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Abstract 

 
The increasing complexity of Systems on Chip (SoC) has 
introduced the need for abstract executable specifications 
(models) covering both hardware and embedded software.  
The new capabilities of SystemC 2.0, such as those added 
for transaction-based communication and test-bench 
Specification and monitoring, facilitate this SoC modeling.  
However, an obstacle to the adoption of abstract modeling 
as standard design practice is the lack of well establishes 
methodologies for the assessment of model precision.  We 
describe such a methodology based on the SystemC 
Verification Standard implemented by Cadence's 
TestBuilder-SC.  This methodology enables comparison of 
high-level (transaction level) SoC models in SystemC 
against implementation RTL models.  
An application of the methodology is presented, based on 
the AMBA Class Library (ACL) for SystemC being 
developed by ARM in collaboration with EDA partners.  
The key elements of the methodology are: 

1. A completely reusable testbench that can be used 
for simulation and verification of the design at 
both high-level (transaction level) of abstraction 
and RTL implementation level. 

2. A single database format is used so that data 
collected from simulations at each level can easily 
be processed and compared 

We present an example of effective validation of ARM 
PrimeXsys-platform IP components against their RTL 
implementation. 
 

1 Introduction 
 
One of the greatest pressures on the IP provider today is 
that of providing fast, and highly accurate models.  There 
are many models of varying speed and accuracy that exist 

as part of EDA design-support packages, but only two 
system-level that have gained industry trust:  (1) Untimed 
programmers-models (e.g., ARMulator), and (2) cycle-
callable, cycle-accurate models (e.g., ARM Cycle-Callable 
Models).  The former is necessary for soft prototypes.  Soft 
prototyping enables SW development to commence prior to 
the finalization of SoC architectural decisions.  These 
models are certifiably accurate in context in that they 
assume system-communication will be performed correctly, 
and offer register accurate visibility into the system 
(sufficient for application developers).  The latter model 
type is required for SoC co-verification providing sufficient 
speed for HW, driver and OS validation with certifiable 
timing accuracy. 

There is, however, a large gap between co-verification 
effective clocking speeds (low 100k cycles per second) and 
soft-prototype models (mid 10M cycle per second).  In this 
gap fall two critical tasks: hardware-dependent middle-ware 
development, and HW/SW corner-case testing.  Design 
models that target this gap suffered a serious flaw to 
industrial adoption:  they trade simulation speed for 
simulation accuracy, but that accuracy is not quantified.  
Adoption of these models necessitates that a qualification 
process for their accuracy be defined.  This paper addresses 
this issue. 

 

2 Qualification of abstract system-level 
models 

 
The delivery of an architectural platform necessitates 

packaging of the connected HW components and ported OS 
with guaranteed reference methodology to Si 
implementation.  However, system-houses are finding that 
ESW development for a product is now taking longer than 
HW development.  This is exacerbated by the TTM driven 
platform environment. Consequently, ESW development 
must commence prior to finalization of the HW design, and 
this ESW development often requires more HW and timing 
dependent detail than a soft-prototyping environment 
provides. Furthermore, during the validation phase, the 
comprehensiveness of corner-case or regression-based 



testing benefits from increased simulation speed.  
Transaction based verification methods, and improved 
hierarchical strategies for full system verification and 
validation are opening the market to abstract system-
models.  SoC validation encompass three major steps: 
Level 1 Test - exhaustive checking of the connectivity and 
memory access, cycle and pin accurate; Level 2 Test - HW 
corner-case testing of communication paths in the SoC, 
including interrupt handling – cycle accurate with single 
‘ports’ for data/address word and control-state transfer; and 
Level 3 Test: HW/SW corner-case testing with full OS – 
cycle approximate with abstract data and control passing.  
Level 1 Test involves RTL or RTC models, Level 2 
involves transaction-based cycle-callable models with 
abstract memory descriptions, and Level 3 involves block-
transfer models with abstract memory descriptions. 

Both the support of HW-dependent SW authoring, and 
comprehensive SoC validation, require fast-but-close-to-
timing-accurate system models: a move from Level 2 to 
Level 3 operational abstraction.  

There are two issues associated in the move for Level 2 
to Level 3 models, the first is guaranteeing of ‘sufficient’ 
timing accuracy of the model when instantiated in a 
particular system, the second is the recognition of 
functional accuracy in the sense of correct execution against 
properties rather than cycle-accurate timing. 

