
Exact High Level WCET Analysis of Synchronous Programs
by Symbolic State Space Exploration

G. Logothetis
University of Karlsruhe

Institute for Computer Design and Fault Tolerance
P.O. Box 6980, 76128 Karlsruhe, Germany
email: logo@informatik.uni-karlsruhe.de

Klaus Schneider
University of Kaiserslautern

Department of Computer Science
P.O. Box 3049, 67653 Kaiserslautern, Germany
email: Klaus.Schneider@informatik.uni-kl.de

Abstract

In this paper, a novel approach to high-level (i.e. architec-
ture independent) worst case execution time (WCET) anal-
ysis is presented that automatically computes exact bounds
for all inputs. To this end, we make use of the distinc-
tion between micro and macro steps as usually done by
synchronous languages. As macro steps must not contain
loops, a later low-level WCET analysis (architecture depen-
dent) is simplified to a large extent.

Checking exact execution times for all inputs is a com-
plex task that can nevertheless be efficiently done when im-
plicit state space representations are used. With our tools, it
is not only possible to compute path information by explor-
ing all computations, but also to verify given path informa-
tion.

1. Introduction

Only about 2% of the microprocessors that have been pro-
duced in 1999 were contained in desktop computers, while
the vast majority was contained in so-called embedded sys-
tems [16, 25]. These systems do not have a user interface,
but interact directly with their environment. Embedded sys-
tems are parts of aircrafts, automobiles, domestic appli-
ances, consumer electronics, etc., and are as such very often
real-time systems. As they often occur in safety-critical ap-
plications, their correctness is mandatory.

Designing a real-time system is a relatively error-prone
task, especially when the system consists of several inter-
acting processes, which is the usual case. Decreasing time-
to-market and the overall design costs requires to check as
early as possible in the design flow whether the desired
specifications are met.

For real-time systems, the essential task is to guarantee
that certain actions are executed within some strict dead-
lines or that they will start only after some point of time.

To avoid expensive redesigns, it is important to check as
soon as possible in the design flow whether the real-time
constraints are met. For this reason, the estimation of worst
case execution time (WCET) [27] was proposed that usu-
ally consists of two phases: the low-level and the high-level
WCET analysis. Low-level analysis is done on the object
code, and hence depends on the chosen hardware/software
partitioning and the chosen architecture (microcontrollers).
For simple microcontrollers like the still mainly used 8-bit
processors, this is a straightforward task, but it is more com-
plicated for modern architectures that require the consider-
ation of caches, pipelines, branch prediction, interrupts, etc.

In contrast, high-level WCET analysis is applied to an
architecture independent description of the system and has
the task to compute path information [26] like unfeasible
computations or bounds on the maximal number of loop it-
erations. Clearly, high-level WCET analysis is undecidable
when infinite data types are used, and therefore only limited
automation can be achieved. State of the art approaches use
abstract interpretation [13], symbolic execution [24, 21], or
special restrictions on the loops [18]. A major problem of
the high-level WCET analysis is that the maximal number
of computation steps of a statement (like a loop) may heav-
ily depend on the input data, but some of the approaches do
simply compute the WCET bounds for the substatements
and add these afterwards. However, simply adding the max-
imal bounds for all substatements clearly yields highly pes-
simistic bounds. To estimate tighter bounds, [1] proposed
not to compute constants, but functions that depend on in-
puts as WCET bounds. This approach is able to compute
much tighter bounds, but is certainly a deeply manual task,
although guided by computer algebra systems.

In this paper, we propose a new and completely auto-
matic approach to high-level WCET analysis. For a given
program, we compute the best and worst runtime in terms of
macro steps for all inputs at once. We are even able to com-
pute the input sequences that require these bounds. For this

1530-1591/03 $17.00  2003 IEEE

purpose, we have to assume that all data types were finite1,
so that the overall problem becomes decidable.

Nevertheless, checking all input sequences is still a
highly complex task. A key idea of this paper is therefore
to use modern techniques, namely symbolic state space ex-
ploration techniques [5, 8], developed for the verification of
temporal properties of reactive systems. These techniques
allow us to explore state spaces with more than 1020 states,
in some cases even with more than 10200 states, or after suit-
able abstractions even infinitely many states. These meth-
ods are essentially based on the implicit representation of
the system by propositional formulas which is often called
a symbolic representation2.

