
Support Vector Machines for Analog Circuit Performance
Representation

F. De Bernardinis†§

fdb@eecs.berkeley.edu

M. I. Jordan†

jordan@cs.berkeley.edu

A.SangiovanniVincentelli†

alberto@eecs.berkeley.edu
†Department of Electrical Engineering §Dipartimento di Ingegneria

and Computer Science dell’Informazione
University of California, Berkeley Università di Pisa, Italy

ABSTRACT
The use of Support Vector Machines (SVMs) to represent
the performance space of analog circuits is explored. In ab-
stract terms, an analog circuit maps a set of input design
parameters to a set of performance figures. This function
is usually evaluated through simulations and its range de-
fines the feasible performance space of the circuit. In this
paper, we directly model performance spaces as mathemati-
cal relations. We study approximation approaches based on
two-class and one-class SVMs, the latter providing a better
tradeoff between accuracy and complexity avoiding “curse
of dimensionality” issues with 2-class SVMs. We propose
two improvements of the basic one-class SVM performances:
conformal mapping and active learning. Finally we develop
an efficient algorithm to compute projections, so that top-
down methodologies can be easily supported.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids-Verification

General Terms
Algorithms

1. INTRODUCTION
Analog design has been traditionally a difficult discipline

of IC design. While in digital designs functionality depends
on discrete sequences of discrete (binary) signals, continu-
ous sequences (waveforms) of continuous values encode the
information we need to manipulate and use in the analog
case. For this reason, any second-order physical effect may
have a significant impact on function and performance of
an analog circuit. The effect of the choice of design param-
eters such as transistor size and layout on performance is
usually computed by simulation. Since simulations require
completely specified circuits to compute performances, the
complexity of setting up simulations for system level explo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

ration is daunting even if we do not consider its computa-
tional cost and the size of the search space. For this rea-
son, behavioral models are currently used at the first stages
of designs to partition heuristically system constraints on
individual blocks. However, this is carried out in a pure
functional way, without any notion of the underlying feasi-
ble performance space and tradeoffs. Building an approx-
imate representation of the performance space is of great
interest for providing behavioral models with architectural
constraints that can fully enable top-down design method-
ologies [1]. In the 70s and early 80s, a number of approaches
[2] have been proposed to approximate the relation between
circuit performance and parameters in explicit form. In par-
ticular, the design problem tackled was to identify the value
of the design parameters that would yield a point in the per-
formance space meeting a set of requirements expressed as
inequalities. Assuming that the region of points satisfying
the requirements is convex, the boundaries of the region were
approximated by a set of hyperplanes (simplicial approxima-
tion [3]) or by quadratic functions. If the exploration of the
feasible region was part of an optimization procedure, the
simplicial or quadratic approximation was refined locally to
obtain a smaller error and yield an optimization procedure
that would eventually converge to an optimal point.

In this paper, we take a slightly different view of the prob-
lem by directly modeling performances themselves in place
of parameter-performance relations. We improve upon the
existing techniques by exploiting recent results on learning
and approximation techniques. In particular, we want to
directly represent the feasibility of achieving particular per-
formances for a given topology of a circuit. This can be
viewed as the problem of estimating the support of a set,
and treated statistically as a quantile estimation problem.

2. BACKGROUND
System level analog design is a process largely dominated

by heuristics. Given a set of specifications/requirements
that describe the system to be realized, the selection of an
optimal implementation architecture comes mainly out of
experience. Usually, what is achieved is just a feasible point
at the system level, while optimality is sought locally at
the circuit level. The reason for this is the difficulty in the
analog world of knowing if something is realizable without
actually attempting to design the circuit. The number of ef-
fects to consider and their complex interrelations make this
problem approachable only through the experience coming
from past designs. System level optimization is extremely

964

55.2

hard because of the difficulties that hierchical designs face in
abstracting single block behaviors and establishing cost and
feasibility without further knowledge of the implementation
architecture and topology.

