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Abstract

Coarse-grained reconfigurable architectures have be-
come increasingly important in recent years. Automatic
design or compilation tools are essential to their success.
In this paper, we present a modulo scheduling algorithm
to exploit loop-level parallelism for coarse-grained recon-
figurable architectures. This algorithm is a key part of
our Dynamically Reconfigurable Embedded Systems Com-
piler (DRESC). It is capable of solving placement, schedul-
ing and routing of operations simultaneously in a modulo-
constrained 3D space and uses an abstract architecture rep-
resentation to model a wide class of coarse-grained archi-
tectures. The experimental results show high performance
and efficient resource utilization on tested kernels.

1 Introduction

Coarse-grained reconfigurable architectures have be-
come increasingly important in recent years. Various ar-
chitectures are proposed [19, 16, 2, 5]. These architec-
tures often consist of tens to hundreds of functional units
(FUs), which are capable of executing word- or subword-
level operations instead of bit-level ones found in com-
mon FPGAs. This coarse granularity greatly reduces the
delay, area, power and configuration time compared with
FPGAs, however, at the expense of flexibility. Other fea-
tures include predictable timing, a small configuration stor-
age space, flexible topology, combination with a general-
purpose processor, etc. On the other hand, compared with
traditional ”coarse-grained” VLIW, the partial connectivity
of coarse-grained reconfigurable architectures makes them
scalable but still cost- and power-efficient.

The target applications of these architectures, e.g.,
telecommunications and multimedia electronics, often
spend most of their time executing a few time-critical code
segments with well-defined characteristics. So the perfor-
mance of a whole application may be improved consider-

ably by mapping these critical segments, typically loops,
on a hardware accelerator. Moreover, these computation-
intensive segments often exhibit a high degree of inherent
parallelism. This makes it possible to use the abundant com-
putation resources available in coarse-grained architectures.

Unfortunately, few automatic design and compilation
tools have been developed to exploit the massive parallelism
found in applications and extensive computation resources
found in coarse-grained reconfigurable architectures. Some
research [19, 5] uses structure- or GUI-based design tools
to manually generate a design, which obviously limits the
size of the design that can be handled. Some researchers
[4, 12] focus on instruction-level parallelism (ILP) in lim-
ited scope, fail to make use of the coarse-grained architec-
ture efficiently and in principle can not reach higher paral-
lelism than a VLIW. Some recent research starts to exploit
loop-level parallelism (LLP) by applying pipelining tech-
niques [3, 9, 18], but still suffers from severe limitations in
terms of architecture or applicability (see section 5).

To address the above problem, this paper presents a mod-
ulo scheduling algorithm, which is a key part of our DRESC
framework[15], to exploit LLP on coarse-grained architec-
tures. Modulo scheduling is a software pipelining tech-
nique used in ILP processors such as VLIW to improve
parallelism by executing different loop iterations in parallel.
Applied to coarse-grained architectures, modulo scheduling
becomes more complex, being a combination of placement
and routing (P&R) in a modulo-constrained 3D space. To
the best of our knowledge, modulo scheduling has not been
successfully applied to arbitrarily connected coarse-grained
architectures. We propose an abstract architecture repre-
sentation, modulo routing resource graph (MRRG), to en-
force modulo constraints and describe the architecture. The
algorithm combines ideas from FPGA P&R, and modulo
scheduling from VLIW compilation. We test the algorithm
on a set of benchmarks, and results show high performance
and efficient resource utilization on an 8x8 coarse-grained
architecture.
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The paper is organized as follow. Section 2 introduces
target architectures. Section 3 covers various aspects of
the modulo scheduling, illustrates the problem we face,
presents our abstract representation of architectures and de-
scribes the algorithm in details. Section 4 reports the results
and discusses current limitations. Section 5 discusses re-
lated work. Section 6 concludes the paper.

2 The Target Architecture

Our target platforms are a family of coarse-grained re-
configurable architectures. As long as certain features are
supported (see further), there is no hard constraint on the
amount of FUs, the amount of register files, and the inter-
connection topology of the matrix. This approach is sim-
ilar to the work of KressArray [8]. The difference is that
we integrate predicate support, distributed register files and
configuration RAM to make the architecture template more
generally applicable and efficient.