Beneath the symbolic state space traversal, the other es-
sential key ingredient to our solution is the use of syn-
chronous programming languages like Esterel [2, 4] or
Quartz [28, 29] to achieve realisation independent descrip-
tions of the system. These languages are well-suited for a
high-level WCET analysis for the following reasons:

• Synchronous languages support both the design of
software and hardware. They have notions of time at
a logical level and statements to control threads like
preemption and suspension.

• Synchronous languages have a clean formal semantics.
In particular, the definition of control flow predicates
in [29] supports static runtime analysis. Moreover,
there are already tools for verifying synchronous pro-
grams by symbolic model checking [29, 23].

• Synchronous languages distinguish between micro and
macro steps [17]. Micro steps are statements that
are executed within zero time (in the programmer’s
model). A macro step consists of a finite number of
micro steps and consumes a logical unit of time af-
ter the execution of its micro steps. Consequently, all
threads run in lockstep and automatically synchronize
at each macro step. The important fact for WCET anal-
ysis is that the languages are designed in such a way
that macro steps can not contain loops; in other words:
loop bodies must necessarily consist of macro steps.

Our procedure works as follows: We start with a syn-
chronous program and translate this program as described
in [29] into a finite-state automaton (representing the con-
trol flow) whose transitions are labeled with a set of condi-
tional assignments (representing the data flow). Each tran-
sition directly corresponds to a macro step of the program.
This description is given in an implicit form, so that we can

1For embedded systems, this restriction is not a severe one. Moreover,
modeling integers with a finite, constant bitwidth is even more accurate
and allows one to detect problems with overflows and underflows.

2The notion of ‘symbolic’ representation has nothing in common with
symbolic computations performed by computer algebra systems.

use it for symbolic state space exploration [5, 8]. The algo-
rithm presented in this paper (cf. Figure 3) is then used to
compute the minimal and maximal numbers of macro steps
necessary to reach a set of control flow states Sγ from an-
other set of control flow states Sα. Additionally, we can
count the number of visits of a third set of states Sβ while
the control flow moves from Sα to Sγ . It is also possible
to compute the input sequences that lead to these number of
iterations. To specify sets Sα, Sβ , and Sγ , it is convenient
to make use of the control flow predicates given in [29] (cf.
section 3).

Hence, we are able to compute the exact minimal and
maximal reaction times in terms of macro steps. In particu-
lar, we can compute path information like loop bounds, the
minimal/maximal number of macro steps required to reach
a certain program location from another one, and infeasi-
ble paths for a later low-level WCET analysis. Using our
algorithms for real-time model checking [22, 23] allows us
furthermore to efficiently verify given path information.

There is some related work like [9] where similar algo-
rithms for runtime analysis on transition systems have been
considered. In contrast to [9], our approach is integrated
in a design flow: the transition systems we analyse are ob-
tained from synchronous programs that are used for auto-
matic hardware and software generation. Furthermore, our
approach has an obvious interface to a low level analysis
that has to determine the runtime of the macro steps.

Alternative integrations of runtime estimation algorithms
into the design flow have recently been presented in [6, 11,
30]. In contrast to our approach, these approaches construct
a timed automaton that can be used for real-time verification
of given constraints. For this purpose, they require how-
ever a low-level WCET analysis in advance to determine
the physical time necessary to execute a macro step on a
particular architecture. While having the same aim, our ap-
proach is located at the high-level of the design flow, and
therefore independent of a particular architecture. Having
computed a high-level WCET analysis in advance, we can
then apply the results at different architectures and hard-
ware/software partitions, avoiding repetitions of expensive
real-time verification analysis.