To cope with these problems, the Analog Platform con-
cept has been proposed in [4] extending the one developed
for the digital world. The term Analog Platform (AP) indi-
cates an architectural resource to map analog functionalities
during early system level exploration phases and constrain
exploration to the feasible space of the considered imple-
mentation (or set of implementations). Therefore, an AP
consists of a set of behavioral models and of matching perfor-
mance models. Behavioral models are parameterized mathe-
matical models of the analog functionality that introduce at
the functional level a number of non-idealities attributable
to the implementation and not intrinsic in the functionality
itself, such as distortion, bandwidth limitations, and noise.
Non-ideal effects, as well as the principal performance fig-
ures of the functionality (e.g. gain, power consumption and
area) are embedded in the behavioral models in the form of
parameters. Performance models constrain these parame-
ters to satisfy a mathematical relation so that only feasible
instances of the behavioral model (models with a complete
set of parameter values) can be selected with respect of the
considered architecture. In this paper we provide the details
of the performance representation mechanism presented in
[4], showing how they can be derived from sample data.

Other methods for building analog models from simula-
tion data are mostly based on regression mechanisms. A
given performance figure is fit on a set of regressors that are
function of physical parameters of the circuit. An interest-
ing model based on boosting methods has been recently pro-
posed [5]. However, regression approaches are not suited to
top-down methodologies where abstraction levels introduce
opaqueness in the system hierarchy that hides the imple-
mentation details needed for regression. Furthermore, each
performance figure is fitted independently from the others,
so that errors in capturing relations among different feasible
performances may cumulate. An approach to model the fea-
sible space has been proposed in [6]. In this paper we present
a novel approach to directly model performances that allows
capturing high dimensional performance spaces with effi-
cient representations and provides the necessary means to
support the multiple levels of abstraction required in top-
down flows. Furthermore, it does not require that designers
generate explicit models for their circuits, nor it asks them to
cast their problems into specific mathematical frameworks.

3. PROBLEM FORMULATION
Top-down flows incrementally process designs through a

sequence of abstraction levels until final implementation is
achieved. At each level of abstraction top-down methodolo-
gies only deal with parameters present at the current level
to transform a given set of requirements into next-level con-
straints. For example, if we are exploring the use of an
amplifier at a given point in a design, our main interest is
in selecting the optimal amplifier instance with respect to a
given set of performance figures, such as gain, power, noise,
etc. Looking at the next (more detailed) level of abstraction,
gain, power and noise can be placed in effect/cause relation
with a given amplifier topology, bias point and device siz-
ing, which should not be considered at the current level of
abstraction. This implies that classic regression schemes for

Ld

Ibias

LsLs

Lg Lg
M2M1

M3 M4

Vbias

Vout
Ld

Figure 1: Schematic of the LNA modeled in this paper.
Throughout the modeling process, the input impedance is
matched to 50Ω and the differential pair is assumed with 2%
maximum mismatch.

representing analog circuit performances are not the most
suitable means of performance representation in top-down
flows. Therefore, we propose modeling the performances
themselves as mathematical relations on performance fig-
ures (effects), discarding the information on the relative pa-
rameters (causes) as not pertinent at the current level of
abstraction. To approach the problem quantitatively, we
introduce the following definitions:

1. Input space I - Given a circuit C and m parameters
controlling its instances, IC ⊆ Rm is the set of m-tuples
(parameter values) over which we want to characterize
C.

2. Output space O - Given a circuit C and n performance
figures completely characterizing its behavioral model,
OC ⊆ Rn is the set of m-tuples (performance values)
that are achievable by C.

3. Evaluation function φ - Given a circuit C, IC and OC,
φC : I → O allows translating a parameter m-tuple
set into a performance n-tuple set.

