
 Qualifying precision of abstract SystemC models using
the SystemC Verification Standard

Franco Carbognani1, Christopher K. Lennard2, C. Norris Ip3, Allan Cochrane2, Paul Bates2
1Cadence European Labs, 2ARM Ltd, 3Cadence Design Systems

Abstract

The increasing complexity of Systems on Chip (SoC) has
introduced the need for abstract executable specifications
(models) covering both hardware and embedded software.
The new capabilities of SystemC 2.0, such as those added
for transaction-based communication and test-bench
Specification and monitoring, facilitate this SoC modeling.
However, an obstacle to the adoption of abstract modeling
as standard design practice is the lack of well establishes
methodologies for the assessment of model precision. We
describe such a methodology based on the SystemC
Verification Standard implemented by Cadence's
TestBuilder-SC. This methodology enables comparison of
high-level (transaction level) SoC models in SystemC
against implementation RTL models.
An application of the methodology is presented, based on
the AMBA Class Library (ACL) for SystemC being
developed by ARM in collaboration with EDA partners.
The key elements of the methodology are:

1. A completely reusable testbench that can be used
for simulation and verification of the design at
both high-level (transaction level) of abstraction
and RTL implementation level.

2. A single database format is used so that data
collected from simulations at each level can easily
be processed and compared

We present an example of effective validation of ARM
PrimeXsys-platform IP components against their RTL
implementation.

1 Introduction

One of the greatest pressures on the IP provider today is
that of providing fast, and highly accurate models. There
are many models of varying speed and accuracy that exist

as part of EDA design-support packages, but only two
system-level that have gained industry trust: (1) Untimed
programmers-models (e.g., ARMulator), and (2) cycle-
callable, cycle-accurate models (e.g., ARM Cycle-Callable
Models). The former is necessary for soft prototypes. Soft
prototyping enables SW development to commence prior to
the finalization of SoC architectural decisions. These
models are certifiably accurate in context in that they
assume system-communication will be performed correctly,
and offer register accurate visibility into the system
(sufficient for application developers). The latter model
type is required for SoC co-verification providing sufficient
speed for HW, driver and OS validation with certifiable
timing accuracy.

There is, however, a large gap between co-verification
effective clocking speeds (low 100k cycles per second) and
soft-prototype models (mid 10M cycle per second). In this
gap fall two critical tasks: hardware-dependent middle-ware
development, and HW/SW corner-case testing. Design
models that target this gap suffered a serious flaw to
industrial adoption: they trade simulation speed for
simulation accuracy, but that accuracy is not quantified.
Adoption of these models necessitates that a qualification
process for their accuracy be defined. This paper addresses
this issue.

2 Qualification of abstract system-level
models

The delivery of an architectural platform necessitates

packaging of the connected HW components and ported OS
with guaranteed reference methodology to Si
implementation. However, system-houses are finding that
ESW development for a product is now taking longer than
HW development. This is exacerbated by the TTM driven
platform environment. Consequently, ESW development
must commence prior to finalization of the HW design, and
this ESW development often requires more HW and timing
dependent detail than a soft-prototyping environment
provides. Furthermore, during the validation phase, the
comprehensiveness of corner-case or regression-based

testing benefits from increased simulation speed.
Transaction based verification methods, and improved
hierarchical strategies for full system verification and
validation are opening the market to abstract system-
models. SoC validation encompass three major steps:
Level 1 Test - exhaustive checking of the connectivity and
memory access, cycle and pin accurate; Level 2 Test - HW
corner-case testing of communication paths in the SoC,
including interrupt handling – cycle accurate with single
‘ports’ for data/address word and control-state transfer; and
Level 3 Test: HW/SW corner-case testing with full OS –
cycle approximate with abstract data and control passing.
Level 1 Test involves RTL or RTC models, Level 2
involves transaction-based cycle-callable models with
abstract memory descriptions, and Level 3 involves block-
transfer models with abstract memory descriptions.