The paper is organized as follows: In the next section,
we explain the basics of synchronous languages. In Sec-
tion 3, we then explain the basics of our real-time verifica-
tion methods as introduced in [22]. Section 3.2 contains the
main results of the paper: Using symbolic state space explo-
ration, we compute for all inputs the lengths of all compu-
tations from given program locations Sα to other program
locations Sγ . Beneath computing the execution times, we
can also use the real-time verification algorithms given in
[22] to verify given path information.

module RussMult :
input req, a : I[n], b : I[n];
output c : I[n];
local x : I[n], y : I[n]
label rdy;

loop
rdy : await req;
x := a; y := b; c := 0;
while y �= 0 do

if odd(y) then next(c) := c+ x end;
next(x) := 2 · x;
next(y) := y/2;
� : pause

end while
end loop

end module

Figure 1. Russian Multiplication

2. Synchronous Languages

Synchronous languages [15] like many Esterel-variants
[2, 4, 12, 19, 29, 28] are becoming more and more attrac-
tive for the design and the verification of reactive real-time
systems. These languages have a discrete model of time,
i.e. time is modeled by natural numbers �. The execu-
tion of a synchronous program from one point of time t to
t + 1 is called a macro step and involves the execution of
several, but always finitely many, micro steps3. Hence, the
execution of micro steps does not take time (in the program-
mer’s model), and the execution of a macro step requires
always the same amount of a logical time (in the program-
mer’s model). Consumption of time, i.e., the beginning of a
new macro step, must be explicitly programmed with spe-
cial statements like the pause statement in Esterel.

Concerning the data flow, each variable, and hence, each
data expression has one and only one value for each macro
step. Hence, the semantics of a data type expression is a
function of type � → α for some type α. The manipula-
tions of the variables of a program are performed as micro
steps of a macro step. These assignments or signal emis-
sions determine the values of the variables at the current
and the next macro step (this may result in so-called causal-
ity problems [3]). An important matter of fact for WCET
analysis is that by the semantics of synchronous languages,
there will be only finitely many micro steps in a macro step.

The entire semantics of a synchronous program P can
therefore be given as a finite state transition system AP :
the states of AP reflect the possible combinations of con-
trol flow locations of the program (a control flow location

3It is important to note here that a macro step can never contain a loop
of micro steps. Instead, each loop of a synchronous program must contain
at least one macro step.

�

rdy
st/{}

req ∧ (y �= 0)/{(1, x := a),
(1, y := b),
(1, c := 0)}

y = 0/{}

st/{} req ∨ (y = 0)/{}

(y �= 0)/{(odd(y), next(c) := c+ x),
(1, next(x) := 2 · x),
(1, next(y) := y/2)}

Figure 2. Semantics of module RussMult

is a point in the program text, where the control flow might
rest for one unit of time). As the language allows the imple-
mentation of parallel threads, there might be more than one
current position of the control flow in the program. A transi-
tion between two control states is enabled if some condition
on the data values is satisfied. Execution of a transition will
then invoke some manipulations of the data values. Hence,
the semantics can be represented by a finite state control
flow that interacts with a data flow of finitely many vari-
ables of possibly infinite data types.

For example, consider the Quartz program given in Fig-
ure 1 (it implements a Russian multiplication algorithm).
The semantics is the transition system given in Figure 2.
The three states correspond with the situations where the
control flow is either outside the program or either at one
of the locations labeled with � or rdy. The labels of the
transitions are of the form Φ/{(γ1, α1), . . . , (γn, αn)} with
the following meaning: the transition can be taken iff the
condition Φ holds at that point of time. Taking the transi-
tion means that those assignments or signal emissions αi

are executed whose guard γi holds at that point of time.
Beneath the comfortable programmer’s model given by

the macro step abstraction, synchronous languages like our
Esterel-variant Quartz provide a rich set of statements for
manipulating the execution of concurrent threads. In par-
ticular, there are several statements for preemption and
suspension, and different forms of concurrency like syn-
chronous, asynchronous or interleaved execution. For more
details, the reader is referred to [29, 28] and to the Esterel
primer, which is an excellent introduction to synchronous
programming [4].

