
Background Data Organisation for the Low-Power Implementation in Real-Time
of a Digital Audio Broadcast Receiver on a SIMD Processor

P. Op de Beeck†‡, C. Ghez†, E. Brockmeyer†, M. Miranda†, F. Catthoor†‡and G. Deconinck‡
†IMEC, Leuven, Belgium

‡ESAT Lab. Katholieke Universiteit Leuven, Leuven, Belgium

Abstract
In this work we illustrates the strong interaction between

the data organisation in background memory and the data
format required for sub-word level acceleration. The impact
of such interaction is demonstrated on the implementation
of a Digital Audio Broadcast Channel Decoder on a TriMe-
dia processor, where data format transformations applied
on the background memory data enable a substantially bet-
ter exploitation of the available Single Instruction Multiple
Data instructions. As a result, a factor two reduction for
both execution time and data memory energy is achieved.

1 Introduction

In the near future mobile radios will be equipped with
Digital Audio Broadcasting (DAB) reception. The trans-
mission system in the DAB standard is based on an Orthog-
onal Frequency Division Multiplex (OFDM) transportation
scheme using up to 1536 carriers [1].

Several DAB channel receivers have been reported in lit-
erature mainly implemented using either custom ASICs [2]
or high-end PC-based systems [3]. However, the imple-
mentation of such advanced channel receivers using cheaper
low-power multimedia instruction set processors provides a
productive, flexible and cost effective alternative to these
high-end solutions. To achieve that it is essential that the
necessary instruction level parallelism is available via the
Instruction Set Architecture (ISA) to execute the application
in real-time while using lower clock rates than high-end PC-
based systems. The combination of a Very Long Instruction
Word (VLIW) architecture and Single Instruction Multiple
Data (SIMD) ISAs provides enough degree of parallelism
so as to be able to implement many current multimedia and
wireless applications in real-time. However, this is only at-
tainable on condition that the format of the data in back-
ground memory and the one required by the sub-word level
units matches, given the different requirements for the write
and read related operations of the shared background data
this is far from obvious.

Compiler support for SIMD instructions is largely lack-
ing in most existing architectures, and it typically requires
the designer to manually insert calls to optimised libraries at
the source code level. Still, even if this is done so, an over-

head occurs when the data format required for the SIMD
operation does not match that one chosen for background
data storage. The consequence is that the potentially obtain-
able speed-up provided by the SIMD operation is hidden by
the cycle overhead of the extra data formating instructions
required (e.g. SIMD (un)pack operations). These extra for-
matting operations are necessary to combine/split the data
words before/after these are processed by the SIMD unit.
Our goal is to show how that overhead can be avoided by
adapting the data storage organisation in a processor and
memory platform dependent way.

The illustration of such interaction is the focus of this
paper. For illustration purposes, we have chosen the TriMe-
dia TM1300 [9] because of its combined VLIW and SIMD
nature of its ISA. However, our observations are applicable
to any architecture supporting sub-word level processing in
its instruction set.

2 Related Work
In [4] the data format decisions (e.g., data (un)packing)

is tackled during the code selection phase. Only the data
needed together is merged together in background memory.
However, no prior code transformations are explored to cre-
ate more freedom. In [7] memory accesses are coalesced in
order to more efficiently use a processors memory system
and recently [5] has proposed a method that horizontally
orders the scalar data during address assignment to improve
program performance in SIMD processors however this .af-
ter the scheduling which limits the freedom for background
data merging.

Also in the custom processor domain data merging has
been explored [6] for dynamically allocated record types.
However, the additional freedom of manifestly specified ar-
rays is not looked at and the approach does not consider
constraints coming from the (SIMD) operation format.

3 Basic group structuring transformations
for SIMD data format organisation

A crucial module in the DAB is the OFDM decoder that
at the receiver side is implemented as a forward complex
FFT. The starting point of our experiments has been an

1530-1591/03 $17.00 2003 IEEE

OFDM kernel which has been optimised in a Platform In-
dependent manner [10].

The regular structure of the FFT butterfly (Figure 1a)
makes it a good candidate for sub-word level acceleration.
The mapping onto the TriMedia instruction set is shown in
Figure 1b. The key feature is to re-interpret the content of
a register as two sub-words. In this way the total amount of
word-level arithmetic operations has been reduced by more
than a factor 2. However, many extra packing instructions
are introduced to correctly feed the SIMD operations (see
Figure 1). This penalty in extra cycles can be avoided when
data is already merged in the background memory by apply-
ing the so called Basic Group Structuring transformation in
the source code.

R0
R1
R2
R3

+

+
- *

I0
I1
I2
I3

+ OUT1

(a)

cos

sin

+

+
- *

R2

cos sin

iFIR OUT1

(b)

R0

R3R1

I2I0

I3I1

pack

sin cos

dual-
 sub

R0
R1
R2
R3

I0
I1
I2
I3

dual-
 add

pack

pack

pack

dual-
 add

pack

Figure 1. Representative part of the FFT but-
terfly before (a) and after (b) SIMD
Basic group structuring (BGS) is a transformation [11, 6]

that horizontally merges the elements of different arrays in
one Basic Group (BG) array. Usually these BG arrays con-
tains elements that are processed together. BGS can have a
large impact on data memory, power, size and bandwidth.