4. Performance relation P - Given a circuit C, IC, OC
and φC, we define the performance relation of C given
IC and φC to be PC on Rn that hold only for points
o ∈ OC. With a little abuse in notation, we will denote
both the performance relation characteristic function
χP(x) : Rn → {0, 1} and the relation itself with PC(x).

Unfortunately, very little is known a priori about φC; cir-
cuits are nonlinear systems so complex that it is difficult to
derive any strong property concerning OC or PC. However,
it is usually the case that the control set IC of interest is a
region of Rm where φC can be assumed to be continuous. If
we also assume I to be a connected set (or a union of con-
nected sets), then O will be a (union of) connected set as
well, which is the only property we will exploit for building
the approximation of PC.

Even when the continuity assumption does not strictly
hold in I, the set of performances that we are interested
in modeling usually relates to circuits with well determined
operating characteristics (performance invariant µ(x) = 1).
For example, when we look at an oscillator we are not con-
cerned in modeling points where it does not oscillate and
that would introduce an abrupt discontinuity in its perfor-
mance figures. As long as the circuit remains in that op-
erating mode, we can assume its performance to vary with

965

continuity when we span I. Therefore, we are actually in-
terested in an effective I∗ = φ−1({x ∈ O s.t. µ(x) = 1}),
which makes the continuity assumption true.

In this paper we use the Low Noise Amplifier (LNA) for
wireless applications shown in Figure 1 as a case study. For
simplicity, ILNA has been taken as a hypercube in R7, and a
large number of simulations randomly spanning this hyper-
cube were run to collect data for the experiments. ILNA

includes the sizes of M1-M2 and M3-M4 (2% maximum
mismatch), the bias current, the output load and the cur-
rent mirror size. OLNA also lies in R7 and includes gain,
noise, power, second and third order harmonic distortion,
bandwidth and ripple in frequency response. Therefore,
φLNA : R7 → R7 and PLNA : R7 → {0, 1}.

4. SUPPORT VECTOR MACHINES
Support Vector Machines were first proposed in 1992 [7]

to solve machine learning problems. Machine learning con-
sists in classifying points in a large input space as satisfying
a potentially complex unknown relation given a set of ex-
periments that answer the question for a training set in the
input space. The training set populates the “performance”
function space with points that are either satisfying or not
the relation. The task is to approximate the performance
function based on the knowledge of the training set, so that
a point in the input space not part of the training set could be
correctly classified. A general principle to select an approx-
imant that is consistent with the training set and has good
properties in classifying inputs, is the so called Occam’s ra-
zor that can be used to set up an appropriate optimization
problem.

A most important characteristic of an approximation sche-
me is the choice of the basis functions, i.e., of those building
blocks that can be chosen to optimize the likelihood of being
correct on the inputs not in the training set. We propose
Support Vector Machines (SVMs) as a way of approximating
the performance relation P. These approximating functions
are of the form

f(x) = sign(
∑

i

αie
−γ|x−xi|2 − ρ) (1)

where xi are input samples, αis are weighting multipliers,
ρ is a constant, γ is a parameter controlling the fit of the
approximation and the sum is over a proper set of samples
(support vector set).

SVMs belong to the class of hyper-plane classifiers that
separate data points according to which side of a hyper-
plane they fall. Non-linear mappings ψ(·) of the input sam-
ples into a high dimensional feature space are exploited so to
increase data separability through hyperplanes. More specif-
ically, SVMs exploit mapping to Hilbert spaces through ker-
nel functions, so that a kernel k(x, ·) is associated at each
point x. In this paper, because of the weak properties that
we have on P, the Gaussian (Radial Basis Function - RBF)
kernel is chosen,

k(x, x′) = e−γ·‖x−x′‖2 (2)

where γ is a parameter of the kernel and controls the “width”
of the kernel function around x. In paragraph 5.3 we show a
method to modify the kernel function to improve the approx-
imation accuracy. The optimal hyperplane is represented
by a small fraction of the original training data and can be