The semantics of Quartz and Esterel can be defined in
several ways that lead all to the same transition system. In
particular, there is a semantics based on process-algebraic
transition rules, and a direct translation into hardware cir-
cuits [3]. Recently, we have defined the semantics of a
statement S by the following control flow predicates [29]

and the set of guarded commands guardcmd (ϕ, S).

inside (S) is the disjunction of the pause labels occurring
in S. Therefore, inside (S) holds at some point of time
iff at this point of time, the control flow is at some
location inside S.

instant (S) holds iff the control flow can not stay in S when
S would now be started. This means that the execution
of S would only execute micro steps.

enter (S) describes where the control flow will be at the
next point of time, when S would now be started.

terminate (S) describes all conditions where the control
flow is currently somewhere inside S and wants to
leave S.

move (S) describes all internal moves, i.e., all possible
transitions from somewhere inside S to another loca-
tion inside S.

guardcmd (ϕ, S) is a set of pairs of the form (γ, α), where
α is a data manipulating statement, i.e., either an emis-
sion or an assignment. The meaning of (γ, α) is that α
is immediately executed whenever the guard γ holds.

For example, for the body statement of module RussMult
given in Figure 1, we obtain the following results (Xϕ
means that ϕ holds at the next point of time):

• inside (S) ≡ � ∨ rdy
• instant (S) ≡ 0

• enter (S) ≡ Xrdy

• terminate (S) ≡ 0

• move (S) ≡




rdy ∧ Xrdy ∧ (¬req ∨ (y = 0))∨
rdy ∧ X� ∧ req ∧ (y �= 0)∨
� ∧ X� ∧ (y �= 0)∨
� ∧ Xrdy ∧ (y = 0)




Using the above predicates, one can easily define the con-
trol and the data flow of a program [29]. What is more in-
teresting for WCET analysis is that we can describe with
these control flow predicates situations that are relevant for
gathering path information, as we will explain in the next
section.

3. WCET Analysis of Synchronous Programs

The presentation of the semantics in the form indicated in
Figure 2 is the basis of our execution time analysis. How-
ever, the key problem in execution time analysis, namely to
determine how many transitions can be taken from a state
set Sα to another state set Sγ , is still an undecidable prob-
lem. However, if we assume that all data types used in the
program are finite, then we can compile the program to a
classical finite state machine (fsm). Clearly, the obtained

fsm will normally suffer from the enormous state explo-
sion. For this reason, we use a symbolic representation in
the sense of symbolic state space exploration [5, 8]. Sym-
bolic representations have lead to a breakthrough in the ver-
ification of finite-state transition systems [5, 8]. The key
idea is thereby that sets are not explicitly stored; instead the
characteristic function is represented as a Boolean formula
that is itself stored in a canonical normal form (BDDs [7]).

3.1. Verifying Given Path Information

Using a symbolic representation, it is straightforward to
compute fixpoints, for example to determine the set of
reachable states. Furthermore, arbitrary temporal properties
specified in a temporal logic can be verified. In particular,
we have defined in [22] an extension called JCTL of the
well-known temporal logic CTL by real-time contraints. In
contrast to other real-time temporal logics, JCTL is a con-
sequent extention of CTL and therefore still allows the use
of already available symbolic model checking algorithms.

Using JCTL, we can describe many interesting temporal
properties with constraints on the number of macro steps
taken to satisfy a condition. For example, the following are
JCTL formulas, provided that ϕ and ψ were JCTL formu-
las, and a and b are natural numbers:

• any atomic formula
• ¬ϕ and ϕ ∧ ψ
• EX[a,b]ϕ and EX≥aϕ

• E[ϕ U[a,b] ψ] and E[ϕ U≥a ψ]
• EG[a,b]ϕ and EG≥aϕ

Intuitively, EX[a,b]ϕ holds in a state s iff s has a direct suc-
cessor state s′ that satisfies ϕ and can be reached in time
t ∈ [a, b]. EX≥aϕ holds in a state s iff s has a direct suc-
cessor state s′ that satisfies ϕ and can be reached in time
t ≥ a.

E[ϕU[a,b]ψ] holds in a state s iff there is a path π starting
in s and a number i ∈ � so that for the first i states of π the
property ϕ holds, and ψ holds on the (i + 1)-th state of π,
and the time t required to reach the (i + 1)-th state stems
from the interval [a, b]. E[ϕ U≥a ψ] is defined analogously,
with the difference that a ≤ t has to be satisfied instead
t ∈ [a, b].

EG[a,b]ϕ holds in a state s iff there is a path π starting in
s, such that any state π(i) on π that is reached within a time
t ∈ [a, b] satisfies ϕ. EG≥aϕ is defined analogously.