Basically, the target architecture is a regular array of
functional units and register files. The FUs are capable of
executing a number of operations, which can be heteroge-
neous among different FUs. To be applicable to different
types of loops, the FU supports predicate operation. Hence,
through if-conversion and hyperblock construction [14],
while-loops and loops containing conditional statements are
supported by the architectures. Moreover, predicate support
is also essential in order to remove the loop back operation
and explicit prologue and epilogue. Register files provide
small local storage space. The configuration RAM controls
how the FU and multiplexors are configured, pretty much
like instructions for processors. A few configurations are
stored locally to allow rapid reconfiguration. Fig. 1 depicts
one example of organization of FU and register file. Each
FU has 3 input operands and 3 outputs. Each input operand
can come from different sources, e.g., register file or bus,
by using multiplexors. Similarly, the output of a FU can be
routed to various destinations such as inputs of neighbour
FUs. It should be noted that the architecture template does
not impose any constraint on the internal organization of the
FU and RF. Fig. 1 is just one example of organization of FU
and RF. Other organizations are possible, for example, two
FUs sharing one register file.

At the top level, the FUs and register files are connected
through point-to-point connections or a shared bus for com-
munication. Again, a very flexible topology is possible.
Fig. 2 shows two examples. In fig. 2a, all neighbour tiles
have direct connections. In fig. 2b, column and row buses
are used to connect tiles within the same row and column.
Using this template we can mimic many coarse-grained ar-
chitectures found in literature and also perform architecture
exploration within the DRESC design space.

pred src1 src2

pred
_dst1 pred_dst2 dst

FU RF

muxa

muxbmuxc

reg

in1

out1 out2

Configuration
RAM

Figure 1. Example of FU and register file

a) b)

Figure 2. Examples of interconnection

3 Modulo Scheduling

The objective of modulo scheduling is to engineer a
schedule for one iteration of the loop such that this same
schedule is repeated at regular intervals with respect to
intra- and inter-iteration dependency and resource con-
straints. This interval is termed initiation interval (II), es-
sentially reflecting the performance of the scheduled loop.
Various effective heuristics have been developed to solve
this problem for both unified and clustered VLIW [17, 13,
7, 1]. However, they can not be applied to a coarse-grained
reconfigurable architecture because the nature of the prob-
lem becomes more difficult, as illustrated next.

3.1 Problem Illustrated

To illustrate the problem, let’s consider a simple depen-
dency graph, representing a loop body, in fig. 3a and a 2x2
matrix in fig. 3b. The scheduled loop is depicted in fig. 4a,
where the 2x2 matrix is flattened to 1x4 for convenience of
drawing, nevertheless, the topology remains the same.

Fig 4a is a space-time representation of the schedul-
ing space. From fig. 4a, we see that modulo scheduling
on coarse-grained architectures is a combination of 3 sub-
problems: placement, routing and scheduling. Placement
determines on which FU of a 2D matrix to place one op-
eration. Scheduling, in its literal meaning, determines in
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Figure 3. a) A simple dataflow graph; b) A 2x2
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Figure 4. a) Modulo scheduling example; b)
Configuration for 2x2 matrix

which cycle to execute that operation. Routing connects the
placed and scheduled operations according to their data de-
pendencies. If we view time as an axis of 3D space, the
modulo scheduling can be simplified as a placement and
routing problem in a modulo-constrained 3D space, where
the routing resources are asymmetric because any data can
only be routed from smaller time to bigger time, as shown
in fig. 4a. Moreover, all resources are modulo-constrained
because the execution of consecutive iterations which are in
distinct stages is overlapped. The number of stages in one
iteration is termed stage count (SC). In this example, II =
1 and SC = 3. The schedule on the 2x2 matrix is shown in
fig. 4b. FU1 to FU4 are configured to execute n2, n4, n1 and
n3 respectively. In this example, there is only one configu-
ration. In general, the number of configurations that need to
be loaded cyclically is equal to II.

By overlapping different iterations of a loop, we are able
to exploit a higher degree of ILP. In this simple example, the
instruction per cycle (IPC) is 4. As a comparison, it takes 3
cycles to execute one iteration in a non-pipelined schedule
due to the data dependencies, corresponding to an IPC of
1.33, no matter how many FUs in the matrix.