Figure 2: Plots of HD3 vs HD2 used as a reference pattern
for the visual inspection for false positives. The projections have
been obtained from 4-dimensional SVMs trained using mixtures
of pcompl(·) and pWN (·) to generate −1 samples.

computed very efficiently through the following optimization
problem:

min
w,ξ,ρ,b

{1

2
‖w‖2 +

1

m

∑
i

ξi − νρ} (3)

s.t. yi(w · xi + b) ≥ ρ− ξi, ρ, ξi ≥ 0

where xi = ψ(xi) are the training samples, yi are the train-

ing labels, m is the number of samples, w =
∑nSV

i=1 yiαixi

defines the optimal hyperplane in terms of a linear combina-
tion of samples and nSV is the number of support vectors.
The parameter ν provides an intuitively appealing control on
some of properties of the SVM; most importantly ν provides
an upper bound on the fraction of false negatives (outliers).

In Section 5.1 we rely on a standard two-class SVM clas-
sifiers to build an approximation for P. A more direct ap-
proach, however, is to make use of the so-called “one-class
SVM” [8]. Since the characteristic functions of the perfor-
mance relations being considered are deterministic, the sup-
port regions show sharp boundaries. The SVM approach
also holds open the promise of obtaining representations of
the performance space at varying levels of abstraction, pro-
viding needed flexibility for the design process. In Section 6,
we investigate an approach for achieving such abstraction
that makes use of the computational properties of the SVM
approach.

5. SVM APPROXIMATIONS OF P
The accuracy of an approximation P̂ is ideally assessed

by two quantities: the rate of false negatives and the rate
of false positives. In our problem, false positives represent
a more serious problem than false negatives. In fact, top-
down methodologies rely on predicted performances being
achievable when partitioning constraints over all the blocks
in the system; therefore, a false positive would make the
resulting design not feasible. On the other hand, false nega-
tives may prevent us to achieve a better point but the design
would still be feasible. Although false positives are of great
interest, they are also problematic to measure—since we use
simulation to generate samples, there is no constructive way
of generating points in Rn \ O.

In the attempt of gaining some initial insight into the rate
of occurrence of false positives, we generated plots of some

966

Number of -1 #SV %Train %Test FP with 40k
random samples noise samples

20,000 2,164 98.76 93.55 748
30,000 2,626 97.08 92.07 522
40,000 3,056 93.70 90.11 335

Table 1: Performance of two-class (γ = 20, ν = 0.05, 5,000
+1 samples). Large negative sets decrease the number of false
positives, but for sets larger than 30,000 samples the false negative
rates become significantly worse.

characteristic 2-D and 3-D projections of PLNA(·). Examples
of such plots are reported in Figure 2, where we show the
projection on a plane representing second-order harmonic
distortion (HD2) and third-order (HD3) for four different
estimators to be described in the following section. Esti-
mators that place the estimated boundary around regions
that contain few data points are oversmoothed, and pro-
vide visual evidence of the need to choose smaller values of
regularization parameters.

We have also explored a more quantitative approach, ba-
sed on the following intuition. Since O generally lies in a
low-dimensional manifold in the ambient Euclidean space, if
data are sampled throughout Rn, the number of true posi-
tives (nTP) is expected to be small relative to the number of
false positives (nFP). Also, for reasonable values of the SVM
parameters (γ — controls the width of the kernel around the
ith support vector—, and ν — controls false positives), such
that the performance space is approximated as a connected
set, it is reasonable to expect that nTP should be nearly
independent of the SVM parameters. This suggests that we
may be able to partition the number of positives, nP (γ, ν),
from samples in Rn as follows:

nP (γ, ν) = nTP + nFP (γ, ν). (4)

Thus, based on the rate of variation of nP (γ, ν) with γ and ν,
we can obtain a more quantitative basis for setting optimal
values for γ and ν and thereby controlling the problematic
false positive rate.