In [22], a symbolic model checking algorithm for JCTL
has been presented that computes for a given JCTL formula
Φ and a TKS K the set of states of K where Φ holds. Man-
ually given path information like the infeasibility of com-
putation paths can be specified in JCTL, and hence, can be
verified by the algorithms given in [22]. To this end, it is

convenient to make use of the control flow predicates that
have been discussed in the previous section (see also the
following section).

3.2. Determining Path Information

In this section, we show how our tool computes WCET and
BCET for a given program. In particular, we explain how
the lower and upper bounds of loop iterations can be effi-
ciently calculated. As in the previous section, we assume
that we have already compiled the program to a finite state
machine.

The essential task of high-level WCET and BCET anal-
ysis is then that for given sets of states Sα and Sγ , we have
to compute the minimal and maximal numbers of transitions
necessary to reach Sγ from Sα. Sα and Sγ are thereby rep-
resented as formulas α and γ.

We can furthermore determine the minimal and maximal
number of loop iterations in that we count the number of
visits in a further set of states Sβ , while traversing from
Sα to Sγ . For example, for a loop do S while σ, we can
use the following formulas to compute the number of loop
iterations:

• α :≡ ¬inside (S) ∧ enter (S) describes all situations
where the control flow is not yet inside the loop body
S (¬inside (S)), but will enter the loop body right now
(enter (S)).

• β :≡ terminate (S) ∧ σ describes all situations where
the execution of the loop body S currently termi-
nates (terminate (S)) and the loop condition σ holds.
Hence, the loop body is once more executed.

• γ :≡ terminate (S)∧¬σ describes all situations where
the execution of the loop body S currently terminates
(terminate (S)) and the loop condition σ does not
hold. Hence, the loop terminates.

Using symbolic representations of the properties α, β, and
γ, it is straightforward to compute the corresponding sets of
states Sα, Sβ , and Sγ of the Kripke structure, where α, β,
and γ, respectively, holds.

In the first place, we must ensure that the given program
is correctly implemented, i.e. that all computation paths
starting at Sα will finally reach Sγ . This correctness prop-
erty can be easily verified by checking the following JCTL
property, that states that all computation paths that start in
Sα must finally reach Sγ : AG≥0(α→ AF≥0γ).

For the above properties α, β, and γ this means that the
loop will terminate for all inputs. The final WCET/BCET
analysis together with the calculation of bounds for loop
iterations is then performed by the function EHLA (Exact
High-Level Analysis), shown in Figure 3. Arguments of
the algorithm are the transition relation U of the fsm, the
source set of states Sα, the set of target states Sγ , and the

function EHLA(U ,Sα,Sβ ,Sγ)
i := 0;
T := {};
bound := 0;
repeat

if Sα ∩ Sγ �= {} then
T := T ∪ {i};
Sα := Sα \ Sγ ;

endif ;
if Sα ∩ Sβ �= {} then
bound := bound+ 1;

endif ;
Sα := {s′ ∈ S | (s, s′) ∈ U ∧ s ∈ Sα};
i := i+ 1;

until Sα := {};
return (T , bound);

end function

Figure 3. Computing minimal and maximal
paths from Sα to Sγ and counting the num-
ber of visits in Sβ .

set of states Sβ . As an invariant, the algorithm stores in Sα

the set of states that can be reached within i steps from the
originally given set Sα. Using a breadth first search, the
algorithm successively computes all successor states of the
current set Sα. A variable i is used to count the number of
macro steps taken so far, and a set T ⊆ � stores the lengths
of paths from Sα to Sβ . Two main things must be checked
within the loop:

• If a path reaches the target set of states Sγ (checked by
Sα∩Sγ �= {}), then the current number of macro steps
i is added to the set T , and the path is removed from
the current set Sα (so it will not be considered further).
The algorithm terminates when the set Sα is empty, i.e.
if no more paths are left. Then, T will contain lengths
of all paths from Sα to Sγ . The minimum and maxi-
mum of T are then the BCET and WCET, respectively.
For compact storage, one can also easily represent T
by means of a BDD.

• If some path reaches the set of states Sβ , then the loop
bound variable bound is incremented. At the end of
the calculation, bound will deliver exactly how many
times Sβ can be visited by computations from Sα to
Sγ .

