
Multithreaded Synchronous Data Flow Simulation
Johnson S. Kin, José Luis Pino – Agilent Technologies, Inc.

Email: johnson_kin, jpino@agilent.com

Abstract

This paper introduces an efficient multithreaded
synchronous dataflow (SDF) scheduler that can
significantly reduce the running time of multi-rate SDF
simulations on multiprocessor machines with only a slight
increase of memory usage over standard cluster loop
scheduler[1]. Experiments run on a dual processors
machine achieves on average approximately 146% increase
in performance with less than 2.4% increase in memory
usage. There is an average of 2x speedup with a quad
processors machine.

1. Introduction

Synchronous dataflow (SDF) simulation[2, 3, 4] has
been widely used as the simulation model for digital signal
processing. Few have yet to target the performance issue in
simulation environment. By changing the data structures,
having cleaner models, the speedup is still limited and not
scalable. For example, in a WCDMA 3GPP[5] design,
examining the blocking characteristics of the base station
receiver takes around 30 minutes (Intel PIII 450, 512M
memory) for only 1 frame of data (10ms in real time).

In this paper, we develop a multithreaded SDF
scheduler based on a hierarchical clustering algorithm[6,7].
With multiprocessors workstations becoming more
accessible, simulation time using our proposed scheduler
can be reduced dramatically and theoretically scalable with
the number of processors used. We discuss how we can
overcome the limitation of various overheads and exploit
more parallelism using hierarchical clustering algorithm
and other techniques. Finally we present some performance
measurement on some practical DSP examples.

2. Multithreaded Scheduler

Given that SDF simulation is compute bound, finding
fine grain parallelism such as pipelining commonly used in
hardware architecture and software compilation[8,9] is not
enough. Therefore we combine pipelining with hierarchical
loop clustering to create highly concurrent parallel
schedules. Additional techniques such as loop unrolling,
deep level multithreading and clusters flattening are
applied for more parallelism extraction.

Using Looped Scheduling, the schedule of Figure 1
becomes (9A)(12B)(12C)(8D. With the help of clustering,
the schedule can be transformed into (3[(3A)(4B)])
(4[(3C)(2D)]), grouping A and B into cluster α, C and D
into cluster β. Now if we apply α and β using pipelining on
dual processors machine, two threads can run
independently, one fires 21 components and the other 20
before they synchronize at the end of a time slot.

A B C

Gf

C

4 3 31 1 2

Figure 1 A chain-structured SDF graph

 Synchronization overhead is one of the bottlenecks for
multithreaded SDF simulation. It can be reduced by
schedule unrolling to increase the workload before
synchronization of each thread to generate higher
throughput. One can unroll the schedule by a factor of n to
reduce the overhead time by n. The side effect is that the
prologue and epilogue are longer and the memory buffer
size increases by a factor of n.

It is unlikely that 2 clusters are well balanced. Thus, the
running time will be limited by the heavily loaded cluster.
To further complicate the problem, each component may
have different running times. In order to balance the loads
on multiple threads, we first compute the firing statistics of
each component at each level. Then we find the most
balance level to allocate clusters.

Sometimes clustering takes away the available
parallelism. In order to reduce the synchronization
overhead, a process to reverse the clustering is introduced
called cluster flattening. It extracts parallelism while
making the tree more balanced. The disadvantages are high
buffer increase and one extra pass of tree traversing. It
cannot be applied to clusters with feedback loops.

Deep level multithreading finds multiple balance points
at different levels and split clusters into multiple threads to
gain speedup with the use of multiple processors. It can
effectively compensate an unbalanced tree. However, one
can easily overdo it where synchronization overhead
becomes the bottleneck.

1530-1591/03 $17.00  2003 IEEE

3. Experiment and Results

We applied loop unrolling and cluster flattening to a set
of wireless communication applications using Agilent ADS
wireless design library. Several criteria are imposed. First,
unrolling kicks in only at root level and total firings per
schedule under root is less than 10000 to limit the
explosion of buffer space. Flattening will only apply if a
cluster does not consist of feedback loops and sibling
branch has at least 20% of workload. Results are gathered
using (Intel PIII 600, 256M memory). Finally, deep level
multithreading is applied with a quad processor machine
(Sun SparcV9 450, 1G memory). The result is compared
with the same machine using uniprocessor scheduler.