5.1 Two-class SVM
One approach to finding an approximation of O is to at-

tempt to use the powerful tools of two-class SVMs to form
a discriminant boundary that separates O from its com-
plement. This requires generating artificial “negative-class”
data from the complement, and given that we are unable to
generate data from the complement set algorithmically (the
simulator only generates “positive-class” data), we must de-
velop heuristics for generating such data. We have stud-
ied three different heuristics for specifying suitable density
functions p(x), (x ∈ [−1, 1]7) that can be used to generate
“negative-class” data:

• pWN (x) = constant ;

• pdata(x) =
∏

i p̂i(xi), where p̂i(xi) is the empirical

marginal density function of points in O on the ith

dimension;

• pcompl(x) =
∏

i q̂i(xi), where q̂i(xi) = p̂max−p̂i(xi)
p̂max∆xi−1

,

∆xi = range of variable xi, is a complementary density
function of p̂i(xi) (in the sense that argmax{p̂i(xi)} ≡
argmin{q̂i(xi)}).

The first approach places negative points independently of
the actual Ô so that the number of points near the bound-

y = 0.0075x + 0.0278

y = 6.2076x-2.0934

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0 5 10 15 20 25 30 35 40 45 50

Random Positives Test Error

Figure 3: Test error rates (false negatives) and random positive
rates achieved by a one-class SVM trained with 5,000 samples and
ν = 0.05 as a function of γ. False negative rates are computed
presenting the SVM with 10,000 fresh samples, while random
positives with 80,000 random samples.

ary of P tends to be too small unless a very large number
of samples is used. The second approach approximates the
region where Ô is located to reduce the number of samples
needed but tends to blur the region. The third approach
places most points out of O, but tends to make the two
classes “too separable” and overestimates P. All the ap-
proaches have been experimentally evaluated and mixtures
have been considered as well. The color gradients in Fig-
ure 2 show the effects of different complement generation
heuristics on the projection accuracy. The color scale shows
that increasing the percentage of pdata(·) noise decreases the
effect of the positive pattern. Even though the region con-
tour seems acceptable, the margins of the prediction (color
shades in the picture) are not as sharp as in the case obtained
with pconst(·). Analogous plots obtained with pcompl(·) (not
included) show regions that are too smooth.

Unfortunately, there is an intrinsic problem with 2-class
SVM when applied to high dimensional problems related
to curse-of-dimensionality issues. Considering a reduced
O ∈ R4 for the LNA, a ratio of 5,000/30,000 positive-to-
negative points is needed to provide a reasonable tradeoff
between FP and FN rates (cf. Table 1). Given that O is a
manifold of low-dimension, we expect this imbalance to be
exponentially worse for higher dimensionality of O. More-
over, the imbalance in number of data skews the classifica-
tion boundary in ways that are difficult to predict. In gen-
eral, none of the heuristics for generating “negative-class”
data provide intuitive, effective general parameters for con-
trolling performance tradeoffs, and are subject to possibly
large, ill-defined biases.

5.2 One-class SVM
One-class SVMs were originally introduced as a means of

estimating quantiles of a probability density function [8].
One-class SVMs require samples from only one class of data
(positive class) (assuming negative class elsewhere) and com-
pute the optimal hyperplane maximizing the separation of
data from the origin. As a consequence, even if minimum
support estimation is attempted through the training pro-
cess, there is no explicit penalty in having a large support
regions in O. In fact, all the bounds available for one-class
SVM predictors concern the probability of false negatives,
i.e. that a sample drawn from p(x) might be misclassified
by the machine.

Training of one-class SVMs is achieved by solving a qua-
dratic optimization problem whose structure is analogous to

967

that of two-class SVMs:

min
w,ξ,ρ

{1

2
‖w‖2 +

1

νm

∑
i

ξi − ρ} (5)

s.t. w · xi ≥ ρ− ξi, ξi ≥ 0

As with two-class SVMs, there are efficient algorithms to
solve this quadratic programming problem that exploit struc-
tural properties of SVMs, e.g. [9] [10]. We based our imple-
mentation on libsvm [11], and we trained SVMs with up to
50,000 samples in very reasonable time (10’s of minutes).