Algorithm EHLA given in Figure 3 is our main procedure
for runtime analysis. The algorithm works on finite-state

module Euclid :
input a : int[n], b : int[n];
output x : int[n], y : int[n];
x := a;
y := b;
do

if x ≥ y then
next(x) := x− y

else
next(y) := y − x

end;
� : pause

while (x �= 0) ∧ (y �= 0);
if x = 0 then next(x) := y end;
rdy : pause
/* x is the gcd of a and b */

end

Figure 4. Euclid’s algorithm.

transition systems, but gathers runtime information about
the program locations described by α, β, and γ. Previous
algorithms like [9, 10] have, in contrast to our approach,
no relationship to the program source, and hence, are not
able to compute program related properties like the mini-
mal/maximal numbers of loop iterations. Note that the com-
piler used to generate executable C-code or hardware cir-
cuits is the same that is used to compute our fsms. Hence,
the overall design work flow assures that our runtime analy-
sis determines the correct information for the later low-level
analysis.

4. Experimental Results

We have implemented the algorithms in our tool frame-
work consisting of a compiler for the Quartz language and
a BDD-based real-time model checker. In this section, we
present experimental result that we have obtained with some
benchmarks of the current implementation.

The first example is Euclid’s algorithm to compute the
greatest common divisor of two given numbers. We have
instantiated the Quartz program given in Figure 7 with vari-
ous numbers for the bitwidth of the numbersn, and obtained
the results given in table 1. The column ‘possible states’
contains the size of the transition system that we obtained
from the program, the next column contains the computed
WCET in terms of macro steps, the third column the mem-
ory requirement of our tool in terms of BDD nodes (one
node is 16Bytes), and the fourth row is the runtime of our

b poss. WCET memory runtime
states [steps] [nodes] [min:sec]

4 223 16 4600 0:00.390
5 228 32 9253 0:00.890
6 233 64 26154 0:03.080
7 238 128 45178 0:06.820
8 243 256 96740 0:26.160
9 248 512 296869 2:37.270

10 253 1024 833931 11:36.510
11 258 2048 2433534 68:11.360
12 263 4096 7670831 695:20.780

Table 1. WCET analysis of Euclid’s algorithm.

tool on a Pentium 3 with 1GHz and 512 MBytes of main
memory.

It can be observed that Euclid’s algorithm for b bits has a
WCET of 2b macro steps. The crucial macro step is the one
that corresponds to the loop body that consists of a subtrac-
tion, a comparision and two test on equality to 0. If a low-
level analysis for a hardware implementation could tell us
that the program for 8 bits can be implemented with a hard-
ware circuit with a clock speed of 40 MHz, then we know
that a gcd computation will be done in at least 256/40 10−6

seconds, and for 12 bits, the circuit would require about
212/4010−6 seconds (≈ 0.1024 milliseconds).

Another benchmark that we have tested was checking
primality of a given number. The algorithm is given in Fig-
ure 5. The idea is to first check if the number is even, and if
not, to divide the number by all odd number starting from 3
up to the half of the number to be tested. As division is hard
to implement by a combinatorial circuit, we have chosen a
sequential algorithm that requires b steps for a division of
two b-bit numbers.

A rough estimation of the WCET would therefore be as
follows: as the largest input number for b bits is 2b − 1,
we have to calculate no more than 2b−2 − 1 divisions, since
we divide only by odd numbers up to 2 b−1 − 1. The divi-
sion with b bits will take b steps, and there are two further
macro steps (the pause statements labeled with �1 and �2)
in the loop body, and one after the loop (the pause state-
ments labeled with tc). Hence, an analytical estimation for
the WCET is (b + 2)(2b−2 − 1) + 1. Table 2 shows some
results that we have obtained for b ∈ {6, 7, 8}.