Both the support of HW-dependent SW authoring, and
comprehensive SoC validation, require fast-but-close-to-
timing-accurate system models: a move from Level 2 to
Level 3 operational abstraction.

There are two issues associated in the move for Level 2
to Level 3 models, the first is guaranteeing of ‘sufficient’
timing accuracy of the model when instantiated in a
particular system, the second is the recognition of
functional accuracy in the sense of correct execution against
properties rather than cycle-accurate timing.

Relating to the first issue, in isolation a timing-
approximate component model for Level 3 style validation
and development is not quantifiable. The reason for this is
inability to statistically guarantee adequate spread-over-
time of the exercising the any particular operational
condition approximated by the model. That is, over a
particular performance benchmark suite, it may be shown
that a component model has a Y% timing inaccuracy, but
this increases to an, e.g., 5xY%, under particular operation.
However, with the embedding of the component within a
market-targetted platform, the relevance of the performance
benchmarking of a model can be assured and modeling
accuracy quantified [3]. This allows the designer to choose
their desired simulation-speed against a statistically
guaranteed timing-accuracy trade-off.

Relating to the second issue, for Level 3 design and
validation, verification principles must move away from
cycle-based comparison of register or signal values.
Instead, this necessitates a move to transaction-based
specification of operational principles. This ARM example
of this paper, and the ACL supported by that is a Level 2
type model which is cycle-accurate but uses transaction-
based communication. However, the ACL may be utilized
in the support of Level 3 models due to its handling of burst
transfers. The model qualification and validation concepts
described extend to Level 3 models.

3 The Performance Validation Methodology

The validation methodology we are presenting will be

focusing on the assessment of timing accuracy of
transaction level models (TLM) and will be termed as
performance validation.

The two key elements of our methodology are:
1. Creation of effective reusable test benches that

can be used for simulation and verification for
designs at both high-level (transaction-level)
and RTL implementation level.

2. Creation of databases with transaction level
timing information from simulation of designs
at both high-level and RTL implementation
level for effective comparison of timing
characteristics.

The concept of testbench reuse is not new, but its
realization is often difficult particularly when applied to
the validation of equivalent models written using different
abstractions. If, however, there are certain features common
to both models and it is sufficient to test both models within
this subset, testbench reuse becomes possible. We have
found that performance validation falls within this subset.
For the same reasons, the metrics of interest in performance
validation, span both modeling domains. This allows the
output of the same information to the same database and the
use a common set of post processing techniques.
If the TLM model has an RTL counterpart that has been
validated, the RTL model can be used as the golden
representation to which to compare the TLM model. At the
TLM level the testbench will produce test stimulus in the
form of transactions. In order to keep a unique stimulus
generator, the TLM testbench must be able to interface to
the RTL environment through a transaction-level interface,
and be able to output transaction to the same database used
in the TLM domain. We found that a combination of
TestBuilder-SC (implementing the SystemC Verification
Standard) and Transaction Explorer (TxE) provided all the
right features to enable this flow:

TestBuilder-SC integrates with the NC-Sim simulator
and provides the facilities for writing transaction level
testbenches for RTL models. TestBuilder’s Transaction
Verification Modules (TVMs) provide a transaction-level
interface to various buses. They translate a C++ bus
transaction to the pin-level signaling required to complete
the transaction through hardware.

The automatic transaction recording facilities of the
TVMs output transaction to the SST2 database format.
TxE can then be used to construct queries on the database
to derive the average latency information needed for
validation and comparison of models. Figure 1 illustrates
how all of these tools fit into the validation flow.