Differently from the two class formulation (3), there is no
explicit penalties for false positives in (5) — all yis are +1.
As a consequence, larger values of γ in the RBF kernel are re-
quired to achieve tight approximations for the performance
region. In our case, for moderate values of γ (< 5 ≈ 8), the
number of positives (eqn. 4) represents a major problem, as
can be seen from Figure 3. Increasing γ reduces the number
of positives. However, the performance in terms of general-
ization becomes worse than in the two-class case, as reported
in Table 2 (false negatives are about 8% higher than com-
parable two-class SVMs). Finally, SVMs tend to degenerate
into Parzer window estimators as larger and larger values
for γ are used.

5.3 Improving accuracy
The accuracy of the estimator can be improved by en-

hancing the resolution in the support region boundaries.
Since the underlying problem is deterministic, the transition
across the boundary should be sharp. One way to achieve
improved resolution is via conformal transformation. This
approach was described in the context of the two-class SVM
by [12] and [13], but the basic idea is also applicable to
the one-class SVM. In particular, an initial estimate of the
boundary is provided by prior training of an SVM. Since sup-
port vectors are located on the boundary of the hyperplane
in feature space, they provide information about the region
that is to undergo expansion. This expansion is achieved via
a conformal transformation:

k̃(x, x′) = c(x) · k(x, x′) · c(x′). (6)

Possible conformal transformations include:

c1(x) =
∑

i

ᾱi · e−γ‖x−x̄i‖2 , c2(x) =
∑

i

e−ζi‖x−x̄i‖2 (7)

where ζi = 1
M

∑
j ‖x̄η|j − x̄j‖2, and where xη|j is the jth

nearest neighbor of x̄i. ᾱi and x̄i refer to an SVM previ-
ously trained on the same dataset. Our results with both
conformal transformations show significant performance im-
provements (see Table 2), with c1(x) performing slightly
better than c2(x). However, the results achievable with ac-
tive learning schemes (sec.5.4) and the complexity of pro-
jections over transformed kernels (sec.6) make their use less
attractive.

5.4 Active learning
Because one-class SVMs estimate the degree of novelty of

a given vector, it is possible to exploit misclassified samples
as seeds for further sample generation, thus forcing the sam-
pling scheme to place more points where fewer are present
[2]. Ideally, all the training samples should be correctly clas-
sified, but the need to regularize forces a fraction of the
training samples to be misclassified (controlled via the pa-
rameter ν). We can exploit such false negatives as follows.

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

5 10 15 20 25 30

5

10

15

20

25

30
Number of samples: 1224

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

5 10 15 20 25 30

5

10

15

20

25

30
Number of samples: 1704

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

5 10 15 20 25 30

5

10

15

20

25

30
Number of samples: 2322

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

5 10 15 20 25 30

5

10

15

20

25

30
Number of samples: 3065

Figure 4: Results achieved interleaving training with gen-
eration of new data samples. Starting from 1,000 points
randomly sampled, 4 iterations were completed with ν =
{0.1, 0.08, 0.06, 0.04} and γ = {10, 15, 20, 25}. The final SVM
emphasizes a complex pattern in the performance space that was
not present in SVMs obtained from a larger number of random
samples.

For each such false negative os, we can reinforce the informa-
tion content of the data point (i.e. its novelty) by generating
new samples {on}, in the neighborhood of os. One way to
achieve this is by applying small random perturbations to
the input vector is. Even if the simulation function φC is not
bijective, we can store the mapping {it} → {ot} to get is.
The set {in} is then simulated to generate a new sample O′.
A new SVM is then trained on O∪O′ and the process is iter-
ated. As a consequence, the accuracy of the approximation
P̂ of P is increased.