The columns are the same as in Table 1, the additional
column ‘# Div.’ contains the maximal number of divisions,
i.e. loop iterations. As 2b−2 − 1 is 15, 31, and 63 (for
6,7, and 8 bits, respectively), we see that our analytical es-
timation was too pessimistic. For the WCET, the analytical
prediction would yield the numbers 121, 280, and 631 (for
6,7, and 8 bits, respectively) which is also too pessimistic.
We see, that our exact bounds are better than the pessimistic

module Primality :
input p : int[n];
output prime, non_prime;
local ls, x : int[n− 1] in
a := p;
if a[0] then

weak abort
x := 3;
if x < (a div 2) then emit ls end;
while ls do
d := a;
D : run Division()(d, x,m);
if m = 0 then emit non_prime end;
�1 : pause;
next(x) := x+ 2;
�2 : pause;
if x < (d div 2) then emit ls end

end
when non_prime;
if non_prime then emit prime end

else
if a = 2 then emit prime
else emit non_prime end;

end;
tc : pause

end
end

Figure 5. Algorithm to test primality.

b poss. # Div. WCET memory runtime
states [steps] [nodes] [min:sec]

6 256 14 113 65749 0:19.700
7 264 30 271 287387 12:17.960
8 272 61 611 678930 144:59.560

Table 2. Results for Primality test.

analytical estimation.
A last example we want to mention is Fischer’s mutual

exclusion protocol [20]. The benchmark consist of n pro-
cesses that execute the code given in Figure 6. There is a
critical section between the locations cs1 and cs2, i.e. at
most one of the processes is allowed to be in between these
locations. The access to the critical region is controlled by
a shared variable x: when x = 0 holds, the region is free,
x ∈ {1, . . . , n} means that the process with the identifier
x is granted access to the region. A process tries to assign
its process identifier pid to a shared variable x. As the pro-

module FischerProcess :
input running, pid : integer;
output x : integer;
suspend

do
wait1 : await (x = 0);
next(x) := pid;
wait2 : pause

while (x �= pid);
cs1 : pause;
/* critical section */
cs2 : pause;
x := 0;

wait3 : halt
when running

end

Figure 6. A process in Fischer’s Protocol.

n poss. WCET memory runtime
states [steps] [nodes] [min:sec]

5 234 25 5953 0:00.950
10 265 45 34816 0:08.770
15 295 65 59714 0:22.170
20 2126 85 116618 0:28.930
25 2156 105 225928 3:41.430
30 2186 125 281271 9:22.980

Table 3. WCET analysis of Fischer’s protocol.

cesses are executed in an interleaved manner, there will be
no write conflict in doing so, and it may be the case that
after having written x, it may no longer have the value pid
when the process reaches the location wait2.

We have obtained the results given in Table 3 for n pro-
cesses. In particular, we have determined the the largest
number of macro steps it may take for a process to com-
plete its task, i.e. to reach location wait3. The example
shows that our tool is able to examine the runtime of even
large systems that consist of a large number of processes.
According to our experimental results, we might guess that
the WCET of a system with n processes is 4n + 5, which
would not be so simple to obtain analytically.

5. Conclusions

A novel approach to analyse execution times of syn-
chronous programs has been presented that is able to com-

pute for all input sequences the number of macro steps that
are executed between given program locations α and γ. In
particular, using control flow predicates [29], we can deter-
mine α and β such that the algorithm can be used to com-
pute exact bounds of loop iterations. The overall approach
does not depend on a particular architecture; its results can
be used for different architectures if these are determined in
later design phases.

References

[1] G. Bernat and A. Burns. An approach to symbolic worst-
case execution time analysis. In IFAC Workshop on Real-
Time Programming, 2000.

[2] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stir-
ling, and M. Tofte, editors, Proof, Language and Interac-
tion: Essays in Honour of Robin Milner. MIT Press, 1998.

[3] G. Berry. The constructive semantics of pure Esterel, July
1999.

[4] G. Berry. The Esterel v5_91 language primer. June 2000.
[5] C. Berthet, O. Coudert, and J. C. Madre. New ideas on sym-

bolic manipulations of finite state machines. In IEEE/ACM
International Conference on Computer Aided Design (IC-
CAD), 1990.

[6] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier,
D. Weil, and S. Yovine. Taxys = Esterel + Kronos. A tool
for verifying real-time properties of embedded systems. In
Conference on Decision and Control (CDC), Orlando,USA,
2001. IEEE Control Systems Society.

[7] R. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[8] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang.
Symbolic Model Checking: 1020 States and Beyond. Infor-
mation and Computing, 98(2):142–170, June 1992.

