programunits andthe
expressvenesdf our symbolicprograms Furthermorethe
symbolicprogramsarefully scalableandparametrisedand
thus,fully generic.Sinceeachunit hasits own threadof ex-
ecution,onecaneasilycheckthetime thateachunit spends
in eachstate andtherefore caneasilydetectwhetherunits
areunderutilised. Suchunits are un-necessarilyallocated
units, i.e. over-designed. Finally, the simplicity of sym-
bolic programsallows easyparsingandmodificationsfrom
afully-sequentiato a VLIW -like schedule.

5. Conclusion

In this paperwe have presentedarchitecturemodels
for design-spacexplorationof embeddedystems.These
modelsare built in a genericway, so they can be used
to modelvariousarchitecturecharacteristics.Further the
modelscan capturemostof the parallelismthat designers
canexpressatcompiletime. Thisis dueto thefactthatthey
usesymbolic programsas applicationworkload insteadof
tracesof symbolicinstructions. We verified our model by
regeneratinghealmostexactresultsof anearliercasestudy

[6]. Themodelhasbeenimplementedising System(8],
whichmalkesit reusabldor awider system-desigoommu-
nity.

6. Acknowledgements

Thiswork wasperformedn partin the Ar cher project,
fundedby Philips SemiconductorsWe wantto thankBern-
hardNiemann(Fraunhofelnstitutefor IntegratedCircuits,
Germauy) for his adviseoncerningSystemC.

References

[1] B.Kienhuis,etal.,”An Approachfor Quantitatie Analysis
of Application-specifidDataflav Architectures, in Proc. of
ASAP’97 July, 1997.

[2] G.Kahn,"The semanticof a simplelanguagefor parallel
programming, Information processingr4 - North-Holland
PublishingCompary, 1974.

[3] V. Zivkovit etal., "Design SpaceExplorationof Streaming
MultiprocessoArchitectures, at SiPS’02 USA,Oct.,2002.

[4] P Lieverseet al., "A methodologyfor architectureexplo-
rationof heterogeneousignalprocessingystems,in Proc.
SiPS’99 Taiwan,Oct. 1999.

[5] N. Cossementt al., "DF*: An extensionof synchronous
dataflav with data dependengc and non-determinism, in
FDL'00, Germauy, Sep.2000.

[6] T.Harrissetal.,"Compilationfrom Matlabto ProcessNet-
works Realizedin FPGA in the 35th Asilomar Conf on
Signals,Systemsand Computes, US, Nov. 2001.

[7] 3. Larus,"Abstract execution: A techniquefor efficiently
tracingprograms, Soft.Practice& ExperienceDec.,1990.

[8] "SystemCVersion2.0 Users Guide; Synopsysinc., Cow
are Inc., Frontier Design,Inc., http://www.systemc.ay/

[9] J.Hennessytal., ComputerArchitectuie - A QuantitiveAp-
proach, MorganKaufmannPublishers1996.

[10] M. Lam, "Software Pipelining: An Effective Scheduling
Techniquefor VLIW Machines, in Proc. of SIGPLAN’88
USA, June,1988.

[11] P Lieverseetal., "A Trace TransformationTechniquefor
CommunicationRefinement, in Proc. CODES’01 Den-
mark,Apr. 2001.

[12] A. Peeters,'Single-Rail Handshak Circuits; PhD thesis,
Tedhnise Universiteit Eindhoven the Netherlands1996.

[13] J.Proakisetal., "Algorithms for StatisticalSignalProcess-
ing,” PrenticeHall, Inc., 2002.

[14] A. Turjan et al., "The CompaanTool Chain: Corverting
Matlabinto ProcesdNetworks; in DATE’02, France2002.

[15] T. Stefanor etal., "Algorithmic TransformatiorTechniques
for Efficient Exploration of Alternative Application In-
stance$,in Proc. CODES’02 USA, May, 2002.

[16] S.Muchnick,”AdvancedCompilerDesignand implemen-
tation; MorganKaufmannPublishes, Inc., 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