Design # Simulation Designs
1 WCDMA3G-BS_TxACLR_SwitchingTransients
2 WCDMA3G-UE_Rx_RefLevel_PhyCHBER
3 WLAN80211a-TxSpectrum
4 WCDMA3G-3GPPFDD_UE_Tx_12_2
5 WLAN80211a-RxSensitivity_54Mbps
6 WLAN80211a-TxEVM
7 WLAN80211a-TxEVM_Turbo
8 WLAN80211a-RxSensitivity_24Mbps
9 WCDMA3G-UE_Rx_RefLevel
10 WCDMA3G-UE_Rx_MaxLevel
11 WLAN80211a-RxAdjCh_36Mbps
12 WCDMA3G-UE_Rx_ACS
13 WLAN80211a-GI
14 WLAN80211a-RxAdjCh_18Mbps
15 WLAN80211a-ChannelCoding
16 WLAN80211a-RxNonAdjCh_48Mbps
17 WLAN80211a-RxAdjCh_9Mbps
18 WCDMA3G-UE_Rx_In_Band_Blocking
19 WLAN80211a-RxNonAdjCh_12Mbps

Table 1 Simulation Designs used

Designs which run slower than the original is mainly
due to smaller physical memory of the machine. As
mentioned before, loop unrolling and cluster flattening can
be used to increase the parallelism with a price of increase
in buffer size. Moreover, different components have
different running times; the differences can have a major
effect in determining the balance point. We expect a
significant improvement be achieved once the time
profiling of components is added to determine the balance
point. Table 3 also shows the effect of 4 processors
machine which on average gives 2X speed improvement. It
shows the effectiveness of deep level multithreading and
loop unrolling with larger physical memory.

4. Conclusion

We demonstrated the potential parallelism that exist in
a SDF graph and transform an efficient uniprocessor
hierarchical cluster looped schedule into multithread
parallel schedule. By using our multithreaded synchronous
dataflow (SDF) scheduler on some real life communication
applications, we showed that our scheduler significantly

reduces the running time of multi-rate SDF simulations on
multiprocessor machines.

Design

Orig PC
(sec)

MT Dual
PC (sec)

Speedup
dual

Orig Sun
(sec)

MT Quad
Sun (sec)

Speedup
Quad

1 137 65 2.11 280 112 2.50
2 223 164 1.36 470 206 2.28
3 300 223 1.35 687 309 2.22
4 320 334 0.96 343 303 1.13
5 399 257 1.55 810 372 2.18
6 576 435 1.32 1357 535 2.54
7 596 406 1.47 1425 563 2.53
8 618 384 1.61 1180 563 2.10
9 723 543 1.33 1810 801 2.26

10 717 534 1.40 1831 791 2.31
11 922 451 2.04 1480 693 2.14
12 1154 845 1.37 2696 1147 2.35
13 1175 1158 1.02 2214 1914 1.16
14 1429 760 1.88 2315 1036 2.23
15 1690 2483 0.68 3283 2377 1.38
16 900 2099 2.33 1431 2951 2.06
17 2952 2542 0.86 2711 4017 1.48
18 2372 2595 1.09 3275 5679 1.73
19 5404 4808 0.89 4476 6922 1.55

Mean 1.40 2.007

Table 2 Speedup Improvements

5. References

[1] P. K. Murthy, S. S. Bhattacharyya, and E.A. Lee, Joint
Minimization of Code and Data for Synchronous
Dataflow Programs. Journal of Formal Methods in
System Design, 1997. 11(1): p. 41-70.

[2] E.A. Lee and D.G. Messerschmitt. Synchronous data
flow. in Proceedings of the IEEE. 1987.

[3] J. T. Buck, et al. Multirate Signal Processing In
Ptolemy. in Proceedings of the International
Conference on Acoustics, Speech, and Signal
Processing. 1991. Toronto.

[4] Bhattacharyya, S.S., Compiling Dataflow Graphs for
Signal Processing. 1994, Ph.D. thesis, Memorandum
No. UCB/ERL M94/52, Electronics Research
Laboratory, University of California at Berkeley.

[5] 3GPP Technical Specification TS 25.104 V3.2.0,
"UTRA(BS) FDD: Radio transmission and
Reception". March 2000.

[6] S. S. Bhattacharyya, P. K. Murthy, and E.A. Lee,
Software Synthesis from Dataflow Graphs. 1996,
Norwell, MA: Kluwer Academic Press.

[7] J. Buck, et al., Ptolemy: A framework for simulating
and prototyping heterogeneous systems. International
Journal of Computer Simulation, special issue on
Simulation Software Development, 1994. 4.

 [8] J. L. Hennessy and D.A. Patterson, Computer
Architecture: A Quantitative Approach. 1993: Morgan
Kaufman, San Francisco, CA.

[9] Lam, M. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. in Proceedings of ACM
SIGPLAN ’88 Conference on Programming Language
Design and Implementation. 1988.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