4 Experimental framework and results
This section experimentally verifies the need for BGS

transformations. For that purpose we have obtained three
versions corresponding to the platform independent opti-
mised code [10]; (2) a transformed code where SIMD oper-
ations have been used; (3) a BGS transformed code where
both, the Real and Imaginary input arrays have been merged
into one BG and, the Sine/Cosine coefficient arrays have
been merged also into another one BG both in background
memory. This last version has been also complemented
using SIMD operations, i.e., dual add, dual sub and
Trimedia’s iFIR16 for the multiply/add coefficient opera-
tion (see Figure 1). This last version effectively reduces the
number of load/store operations to these new BG arrays by
two while enabling their processing within the same SIMD
instruction.

In our experiments we have mainly focused on the data
memory energy consumption and the overall execution
time. The energy model used for the data memory is de-
fined as:
Etot = Nhits ∗Etag+data

cache +Nmiss ∗Etag
cache +(Nmiss +Ncb)∗ESRAM

with Nhits, Nmiss and Ncb the number of cache hits, cache
misses and copy-backs respectively. E tag+data

cache is the energy
per access to the cache activating both tag and data lines.

ESRAM is the energy per access to main memory. We use the
Cacti model [8] with a .35µm SRAM technology to estimate
the energy per access.

Table 1 shows the energy consumed for one second
of audio stream, the total execution time, the number of
load/store operations and the number of misses for all
three code versions. This table clearly shows that the
BGS+SIMD alternative outperforms the SIMD-only ver-
sion. This is mostly due to a decrease in the number of data
accesses but also due to less packing operations needed for
the SIMD processing. In other words, the potential gain that
one would expect (a factor 2) from using SIMD instructions
was actually hidden by a (un)pack instruction overhead in
the original code.

Energy Exec. # ld/st # misses
Implementation Mem.(mJ) time(sec) (106) (106)
PI optimised 67.2 0.413 43.55 0.60
SIMD-only 67.1 0.411 43.48 0.59
BGS+SIMD 28.5 0.248 18.20 0.65

Table 1. Impact of BGS on SIMD acceleration
5 Conclusion

In this paper we have demonstrated on an OFDM ker-
nel that using SIMD instructions requires the data to be
merged in background memory. If this Basic Group Struc-
turing transformation is omitted the sub-word level acceler-
ation capabilities provided by the architecture will be sub-
optimally exploited due to a pack instruction overhead.

References
[1] European Telecommunication Standard ETS 300 401, “Radio

broadcasting systems; Digital Audio Broadcasting (DAB) to mo-
bile, portable and fixed receivers”, RE/JTC-00DAB-4, May 1997,
Second Edition

[2] J. Huisken, F. van de Laar, M. Bekooij, G. Gielis, P. Gruijters, F.
Welten, “A Power-Efficient Single-Chip OFDM Demodulator and
Channel Decoder for Multimedia Broadcasting”, IEEE Journal of
Solid-State Circuits, Vol. 33, nr 11, pp.1793-1798, Nov. 1998.

[3] D.Nathan, B.Sputh, O.Faust, C.B.Koon, ”Design and Features of an
Intelligent PC-based DAB Receiver” IEEE Trans. Consumer Elec-
tronics, Vol. 48, nr 2, pp.322-328, May, 2002.

[4] R. Leupers and S. Bashford, “Graph based Code Selection Tech-
niques for Embedded Processors”, in ACM Design Automation of
Electronic Systems, vol. 5, no. 4, pp. 794-814, October 2000.

[5] M. Lorenz, D. Kottman, S. Bashford, R. Leupers and P. Marwedel,
“Optimized Address Assignment for DSPs with SIMD Memory Ac-
cesses”, in Proceedings of ASP-DAC, January 2001.

[6] P. Ellervee, M. Miranda, F. Catthoor and A. Hemani, “System-level
Data-format Exploration for Dynamically Allocated Data Struc-
tures”, in IEEE Trans. on Computer-Aided Design, vol. 20, no. 12,
pp. 1469-1472, December 2001.

[7] J.W. Davidson and S. Jinturkar, “Memory Access Coalescing: A
Technique for Eliminating Redundant Memory Accesses”, in Pro-
ceedings of PLDI, June 1994, pp. 186-195.

[8] http://research.compaq.com/wrl/people/jouppi/CACTI.html
[9] http://www.semiconductors.philips.com/trimedia/products/media proc ic/

[10] P. Op de Beeck, C. Ghez, E. Brockmeyer, M. Miranda, F. Catthoor,
G. Deconinck ”Low-Power Implementation of an OFDM based
Channel Receiver in Real-Time Using a Low-end Media Processor”
in Proceedings IEEE CAS Workshop on Wireless Communications
and Networking Pasadena CA, Sept. 2002 .

[11] F.Catthoor, K.Danckaert, C.Kulkarni, T.Omnes, Data transfer and
storage architecture issues and exploration in multimedia proces-
sors, book chapter in “Programmable Digital Signal Processors: Ar-
chitecture, Programming, and Applications” (ed. Y.H.Yu), Marcel
Dekker, Inc., New York, 2001.

2

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