Relating to the first issue, in isolation a timing-
approximate component model for Level 3 style validation 
and development is not quantifiable.  The reason for this is 
inability to statistically guarantee adequate spread-over-
time of the exercising the any particular operational 
condition approximated by the model. That is, over a 
particular performance benchmark suite, it may be shown 
that a component model has a Y% timing inaccuracy, but 
this increases to an, e.g., 5xY%, under particular operation.  
However, with the embedding of the component within a 
market-targetted platform, the relevance of the performance 
benchmarking of a model can be assured and modeling 
accuracy quantified [3].  This allows the designer to choose 
their desired simulation-speed against a statistically 
guaranteed timing-accuracy trade-off. 

Relating to the second issue, for Level 3 design and 
validation, verification principles must move away from 
cycle-based comparison of register or signal values.  
Instead, this necessitates a move to transaction-based 
specification of operational principles.  This ARM example 
of this paper, and the ACL supported by that is a Level 2 
type model which is cycle-accurate but uses transaction-
based communication.  However, the ACL may be utilized 
in the support of Level 3 models due to its handling of burst 
transfers. The model qualification and validation concepts 
described extend to Level 3 models. 
 

3 The Performance Validation Methodology  
 
The validation methodology we are presenting will be 

focusing on the assessment of timing accuracy of 
transaction level models (TLM) and will be termed as 
performance validation.  

The two key elements of our methodology are: 
1. Creation of effective reusable test benches that 

can be used for simulation and verification for 
designs at both high-level (transaction-level) 
and RTL implementation level. 

2. Creation of databases with transaction level 
timing information from simulation of designs 
at both high-level and RTL implementation 
level for effective comparison of timing 
characteristics. 

The concept of testbench reuse is not new, but its 
realization is often difficult particularly when applied  to 
the validation of equivalent models written using different 
abstractions. If, however, there are certain features common 
to both models and it is sufficient to test both models within 
this subset, testbench reuse becomes possible.  We have 
found that performance validation falls within this subset. 
For the same reasons, the metrics of interest in performance 
validation, span both modeling domains.  This allows the 
output of the same information to the same database and the  
use a common set of post processing techniques. 
If the TLM model has an RTL counterpart that has been 
validated, the RTL model can be used as the golden 
representation to which to compare the TLM model.  At the 
TLM level the testbench will produce test stimulus in the 
form of transactions. In order to keep a unique stimulus 
generator, the TLM testbench must be able to interface to 
the RTL environment through a transaction-level interface, 
and be able to output transaction to the same database used 
in the TLM domain.  We found that a combination of 
TestBuilder-SC (implementing the SystemC Verification 
Standard) and Transaction Explorer (TxE) provided all the 
right features to enable this flow: 

TestBuilder-SC integrates with the NC-Sim simulator 
and provides the facilities for writing transaction level 
testbenches for RTL models. TestBuilder’s Transaction 
Verification Modules (TVMs) provide a transaction-level 
interface to various buses.  They translate a C++ bus 
transaction to the pin-level signaling required to complete 
the transaction through hardware.  

The automatic transaction recording facilities of the 
TVMs output transaction to the SST2 database format.  
TxE can then be used to construct queries on the database 
to derive the average latency information needed for 
validation and comparison of models.  Figure 1 illustrates 
how all of these tools fit into the validation flow.  
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Figure 1: Cadence Tools Flow 

4 The SystemC Verification Standard 
 
The SystemC 2,0 Standard [5][6] and the SystemC 

Verification [7] provide a sufficiently flexible environment 
to execute the methodology described in Section 3.  
SystemC 2.0 was standardized in 2001 and has been 
incorporated into NC-Sim for simulation that takes both 
SystemC description and Verilog/VHDL description. The 
new SystemC Verification Standard proposed by Cadence 
in early 2002 has been accepted by the SystemC Steering 
Committee in September 2002. In the remainder of this 
section, we provide a summary of the SystemC Verification 
Standard, and describe how it enables reusable test 
benches. The creation of transaction-level database will be 
described in Section 5.5. 

The SystemC Verification Standard version 1.0 
contains the following features: 

• data introspection : manipulation of arbitrary data 
type through the scv_extensions_if abstract 
interface and the scv_smart_ptr template. 

• constrained and weighted randomization : creation 
of Boolean constraints through the scv_expression 
class, and discrete distribution through the 
scv_bag class. 

• transaction recording : recording of transactions 
into a database through the scv_tr_stream class 
and the scv_tr_generator template. 