Testbench

TestBuilder

Transaction
Verification

M odules

NC
Simulator

SST2
DataBase

Simvision
&

Transaction
Explorer

Figure 1: Cadence Tools Flow

4 The SystemC Verification Standard

The SystemC 2,0 Standard [5][6] and the SystemC

Verification [7] provide a sufficiently flexible environment
to execute the methodology described in Section 3.
SystemC 2.0 was standardized in 2001 and has been
incorporated into NC-Sim for simulation that takes both
SystemC description and Verilog/VHDL description. The
new SystemC Verification Standard proposed by Cadence
in early 2002 has been accepted by the SystemC Steering
Committee in September 2002. In the remainder of this
section, we provide a summary of the SystemC Verification
Standard, and describe how it enables reusable test
benches. The creation of transaction-level database will be
described in Section 5.5.

The SystemC Verification Standard version 1.0
contains the following features:

• data introspection : manipulation of arbitrary data
type through the scv_extensions_if abstract
interface and the scv_smart_ptr template.

• constrained and weighted randomization : creation
of Boolean constraints through the scv_expression
class, and discrete distribution through the
scv_bag class.

• transaction recording : recording of transactions
into a database through the scv_tr_stream class
and the scv_tr_generator template.

• miscellaneous features such as sparse arrays, HDL
connection, exception handling, and debugging
interface.

Using Transaction Verification Modules (TVMs), the
same test can be used for simulation of designs at both
high-level and RTL implementation level. A Master TVM
transaction level interface could be defined as:

class mybus_master_task_if : virtual
public sc_interface {
 public:

 virtual void write_tx
 (bus_data_t& data) = 0;
 virtual unsigned int *read_tx
 (bus_data_t& data) = 0;
 virtual void write_tx
 (const bus_data_h data_h) = 0;
 virtual unsigned int *read_tx
 (bus_data_h data_h) = 0;
};

A test for such interface can be implemented as:
class test : public sc_module {
public:
 sc_port<mybus_master_task_if> tvm;
 SC_CTOR(test) { SC_THREAD(body); }
 void body() {
 scv_smart_ptr<bus_data_t> ctrl;
 ctrl->next();
 tvm1->write_tx(…,
 ctrl->read(), …);
 …
 }
};

This test contains a port with the abstract Master TVM
interface. As a result, this test can be used for the TLM
description, by using a TVM that will interface to the TLM
model, and also for the RTL design description, by using a
TVM that will interface to the RTL implementation.

In this specific case the TLM Master TVM will be
basically an “adapter” between TestBuilder-SC transaction
class and native AMBA bus transaction class, but more in
general the concept of TLM TVMs has been introduced so
that they implement the complete interface of existing RTL
TVMs and allow the complete reuse of existing TestBuilder
Testbenches.

Figure 2 shows the resulting validation flow. Both the
TLM and RTL TVMs output transactions to the SST2
database. More specifically TLM TVMs record transaction
using the methodology detailed in Section 5.5.

TLM
Master
TVM

TLM
Master
TVM

TLM
Slave
TVM

TLM
Slave
TVM

. . . .

Common
Testbench

Common
SST2

Database

TLM Domain

RTL Domain

RTL
Master
TVM

RTL
Master
TVM

RTL
Slave
TVM

RTL
Slave
TVM

. . . .

Post
Processing

Figure 2: Performance Validation Flow

5 The AMBA Class Library

While ARM has a history in CPU core modeling, the

support of platforms with complex multi core system
simulation requires fast, accurate behavioral models for the
peripherals and AMBA bus. There is an increasing need for
a design environment that meets the needs of newer
platform-based designs. In particular, we need an
environment that:
! brings hardware and software together early in the

design cycle
! provides a full System-on-Chip (SoC) design

environment including support for multi-core
! delivers a consistent validation environment such that

we have a continuous route from capturing design
intent to validating design implementation.

SystemC provides ARM with the de facto industry-
standard needed for behavioral modeling. The C-like
structure of the language is perfect for functional modeling,
and its position as a standard ensures that SystemC models
are easily adopted and reused across the industry (an
essential property for any IP development). SystemC, with
its support of C++ class libraries and operator overloading
also provides a basis for encapsulating functional hierarchy,
fundamental to the emerging transaction-based verification
strategies. ARM has developed an AMBA Class Library
(the “ACL”), which is a model of the MultiLayer AMBA
fabric. The model supports transaction level communication
but in a way that allows accurate modeling of pipelined
processors and to system level models of peripheral blocks.