3.2 Modulo Routing Resource Graph

We propose a graph representation, namely modulo rout-
ing resource graph (MRRG), to model the architecture in-
ternally for the modulo scheduling algorithm. MRRG com-
bines features of the modulo reservation table (MRT) [11]
for software pipelining and the routing resource graph [6]
used in FPGA P&R, and only exposes the necessary infor-
mation to the modulo scheduling algorithm. A MRRG is
a directed graph ���������
	��
����� which is constructed by
composing sub-graphs representing the different resources
of the DRESC architecture. Because the MRRG is a time-
space representation of the architecture,every subgraph is
replicated each cycle along the time axis. Hence each node
v in the set of nodes V is a tuple �����
��� where � refers to the
port of resource and � refers to the time stamp. The edge set
	���������������� �"! �#�����$�&%'�(�#�������)� corresponds to switches
that connect these nodes – the restriction �#�����$�*%'�+�#����� �
modeling the asymmetric nature of the MRRG. Finally, II
refers to the initiation interval. MRRG has two important
properties. First, it is a modulo graph. If scheduling an op-
eration involves the use of node �����
�-,�� , then all the nodes
�.�/������0��1! �2,4365�76�.�8�9��0'365:7������ are used too. Second, it
is an asymmetric graph. It is impossible to find a route from
node �<; to �=, , where �#�/��;-�$>9�#���=,�� . As we will see in sec-
tion 3.3, this asymmetric nature imposes big constraints on
the scheduling algorithm.

pred src1 src2

pred
_dst1

pred
_dst2 dst

source

pred src1 src2

sink

dst
pred_dst1 pred_dst2a)

in1 in2

out1 out2

in1 in2
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source
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RF

FU

Figure 5. MRRG representation of DRESC ar-
chitecture parts

During scheduling we start with a minimal II and iter-
atively increase the II until we find a valid schedule (see
section 3.3). The MRRG is constructed from the architec-
ture specification and the II to try. Each component of the
DRESC architecture is converted to a subgraph in MRRG.
Fig. 5 shows some examples. Fig. 5a is a 2D view of a
MRRG subgraph corresponding to a FU, which means in
the real MRRG graph with time dimension, all the sub-
graphs have to be replicated each cycle along the time axis.
For FU, all the input and output ports have corresponding
nodes in the MRRG graph. Virtual edges are created be-
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tween src1 and dst, src2 and dst, etc. to model the fact that
a FU can be used as routing resource to directly connect
src1 or src2 to dst, acting just like a multiplexor or demulti-
plexor. In addition, two types of artificial nodes are created,
namely source and sink. When a commutative operation,
e.g., add, is scheduled on this FU, the source or sink node
are used as routing terminals instead of the nodes represent-
ing ports. Thus the router can freely choose which port to
use. This technique improves the flexibility of the routing
algorithm, and leads to higher routability. Fig. 5b shows a
MRRG subgraph for a register file. Similar to a FU, there
are also artificially created source and sink nodes, which
are introduced to model the behaviour that a variable, e.g.,
live-in variable, has to be assigned to this register file. Each
input or output port has a corresponding node in the MRRG
as well. Notably, since the register has storage functional-
ity, any data that goes into one input port can be delayed by
several cycles before it is read from one output port. There-
fore, the edge set between input node � and output node
�

can be defined as 	�� �.� ���)� � �����#�#�1� ���#� � ���	�=�)��
�
�
 � . In
other words, a register file has abundant routing resources
to route signals along the time axis. Other types of compo-
nents can be modeled in a similar way. By this abstraction,
all routing resources, whether physical or virtual, are mod-
eled in the same universal way using nodes and edges. This
unified abstract view of the architecture greatly reduces the
complexity of the scheduling algorithm.

3.3 Modulo Scheduling Algorithm

The modulo scheduling algorithm takes a data depen-
dency graph (DDG) representing the loop body and a
MRRG representing the architecture as inputs. We use the
IMPACT compiler framework [10] as a frontend to parse C
source code, do some optimization and analysis, construct
required hyperblock, and emit the intermediate representa-
tion (IR), which is called lcode. Then various transforma-
tion and analysis passes are conducted to generate the DDG
for detected pipelineable loops. Since the target reconfig-
urable architectures are different from traditional proces-
sors, we have developed some new techniques [15], e.g.,
a new method of removing prologue and epilogue code.
Other transformations are borrowed from the VLIW com-
pilation domain.