• miscellaneous features such as sparse arrays, HDL 
connection, exception handling, and debugging 
interface. 

Using Transaction Verification Modules (TVMs), the 
same test can be used for simulation of designs at both 
high-level and RTL implementation level. A Master TVM 
transaction level interface could be defined as: 

class mybus_master_task_if : virtual 
public sc_interface { 
  public: 

    virtual void write_tx  
      ( bus_data_t& data ) = 0; 
    virtual unsigned int  *read_tx 
      ( bus_data_t& data ) = 0; 
    virtual void write_tx 
      ( const bus_data_h data_h ) = 0; 
    virtual unsigned int  *read_tx 
      ( bus_data_h  data_h ) = 0; 
}; 

A test for such interface can be implemented as: 
class test : public sc_module { 
public: 
  sc_port<mybus_master_task_if> tvm; 
  SC_CTOR(test) { SC_THREAD(body); } 
  void body() { 
    scv_smart_ptr<bus_data_t> ctrl; 
    ctrl->next(); 
    tvm1->write_tx(…, 
      ctrl->read(), …); 
    … 
  } 
};   

This test contains a port with the abstract Master TVM 
interface. As a result, this test can be used for the TLM 
description, by using a TVM that will interface to the TLM 
model, and also for the RTL design description, by using a 
TVM that will interface to the RTL implementation. 

In this specific case the TLM Master TVM will be 
basically an “adapter” between TestBuilder-SC transaction 
class and native AMBA bus transaction class, but more in 
general the concept of TLM TVMs has been introduced so 
that they implement the complete interface of existing RTL 
TVMs and allow the complete reuse of existing TestBuilder 
Testbenches.  

Figure 2 shows the resulting validation flow. Both the 
TLM and RTL TVMs output transactions to the SST2 
database. More specifically TLM TVMs record transaction 
using the methodology detailed in Section 5.5.    
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Figure 2: Performance Validation Flow  



5 The AMBA Class Library 
 
While ARM has a history in CPU core modeling, the 

support of platforms with complex multi core system 
simulation requires fast, accurate behavioral models for the 
peripherals and AMBA bus. There is an increasing need for 
a design environment that meets the needs of newer 
platform-based designs. In particular, we need an 
environment that: 
! brings hardware and software together early in the 

design cycle 
! provides a full System-on-Chip (SoC) design 

environment including support for multi-core  
! delivers a consistent validation environment such that 

we have a continuous route from capturing design 
intent to validating design implementation. 

SystemC provides ARM with the de facto industry-
standard needed for behavioral modeling. The C-like 
structure of the language is perfect for functional modeling, 
and its position as a standard ensures that SystemC models 
are easily adopted and reused across the industry (an 
essential property for any IP development).  SystemC, with 
its support of C++ class libraries and operator overloading 
also provides a basis for encapsulating functional hierarchy, 
fundamental to the emerging transaction-based verification 
strategies. ARM has developed an AMBA Class Library 
(the “ACL”), which is a model of the MultiLayer AMBA 
fabric. The model supports transaction level communication 
but in a way that allows accurate modeling of pipelined 
processors and to system level models of peripheral blocks. 

5.1 Bus Model 
 
The bus model that has been developed is ARM’s 

MultiLayer AMBA fabric. The protocol supported by this 
fabric is AHBlite; The AHBlite protocol is very similar to 
the standard AHB 2.0 protocol except that split/retries are 
not available and slaves use HREADY to control the bus 
when the transfer ends. 

The release of SystemC version 2.0 allowed higher-
level approaches to bus modeling to be taken. This is 
documented in [3]. These new high level modeling 
approaches were adopted in the ACL design 

The bus model developed was designed to be cycle 
accurate. By this we mean that at the rising edge of the 
clock, the signals on the bus would match those in the RTL. 
Although the ACL does not use signals to represent bus 
transactions they can be derived from the state of the bus at 
any time. Cycle accurate modeling reduces the problems of 
verifying the ACL and the models attached to it against the 
RTL verification suites. 