5.1 Bus Model

The bus model that has been developed is ARM’s

MultiLayer AMBA fabric. The protocol supported by this
fabric is AHBlite; The AHBlite protocol is very similar to
the standard AHB 2.0 protocol except that split/retries are
not available and slaves use HREADY to control the bus
when the transfer ends.

The release of SystemC version 2.0 allowed higher-
level approaches to bus modeling to be taken. This is
documented in [3]. These new high level modeling
approaches were adopted in the ACL design

The bus model developed was designed to be cycle
accurate. By this we mean that at the rising edge of the
clock, the signals on the bus would match those in the RTL.
Although the ACL does not use signals to represent bus
transactions they can be derived from the state of the bus at
any time. Cycle accurate modeling reduces the problems of
verifying the ACL and the models attached to it against the
RTL verification suites.

With this in mind three means of accessing the bus are
offered:

• Non-blocking access
• Blocking access
• Debug or back-door access

5.2 Non blocking access

Bus masters that want to be very accurate modeling

AHB pipeline require non-blocking access to the bus.
Here follows an example of a non-blocking master interface
that could constitute part of the final ACL:

 class AMBA_nonblocking_interface
 : virtual public sc_interface {
 public:
 virtual AMBA_burst_status
 nonblocking_burst(
 const AMBA_input_stage* const
master,
 AMBA_addr_t address,
 AMBA_data_t const data,
 AHB_lite_control AHB_control,
 AMBA_burst_control burst_control
) = 0;
 };

Matching the pipelined address and data phases of the
AHBlite protocol requires multiple calls to the above
method. A bus master starts a burst with an initial call to
nonblocking_burst() to set up the burst data structures and
request access to the bus. The master then makes repeated
calls to nonblocking_burst() to check on the status of the
individual transfers within the burst. The bus then calls the
slave at each one of these calls to nonblocking_burst(), the
slave returns a value indicating that the current transfer is
complete, waiting or an error has occurred. This value is
then passed back to the master by the bus. The master must
repeat the call to nonblocking_burst() at each clock cycle
until the slave has completed all the transfers or has aborted
the burst and returned an error. These subsequent calls
equate to the address and data phases within the transfer.

By making bus transaction calls at the burst level, rather
than the individual transfer level, it is expected that bus and
peripheral models can be optimized for simulation
efficiency without sacrificing cycle accuracy. Furthermore
it is also expected that models may be able to offer the user
the ability to forego 100% cycle accuracy whilst gaining
significant simulation performance.

5.3 Blocking access

The blocking access allows masters to simply model bus

access functions. The only drawback is that the master
cannot normally re-access the bus without incurring a single

cycle delay. This can be overcome by slightly more
sophisticated strategies on the part of the master but then
due to the programming effort required it will be easier to
use the non-blocking approach. The blocking interface is
implemented internally by the bus using the non-blocking
interface.

5.4 Debug Access

Finally, debug accesses allow things like debuggers,

visualisers, etc. quick access to the contents of peripherals.
These objects do not exist in a real system so they should
not cause bus activity when reading or writing data to
objects.

5.5 Embedding Transaction Recording into the
AMBA class library

An important component of our methodology is the

generation of databases with transaction-level timing
information. Instead of using simple logging statements
throughout the description, we use the transaction recording
features in the new SystemC Verification Standard.
Because we would like to give the user as much control
over how recording should be done as possible, we adapted
a style in which related transaction recording codes are
captured in several recorder interfaces. For example the
recorder interface associated with the nonblocking master
interface presented above is defined as follows:

class nb_recorder_interface
: virtual public sc_interface {
public:
 scv_tr_generator
 <AMBA_addr_t, AMBA_data_t> &
 get_nb_tx_generator() = 0;
 …
};

This recorder interface becomes the contract between
the master and the fabric. The template scv_tr_generator is
a template in the new SystemC Verification Standard for
generating a transaction of a specific type, with attribute
types identified by the two template arguments. As long as
the master provides a recorder implementing this interface,
the bus fabric can generate appropriate transactions into
the database. An example implementation of the
nonblocking burst operation is shown below, which
generates a transaction through the begin_transaction() and
end_transaction() calls.