Although it is pointed out that our scheduling problem is
indeed a P&R problem, it is more complex than traditional
FPGA P&R, especially when the modulo and asymmetric
nature of the P&R space and scarce routing resources are
considered. In FPGA P&R algorithms, we can comfortably
run the placement algorithm first by minimizing a good cost
function that measures the quality of placement. After min-
imal cost is reached, the routing algorithm connects placed
nodes. The coupling between these two sub-problems is

very loose. In our case, we can hardly separate placement
and routing as two independent problems. It is almost im-
possible to find a placement algorithm and cost function
which can foresee the routability during the routing phase.
Therefore, we propose a novel approach to solve these two
sub-problems in one framework. The algorithm is described
in fig. 6.

SortOps();
II   := MII(DDG);

while not scheduled do
  InitMrrg(II);
  InitTemperature();
  InitPlaceAndRoute();       (1)

  while not scheduled do
    for each op in sorted operation list
      RipUpOp();
     
      for i := 1 to random_pos_to_try do
        pos := GenRandomPos();
        success := PlaceAndRouteOp(pos); (3)

        if success then
          new_cost := ComputeCost(op);
          accepted := EvaluateNewPos();  (4)
          if accepted then
            break;
          else
            continue;
        endif
      endfor

      if not accepted then
        RestoreOp();
      else
        CommitOp();

      if get a valid schedule then
        return scheduled;
    endfor

    if run out of time budget then
      break;

    UpdateOverusePenalty();
    UpdateTemperature();

  endwhile
  II++;
endwhile

(2)

Figure 6. Modulo scheduling algorithm for
coarse-grained reconfigurable architecture

First all operations are ordered by the technique in [13].
Priority is given to operations on the critical path and an
operation is placed as close as possible to both its predeces-
sors and successors, which effectively reduces the routing
length between operations. Like other modulo scheduling
algorithms, the outermost loop tries successively larger II,
starting with an initial value equal to the minimal II (MII),
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until the loop has been scheduled. The MII is computed
using the algorithm in [17].

For each II, our algorithm first generates an initial sched-
ule which respects dependency constraints, but may overuse
resources (1). For example, more than one operation may
be scheduled on one FU in the same cycle. In the inner loop
(2), the algorithm iteratively reduces resource overuse and
tries to come up with a legal schedule. At every iteration,
an operation is ripped up from the existing schedule, and
is placed randomly (3). The connected nets are rerouted
accordingly. Then a cost function is computed to evaluate
the new placement and routing (4). A simulated annealing
strategy is used to decide whether we accept the new place-
ment or not. If the new cost is smaller than the old one, the
new P&R of this operation will be accepted. Even if the
new cost is bigger, there is still a chance to accept the move,
depending on ”temperature”. This method helps to escape
from local minima. The temperature is gradually decreased
from a high value. So an operation becomes increasingly
difficult to move. The cost function is constructed by tak-
ing into account overused resources. The penalty associated
with them is increased every iteration. In this way, placer
and router will try to find alternatives to avoid congestion.
This idea is borrowed from the Pathfinder algorithm [6]. In
the end, if the algorithm runs out of time budget without
finding a valid schedule, it starts with the next II.

4 Experimental Results

4.1 Experiment Setup

We have tested our algorithm on an architecture that re-
sembles the organization of Morphosys [19]. In this config-
uration, a total of 64 FUs are divided into four tiles, each
of which consists of 4x4 FUs. Each FU is not only con-
nected to the 4 nearest neighbor FUs, but also to all FUs
within the same row or column in this tile. In addition, there
are row buses and column buses across the matrix. All the
FUs in the same row or column are connected to the cor-
responding bus. However, there are still significant differ-
ences with Morphosys. In Morphosys, the system consists
of a general-purpose processor and a reconfigurable matrix.
Our test architecture is a convergence of a VLIW processor
and a reconfigurable matrix. The first row of FUs can work
as a VLIW processor with support of a multi-ported regis-
ter file. Whenever the pipelined code is executed, the first
row works cooperatively with the rest of matrix. For the
other code, the first row acts like a normal VLIW processor,
where instruction-level parallelism is exploited. The advan-
tage of this convergence is two-fold. First, since the FUs in
a VLIW processor and reconfigurable matrix are similar, we
can reuse a lot of resources such as FUs and memory ports.
Second, this convergence helps better integration of the re-

configurable matrix, which only accelerates certain kernels,
and the rest of system. For example, live-in and live-out
variables can be directly assigned to the VLIW register file,
i.e., the one in the first row. The data copy cost between
processor and matrix is therefore eliminated.