With this in mind three means of accessing the bus are 
offered: 

• Non-blocking access 
• Blocking access 
• Debug or back-door access 

5.2 Non blocking access 
 
Bus  masters  that want to be very accurate modeling 

AHB pipeline require non-blocking  access  to the bus. 
Here follows an example of a non-blocking master interface 
that could constitute part of the final ACL: 

     class AMBA_nonblocking_interface 
     : virtual public sc_interface { 
     public: 
       virtual AMBA_burst_status 
       nonblocking_burst( 
         const AMBA_input_stage* const 
master, 
         AMBA_addr_t address, 
         AMBA_data_t const data, 
         AHB_lite_control AHB_control, 
         AMBA_burst_control burst_control 
       ) = 0; 
  }; 

Matching the pipelined address and data phases of the 
AHBlite protocol requires multiple calls to the above 
method. A bus master starts a burst with an initial call to 
nonblocking_burst() to set up the burst data structures and 
request access to the bus. The master then makes repeated 
calls to nonblocking_burst() to check on the status of the 
individual transfers within the burst. The bus then calls the 
slave at each one of these calls to nonblocking_burst(), the 
slave returns a value indicating that the current transfer is 
complete, waiting or an error has occurred. This value is 
then passed back to the master by the bus. The master must 
repeat the call to nonblocking_burst() at each clock cycle 
until the slave has completed all the transfers or has aborted 
the burst and returned an error. These subsequent calls 
equate to the address and data phases within the transfer. 

By making bus transaction calls at the burst level, rather 
than the individual transfer level, it is expected that bus and 
peripheral models can be optimized for simulation 
efficiency without sacrificing cycle accuracy. Furthermore 
it is also expected that models may be able to offer the user 
the ability to forego 100% cycle accuracy whilst gaining 
significant simulation performance.  

 

5.3 Blocking access 
 
The blocking access allows masters to simply model bus 

access functions. The only drawback is that the master 
cannot normally re-access the bus without incurring a single 



cycle delay. This can be overcome by slightly more 
sophisticated strategies on the part of the master but then 
due to the programming effort required it will be easier to 
use the non-blocking approach. The blocking interface is 
implemented internally by the bus using the non-blocking 
interface. 

5.4 Debug Access 
 
Finally, debug accesses allow things like debuggers, 

visualisers, etc. quick access to the contents of peripherals. 
These objects do not exist in a real system so they should 
not cause bus activity when reading or writing data to 
objects.  

5.5 Embedding Transaction Recording into the 
AMBA class library 

 
An important component of our methodology is the 

generation of databases with transaction-level timing 
information.  Instead of using simple logging statements 
throughout the description, we use the transaction recording 
features in the new SystemC Verification Standard. 
Because we would like to give the user as much control 
over how recording should be done as possible, we adapted 
a style in which related transaction recording codes are 
captured in several recorder interfaces. For example the 
recorder interface associated with the nonblocking master 
interface presented above is defined as follows: 

class nb_recorder_interface 
: virtual public sc_interface { 
public: 
  scv_tr_generator 
    <AMBA_addr_t, AMBA_data_t> & 
  get_nb_tx_generator() = 0; 
  … 
}; 

This recorder interface becomes the contract between 
the master and the fabric. The template scv_tr_generator is 
a template in the new SystemC Verification Standard for 
generating a transaction of a specific type, with attribute 
types identified by the two template arguments. As long as 
the master provides a recorder implementing this interface, 
the bus fabric can generate appropriate  transactions into 
the database. An example implementation of the 
nonblocking burst operation is shown below, which 
generates a transaction through the begin_transaction() and 
end_transaction() calls. 

 
AMBA_burst_status  
AMBA_RTL_bus_fabric::nonblocking_burst( 
    const AMBA_input_stage* const master, 
    AMBA_addr_t address, 
    AMBA_data_t const data, 
    AHB_lite_control AHB_control, 
    AMBA_burst_control burst_control 
  ) { 

  … 
  scv_tr_handle h = master->get_recorder() 
    ->get_nb_tx_generator() 
    .begin_transaction(address); 
  … 
  h.end_transaction(data); 
} 

This style provides the tests and the masters the 
flexibility to customize transaction recording for different 
simulation. For example, a straightforward recorder can be 
implemented as follows: 

class basic_recorder  
: public nb_recorder_interface { 
  bool _on; 
  scv_tr_stream tx_stream; 
  scv_tr_generator 
    <AMBA_addr_t, AMBA_data_t> nb_tx; 
  scv_tr_generator 
    <AMBA_addr_t, AMBA_data_t> dummy; 
public: 
  basic_recorder()  
  : _on(false),      
    tx_stream(“basic”,”recorder”), 
    nb_tx(“nb”, &tx_stream, 
          “addr’,”data”), 
    dummy() {} 
  scv_tr_generator 
    <AMBA_addr_t, AMBA_data_t>&  
    get_nb_tx_generator() { 
    if (_on) return nb_tx; 
    else return dummy; 
  } 
  void set(bool on) { _on = on; } 
}; 

This basic recorder creates a transaction stream by 
instantiating scv_tr_stream from the Verification Standard. 
A valid generator is then created with respect to this stream, 
and a dummy generator is created also. This basic recorder 
can be turned on and off by calling the method set(). When 
it is on, the implementation of the abstract interface returns 
a valid generator so that the bus fabric will be recording 
onto the appropriate transaction stream.   