AMBA_burst_status
AMBA_RTL_bus_fabric::nonblocking_burst(
 const AMBA_input_stage* const master,
 AMBA_addr_t address,
 AMBA_data_t const data,
 AHB_lite_control AHB_control,
 AMBA_burst_control burst_control
) {

 …
 scv_tr_handle h = master->get_recorder()
 ->get_nb_tx_generator()
 .begin_transaction(address);
 …
 h.end_transaction(data);
}

This style provides the tests and the masters the
flexibility to customize transaction recording for different
simulation. For example, a straightforward recorder can be
implemented as follows:

class basic_recorder
: public nb_recorder_interface {
 bool _on;
 scv_tr_stream tx_stream;
 scv_tr_generator
 <AMBA_addr_t, AMBA_data_t> nb_tx;
 scv_tr_generator
 <AMBA_addr_t, AMBA_data_t> dummy;
public:
 basic_recorder()
 : _on(false),
 tx_stream(“basic”,”recorder”),
 nb_tx(“nb”, &tx_stream,
 “addr’,”data”),
 dummy() {}
 scv_tr_generator
 <AMBA_addr_t, AMBA_data_t>&
 get_nb_tx_generator() {
 if (_on) return nb_tx;
 else return dummy;
 }
 void set(bool on) { _on = on; }
};

This basic recorder creates a transaction stream by
instantiating scv_tr_stream from the Verification Standard.
A valid generator is then created with respect to this stream,
and a dummy generator is created also. This basic recorder
can be turned on and off by calling the method set(). When
it is on, the implementation of the abstract interface returns
a valid generator so that the bus fabric will be recording
onto the appropriate transaction stream.

A test can instantiate this recorder and attach it to
masters. Each master can have a dedicated recorder, or
multiple master can share one, depending on the purpose of
the simulation. The main goals we would like to achieve
using this style of coding are precise controls over which
databases, transaction streams, and generators are active
and how they are shared among multiple modules. We have
also partitioned the recording code into its own class to
minimize the impact on the implementation of the actual
design functionality in various levels of abstractions.

6 The Performance Validation Case Study

The performance validation methodology just described

was applied to the validation of some of the PrimeXsys-
platform IP blocks. Our case study was purposely kept very
simple since we were more interested in bringing together

the complete flow of the proposed methodology then to a
complex application of it. On the RTL side the system
consists of the Verilog AHB Bus Fabric and Memory
models from the ARM Micropack and two instantiations of
the Cadence AMBA Master TVM. The resulting system is
depicted in figure 3.

AMBA Master1
TVM

IntMem

AMBA Master2
TVM

TestBuilder-SC
Stimulus Generator

Arbiter

Figure 3: RTL Test Environment

On the TLM side the system is composed by the AHB

Bus fabric from an early prototype version of the ACL, a
memory block and two instantiations of the TLM Master
TVM. The resulting system is depicted in figure 4.

TestBuilder-SC
Stimulus Generator

TLM Master1
TVM

Ahb Bus (Arbiter Embedded)

MemoryTLM Master2
TVM

Figure 4: TLM Test Environment

6.1 Comparison of TLM against RTL
simulations

We have defined a simple stimulus generator that is

specifying a scenario in which the two Masters are
accessing the bus one after the other with SINGLE-
BURST. A total of 10,000 transactions were submitted and
recorded into the SST2 database in both the TLM and RTL
studies. A TxE script was written to process the averaged,
maximum and minimum transactions duration for the two

Masters. Those values were then compared between TLM
and RTL simulations and difference calculated in percent.
Results are shown in Table 1.