We tested the approach by running five simulation/train
iterations, starting from a data set consisting of 1,000 sam-
ples and selecting 5% more samples each time. We started
with relatively small values of γ and relatively large values
for ν because these combinations of parameters produce very
smooth support regions that allow to better isolate “novel”
points. In successive iterations, γ was increased while ν de-
creased using a sort of annealing schedule leading to the
final SVM reported in Figure 4. For each selected sample a
variable number of new simulation points was generated de-
pending on the value of the decision function (the more neg-

ative, the more simulations). The resulting P̂LNA,5 (trained
on 3,065 samples, Figure 4) yields excellent performance,
displaying features that were not present in SVMs trained
with uniformly sampled datasets containing 5,000 samples.

6. PROJECTIONS ONP
Given the nature of top-down flows, the same circuit may

be considered at different levels of abstraction in the design
process. As a consequence, given an analog circuit C and
its performance relation PC(x), x ∈ Rn, it is often the case
that at a high level of abstraction we are interested in a

lower-dimensional relation P ′C(x′) with x′ ∈ Rn′ , n′ < n.
x′ is a projection of x that refers to a more abstract view
of the circuit. For example, x = [gain, bandwidth, noise,
distortion], x′ = [gain, bandwidth]. The formal definition of
P ′(x′) is:

P ′(x′) =

{
1 if ∃x′′ s.t. P([x′x′′]) = 1
0 otherwise

968

Support Vector Machine %Train %Test O ν γ #SV
Two-Class pn(·) 97.08 92.07 R4 0.05 20 2,626
Two-Class 0.66 pn(·) 0.33 pc(·) 95.66 93.06 R4 0.05 20 2,346
Two-Class 0.66 pn(·) 0.33 pd(·) 71.12 60.58 R4 0.05 20 4,873
Two-Class 0.6 pn(·) 0.2 pd(·) 0.2 pc(·). 97.84 91.81 R4 0.05 20 2,859
One-Class 95.72 85.11 R4 0.05 20 764
One-Class 95.20 79.67 R7 0.04 20 929
One-Class prior c1(·) 96.15 84.57 R7 0.04 20 791
One-Class prior c2(·) 95.97 84.39 R7 0.04 20 819

Table 2: Summary of SVM performance. The false negative rate on the training set is very good due to the ν-SVM formulation used,
with the exception of the third row, which relies on pdata(·) to generate random samples (random samples blur the data pattern). All
two-class SVMs were trained with 30,000 random negative samples.

When working with SVMs, the problem becomes that of
finding x′′ that makes the decision function positive given
x′. An equivalent condition is that the maximum of f(x) =∑

Sup.V ec. αik(x, xi)− ρ is positive, which generates a non-
linear global optimization problem. However, the decision
function is a sum of Gaussian kernels that, in our case, have
large γ parameters. Therefore, each point where such a
Gaussian is centered (i.e., each support vector) provides a
small neighborhood of a possible local optimum. Exploring
these points running a simple steepest ascent method from
the support vectors, we can keep track of local optima and
find the global optimum more rapidly. We have implemented
this approach to compute projections. Some heuristics have
also been adopted to limit the number of support vectors to
be checked for optimality. If we rewrite the decision function
as:

f([x′x′′]) =
∑

i

αie
−γ‖x′−x′i‖2︸ ︷︷ ︸

α̃i

e−γ‖x′′−x′′i ‖2 , (8)

then if ‖x′−x′i‖ is “large” (x′ is fixed) α̃i will be very small
and so the support vector xi will not be a good candidate to
get to the maximum. Furthermore, if the SVM had a global
optimum in the neighbor of x′′i because of xi, then the SVM
would classify x based on a support vector whose compo-
nents x′i are “far” from x′. This would be an inconsistent
behavior for an SVM based on RBF modeling O = φ(I)
under the assumptions made in section 3. The condition
‖x′ − x′i‖∞ > 0.1 provides a good heuristic for discard-
ing support vectors. Given a candidate support vector xi

and the smoothness of the decision function, we found that
a simple steepest ascent local optimizer suffices for finding
the optimum in fewer than 15 iterations. The complexity of
the implemented algorithm is (n is the dimensionality of P
and l the number of support vectors) O(l2n) for the normal
case and O(l3n) for the conformal mapping case.