A test can instantiate this recorder and attach it to 
masters. Each master can have a dedicated recorder, or 
multiple master can share one, depending on the purpose of 
the simulation. The main goals we would like to achieve 
using this style of coding are precise controls over which 
databases, transaction streams, and generators are active 
and how they are shared among multiple modules. We have 
also partitioned the recording code into its own class to 
minimize the impact on the implementation of the actual 
design functionality in various levels of abstractions. 

 

6 The Performance Validation Case Study  

 
The performance validation methodology just described 

was applied to the validation of some of the PrimeXsys-
platform IP blocks. Our case study was purposely kept very 
simple since we were more interested in bringing together 



the complete flow of the proposed methodology then to a 
complex application of it. On the RTL side the system 
consists of the Verilog AHB Bus Fabric and Memory 
models from the ARM Micropack and two instantiations of 
the Cadence AMBA Master  TVM.  The resulting system is 
depicted in figure 3. 
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Figure 3: RTL Test Environment 
 
On the TLM side the system is composed by the AHB 

Bus fabric from an early prototype version of the ACL, a 
memory block and two instantiations of the TLM Master 
TVM. The resulting system is depicted in figure 4. 
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Figure 4: TLM Test Environment 

6.1 Comparison of TLM against RTL 
simulations 

 
We have defined a simple stimulus generator that is 

specifying a scenario in which the two Masters are 
accessing the bus one after the other with SINGLE-
BURST. A total of 10,000 transactions were submitted and 
recorded into the SST2 database in both the TLM and RTL 
studies.  A TxE script was written to process the averaged, 
maximum and minimum transactions duration for the two 

Masters. Those values were then compared between TLM 
and RTL simulations and difference calculated in percent. 
Results are shown in Table 1.   

Table 1: Comparison results before TLM model 
modification 

AvgRtl1 MinRtl1 MaxRtl1 AvgRtl2 MinRtl2 MaxRtl2 

69.0ns 69.0ns 69.0ns 29.0ns 29.0ns 29.0ns 

AvgTlm1 MinTlm1 MaxTlm1 AvgTlm2 MinTlm2 MaxTlm2 

30.0ns 30.0ns 30.0ns 30.0ns 30.0ns 30.0ns 

AvgErr MinErr MaxErr TotErr 

29.9% 29.9% 29.9% 29.9% 

 

 
Looking in more details at the RTL simulation it was 
immediately clear that the resulted nearly 30% error was 
related to the fact that the Master2 (corresponding to ARM 
core) is selected as default granted master leading to 
different timing in the arbitration. With little modification 
on the TLM model side, in order to take in account of this 
behavior, the new comparison results on Table 2 show an 
error reduced to  2.4%. 

Table 2: Comparison results after TLM model 
modification 

AvgRtl1 MinRtl1 MaxRtl1 AvgRtl2 MinRtl2 MaxRtl2 

69.0ns 69.0ns 69.0ns 29.0ns 29.0ns 29.0ns 

AvgTlm1 MinTlm1 MaxTlm1 AvgTlm2 MinTlm2 MaxTlm2 

70.0ns 70.0ns 70.0ns 30.0ns 30.0ns 30.0ns 

AvgErr MinErr MaxErr TotErr 

2.4% 2.4% 2.4% 2.4% 

 

 

7 Conclusion and future work 
 

ARM is intending to support SystemC models compliant to 
an ACL supportive of both cycle-callable transaction level 
models, and cycle-approximate models. These models offer 
the speed and timing accuracy needed for HW-dependent 
SW development, as well as full-system validation with 
comprehensive HW/SW corner-case analysis. These 
strategies are fundamentally based around model and 
validation support of TLM methodologies.   
We have shown in our work that our validation flow based 
on SystemC Verification Standard can effectively help in 
enabling ARM strategies.  More sophisticated stimulus 
generators will be defined in order to address the problem 
of test coverage and we do intend to enhance the presented 
methodology via it’s integration within the Cadence 
Verification Reuse Methodology (VRM).
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