Table 1: Comparison results before TLM model
modification

AvgRtl1 MinRtl1 MaxRtl1 AvgRtl2 MinRtl2 MaxRtl2

69.0ns 69.0ns 69.0ns 29.0ns 29.0ns 29.0ns

AvgTlm1 MinTlm1 MaxTlm1 AvgTlm2 MinTlm2 MaxTlm2

30.0ns 30.0ns 30.0ns 30.0ns 30.0ns 30.0ns

AvgErr MinErr MaxErr TotErr

29.9% 29.9% 29.9% 29.9%

Looking in more details at the RTL simulation it was
immediately clear that the resulted nearly 30% error was
related to the fact that the Master2 (corresponding to ARM
core) is selected as default granted master leading to
different timing in the arbitration. With little modification
on the TLM model side, in order to take in account of this
behavior, the new comparison results on Table 2 show an
error reduced to 2.4%.

Table 2: Comparison results after TLM model
modification

AvgRtl1 MinRtl1 MaxRtl1 AvgRtl2 MinRtl2 MaxRtl2

69.0ns 69.0ns 69.0ns 29.0ns 29.0ns 29.0ns

AvgTlm1 MinTlm1 MaxTlm1 AvgTlm2 MinTlm2 MaxTlm2

70.0ns 70.0ns 70.0ns 30.0ns 30.0ns 30.0ns

AvgErr MinErr MaxErr TotErr

2.4% 2.4% 2.4% 2.4%

7 Conclusion and future work

ARM is intending to support SystemC models compliant to
an ACL supportive of both cycle-callable transaction level
models, and cycle-approximate models. These models offer
the speed and timing accuracy needed for HW-dependent
SW development, as well as full-system validation with
comprehensive HW/SW corner-case analysis. These
strategies are fundamentally based around model and
validation support of TLM methodologies.
We have shown in our work that our validation flow based
on SystemC Verification Standard can effectively help in
enabling ARM strategies. More sophisticated stimulus
generators will be defined in order to address the problem
of test coverage and we do intend to enhance the presented
methodology via it’s integration within the Cadence
Verification Reuse Methodology (VRM).

8 References

[1] C. Norris, Stuart Swan, Using Transaction-Based
Verification in SystemC, http://www.systemc.org/, June 2002

[2] Jon Connell, Bruce Johnson, Early HW/SW Integration
Using SystemC v2.0 , http://www.systemc.org/, Embedded
Systems Conference - San Francisco, June 2002

[3] Christopher K. Lennard, Eric Granata: The Meta-Methods:
Managing design risk during IP selection and integration.
European IP 99 Conference - Edinburgh, November 1999

[4] Alain Clouard, Giorgio Mastrorocco, Franco Carbognani,
Antoine Perrin, Towards Bridging the Precision Gap
between SoC Transactional and Cycle-Accurate Levels,
Design, Automation and Test in Europe conference -
Munich, March 2002

[5] SystemC Stuart Swan, An Introduction to System Level
Modeling in SystemC 2.0, white paper, www.SystemC.org.

[6] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan,
System Design with SystemC, Kluwer Academic Publishers,
2002.

[7] The SystemC Verification Standard, version 1.0a, approved
by the SystemC Verification Working Group and the
Steering Committee, to appear at www.SystemC.org.

[8] C. Norris Ip and Stuart Swan, A Tutorial Introduction on the
New SystemC Verification Standard, submitted for
publication, September 2002.

[9] C. Norris Ip, Simulation Coverage Enhancement Using Test
Stimulus Transformation, ICCAD 2000

http://www.systemc.org/
http://www.systemc.org/

	Main Page
	DF'03
	Front Matter
	Table of Contents
	Author Index