7. CONCLUSIONS
We presented a novel approach for modeling the perfor-

mance space of an analog circuit based on SVMs. The result-
ing model provides a clear separation of abstraction levels,
directly modeling performance relations in place of regres-
sions on implementation parameters. An efficient projec-
tion algorithm allows considering the same circuit at differ-
ent levels of abstraction using the same underlying model.
Therefore, the approach has preferred utilization in top-
down design flows and analog platforms. SVMs are trained
on simulation data, and false positives are controlled based
on a randomized testing procedure. By augmenting the ba-
sic one-class SVM to exploit conformal mappings and an

active learning methodology, we have obtained a satisfac-
tory solution both in terms of accuracy and of reduction of
number of simulations required to model the circuit. Overall
we feel that one-class SVMs are quite promising as an ap-
proach to finding representations of the performance space
and as a component in an IC design system where top-down
constraint mapping is molded with bottom-up circuit block
characterizations.

8. REFERENCES

[1] A. Sangiovanni-Vincentelli, “Defining platform-based de-
sign,” EE-Design, March 2002.

[2] R. Brayton and A. Hachtel, G.D.and Sangiovanni-
Vincentelli, “A survey of optimization techniques for
integrated-circuit design,” Proceedings of the IEEE, vol. 69,
pp. 1334–62, October 1981.

[3] S. Director, “The simplicial approximation approach to de-
sign centering,” IEEE Transactions on Circuits and Sys-
tems, vol. 24, pp. 363–72, July 1977.

[4] L. Carloni, F. De Bernardinis, A. Sangiovanni Vincentelli,
and M. Sgroi, “The art and science of integrated systems
design,” in to be presented at ESSCIRC’02, September 2002.

[5] H. Liu, A. Singhee, R. Rutenbar, and L. R. Carley, “Re-
membrance of circuits past: Macromodeling by data mining
in large analog design spaces,” in Proceedings of DAC, 2002.

[6] R. Harjani and T. Tibshirani, “Feasibility and performance
region modeling of analog and digital circuits,” in Analog
Integrated Circtuis and Signal Processing, Kluwer Academic
Publishers, 1996.

[7] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training al-
gorithm for optimal margin classifiers,” in 5th Annual ACM
Workshop on COLT (D. Haussler, ed.), (Pittsburgh, PA),
pp. 144–152, ACM Press, 1992.

[8] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-
dimensional distribution,” Tech. Rep. MSR-TR-99-87, Mi-
crosoft Research, 1999.

[9] J. Platt, “Sequential minimal optimization: A fast algorithm
for training support vector machines,” Tech. Rep. MSR-TR-
98-14, Microsoft Research, 1998.

[10] T. Joachims, “Making large-scale svm learning practical,”
in Advances in Kernel Methods - Support Vector Learning,
MIT Press, 1998.

[11] C. Chang and C. Lin, “Training ν-support vector classifiers:
Theory and algoritms,” Neural Computation, vol. 13, no. 9,
pp. 2119–2147, 2001.

[12] S. Amari and S. Wu, “Improving support vector machine
classifiers by modifying kernel functions,” Neural Networks,
no. 12, pp. 783–789, 1999.

[13] S. Amari and S. Wu, “Conformal transformation of kernel
functions: A data-dependent way to improve support vec-
tor machine classifiers,” Neural Processing Letters, no. 15,
pp. 59–67, 2002.

969

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