[9] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus:
a tool for quantitative analysis of finite-state real-time sys-
tems. In Workshop on Languages, Compilers, and Tools for
Real-Time Systems, 1995.

[10] S. Campos and O. Grumberg. Selective quantitative analy-
sis and interval model checking: Verifying different facets
of a system. In R. Alur and T. A. Henzinger, editors,
Conference on Computer Aided Verification (CAV), volume
1102 of LNCS, pages 257–268, New Brunswick, NJ, USA,
July/August 1996. Springer Verlag.

[11] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil,
and S. Yovine. TAXYS: A tool for the developpment
and verification real-time embedded systems. In Com-
puter Aided Verification (CAV), volume 2102 of LNCS,
Paris,France, 2001. Springer Verlag.

[12] ECL Homepage. Website. http://www-
cad.eecs.berkeley.edu/

[13] A. Ermedahl and J. Gustafsson. Deriving annotations for
tight calculation of execution time. In International Euro-
pean Conference on Parallel Processing (EuroPar), volume
1300 of LNCS, pages 1298–1307, Passau, Germany, 1997.
Springer Verlag.

[14] E. Erpenbach, F. Stappert, and J. Stroop. Compilation and
timing analysis of statecharts models for embedded systems.
In International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), Wyndham City
Center, Washington, D.C. USA, October 1999. ACM.

[15] N. Halbwachs. Synchronous programming of reactive sys-
tems. Kluwer Academic Publishers, 1993.

[16] T. Halfhill. Embedded market breaks new ground, 2000.
Microprocessor Report.

[17] D. Harel and A. Naamad. The STATEMATE semantics of
statecharts. ACM Transactions on Software Engenieering
Methods, 5(4), 1996.

[18] C. Healy, R. van Engelen, and D. Whalley. A general ap-
proach for the tight timing predictions of non-rectangular
loops. In IEEE Real-Time Technology and Applications
Symposium, 1999.

[19] Jester Home Page. Website.
http://www.parades.rm.cnr.it/projects/jester/jester.html.

[20] L. Lamport. A fast mutual exclusion algorithm. ACM Trans-
actions on Computer Systems, 1987.

[21] Y. Liu and G. Gomez. Automatic accurate time-bound anal-
ysis for high-level languages. In Languages, Compilers and
Tools for Embedded Systems (LCTES), 1998.

[22] G. Logothetis and K. Schneider. A new approach to the
specification and verification of real-time systems. In Eu-
romicro Conference on Real-Time Systems, pages 171–180,
Delft, The Netherlands, June 2001. IEEE Computer Society.

[23] G. Logothetis and K. Schneider. Extending synchronous
languages for generating abstract real-time models. In Euro-
pean Conference on Design, Automation and Test in Europe
(DATE), Paris, France, March 2002. IEEE Computer Soci-
ety.

[24] T. Lundqvist and P. Stenström. Integrating path and tim-
ing analysis using instruction-level simulation techniques.
In Languages, Compilers and Tools for Embedded Systems
(LCTES), 1998.

[25] Micro Design Ressources. Embedded processor forum.
http://www.mdronline.com.

[26] P. Puschner. Worst-case execution time analysis at low
cost. In Distributed Computer Control Systems, pages 16–
21, Seoul, Korea, 1997.

[27] P. Puschner and C. Koza. Calculating the maximum exe-
cution time of real-time programs. Journal of Real-Time
Systems, 1(1):159–176, 1989.

[28] K. Schneider. A verified hardware synthesis for Esterel. In
F. Rammig, editor, International IFIP Workshop on Dis-
tributed and Parallel Embedded Systems, pages 205–214,
Schloß Ehringerfeld, Germany, 2000. Kluwer Academic
Publishers.

[29] K. Schneider. Embedding imperative synchronous lan-
guages in interactive theorem provers. In International Con-
ference on Application of Concurrency to System Design
(ICACSD 2001), pages 143–156, Newcastle upon Tyne, UK,
June 2001. IEEE Computer Society Press.

[30] R. Shyamasundar and J. Aghav. Realizing real-time sys-
tems from synchronous language specifications. In Real
Time Systems Symposium, Work in Progress Session, Or-
lando, Florida, USA, November 2000. IEEE.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