The testbench consists of 4 programs, which are all de-
rived from C reference code of TI’s DSP benchmarks [20].
The idct is a 8x8 inverse discrete cosine transformation. The
fft refers to a radix-4 fast Fourier transformation. The corr
computes 3x3 correlation. The latanal is a lattice analy-
sis function. They are typical multimedia and digital signal
processing applications with abundant inherent parallelism.

4.2 Scheduling Results

kernel no. of MII II IPC sched. time
ops density (sec.)

idct 86 2 3 28.7 44.8% 162
fft 70 3 3 23.3 36.5% 891

corr 56 1 2 28 43.8% 100
latanal 12 1 1 12 18.8% 5.2

Table 1. Schedule results

The schedule results are shown in table 1. The sec-
ond column refers to the total number of operations within
pipelined loops. The MII is the computed minimal initia-
tion interval, whereas II is the value actually achieved dur-
ing scheduling. The instructions per cycle (IPC) reflects
how many operations are executed in one cycle on average.
Scheduling density is equal to ���������	� 
 ��

����� . It reflects
the actual utilization of all FUs, excluding those used for
routing. The last column is the CPU time to compute the
schedule on a Pentium 4 1.6GHz PC.

The IPC is high, ranging from 12 to 28.7. It is well above
any typical VLIW processor. The FU utilization are around
40% except for those kernels constrained by MII, e.g., la-
tanal. The CPU time to calculate the schedule is relatively
long because of its SA-based search strategy and computa-
tional cost of each iteration.

4.3 Current Limitations

Our scheduling algorithm has some limitations. First,
it is relatively time-consuming compared with a typical
scheduling algorithm of a compiler. Typically it takes min-
utes to schedule a loop of medium size. Second, at present it
can not handle some architecture constraints, e.g., pipelined
FUs and limited register files. Additionally, due to the way
that the IMPACT frontend constructs the hyperblock for
loop body, our scheduling algorithm can only handle the
inner loop of a loop nest. This has an adverse impact on the
overall performance of an application.
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5 Related Work

Several research projects try to apply pipelining tech-
niques to reconfigurable architectures in order to obtain
high performance. RaPiD [2] has a linear datapath that is
a different approach compared to 2-dimensional meshes of
processing elements. This restriction simplifies application
mapping but restricts the design space dramatically. Sim-
ilarly, Garp [3] also features a row-based architecture al-
lowing straight implementation of a pipeline. It doesn’t
support multiplexing, so the implementation is inefficient
in case the II is bigger than 1. Recent work [9] tried to
directly map loops to datapaths in a pipelined way. Lack-
ing advanced scheduling techniques, it either uses a full-
connected crossbar, or generates a dedicated datapath for
several dataflow graphs, none of which is a good solution.
PipeRench [18] uses a clever pipeline reconfiguration tech-
nique. The architecture is connected in a ring-like mode.
Therefore, virtual pipeline stages can be mapped to physi-
cal pipeline stages in an efficient way. However, their tech-
nique is limited to very specific architectures, thus can not
be applied to other coarse-grained reconfigurable architec-
tures. Modulo scheduling algorithms on clustered VLIW
architecture [1, 7] normally target a specific class of archi-
tectures and can not handle arbitrarily connected architec-
tures. In addition, the routing problem is virtually unpresent
or rather easy to solve in clustered VLIW architectures.

6 Conclusion and Future Work

Coarse-grained reconfigurable architectures have advan-
tages over traditional FPGAs in terms of delay, area, and
power consumption. In addition, they are more compiler-
friendly because they possess features such as word- or
subword-level operations and predictable timing. To really
exploit the potential of coarse-grained reconfigurable archi-
tectures, big problems to solve are what kind of parallelism
to exploit and how to extract it automatically.

We developed a modulo scheduling algorithm to exploit
loop-level parallelism on coarse-grained reconfigurable ar-
chitectures, which resembles P&R algorithms for FPGAs.
The results show up to 28.7 IPC and 44.8% FU utilization
for tested kernels, proving the potential for both coarse-
grained reconfigurable architecture and our algorithm.

In the future, overcoming the limitations of the modulo
scheduling algorithm and better integration into the DRESC
design flow are our main focus.
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