

Interconnect and Noise Immunity Design
for the Pentium 4 Processor

Rajesh Kumar
Intel Corp, Hillsboro, Oregon, rajesh.kumar@intel.com

ABSTRACT
This paper describes the key challenges, design methods, CAD
and learnings in the area of interconnect and noise immunity
design for the Intel Pentium 4 processor.
This high frequency (currently at 3 Ghz with 6 Ghz execution
core) design required aggressive domino, pulsed and other novel
high speed circuit families that are very noise sensitive.
Controlling interconnect delay, capacitive and inductive coupling
is of paramount importance at such high frequencies and edge
rates, made more difficult by die cost pressures of a high volume
chip.
We first describe our wire/ repeater design methods and silicon
results. We then describe a proprietary noise simulator (NoisePad)
and our noise robust cell library, both of which were critical to
noise robustness. Finally,our test chip results and use of a
distributed power grid to manage inductance is described.

Categories & Subject Descriptors: B.7 Integrated
Circuits

General Terms: Design

INTERCONNECT DELAY AND
CROSSCAPACITANCE SCALING
With traditional process scaling, interconnect delays have not kept
pace with the speedup obtained in transistors. The problem has
become significant enough to require entire architectural pipe
stages in the Pentium 4 processor for interconnect
communication. At the circuit level, widespread use of repeaters
has become necessary.
Nowadays, bulk of the wire capacitance is to parallel neighboring
wires in the same layer which can get routed together for long
distances. This can either lead to max delay, coupling noise
functionality, or min delay problems, depending on the switching
direction of neighboring wires. As can be seen from Figure 1,
avoiding these delay and noise problems in a modern technology
would involve drastically increased wire spacing or extensive
shielding
Thus, there is a fundamental design tradeoff between a simple,
robust, wiring solution employing extensive spacing and shielding
vs. an aggressive solution employing short wiring with only
judicious shielding leading to high density. The latter requires
sophisticated CAD tools, has more risks, but ultimately is much
more optimal for a high-volume product. It was therefore the
choice for the Pentium 4 processor.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 1.2 1.4 1.6 1.8 2

0.5 um
0.25 um
0.18 um

spacing/ min spacing

Csame layer/ Ctotal

Figure 1: Coupling capacitance scaling with technology

Figure 2: Dedicated repeater banks in the Pentium 4

processor effectively form a virtual repeater grid

WIRE AND REPEATER DESIGN
METHODOLOGY FOR THE PENTIUM 4
PROCESSOR
Delay, noise, slope limits, and gate oxide wearout were all
considered when drafting the guidelines for the wire and repeater
methodology. Notable features were an increased emphasis on
noise robustness and “pushed process” considerations for delay
(repeater distance guidelines were made shorter than optimal for
delay with the existing process, in anticipation of end of life
process trending when transistors speed up a lot compared to
wires). Repeater sizing, rather than best delay optimization for
non-coupled wires, was picked to be optimal for noise rejection,
for equal rise and fall delays, and for better delay in the presence
of coupling. Stringent limitations were put on maximum sizing of
repeaters, especially in buses, to reduce power supply collapse
caused by a simultaneously switching bank of repeaters. The
methodology and tools allowed us to use both inverting and non-
inverting repeaters. Simple length-based design rules were
provided for repeaters, and further optimization was possible
through internally developed proprietary tools: NoisePad,
ROSES, and Visualizer (net routing and timing) analysis.

The extensive use of dedicated repeater blocks is evident in the
Pentium 4 processor floorplan (with repeater blocks
highlighted) shown in Figure 3. Our analysis shows that 90% of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

938

54.1

the M5 wire segments of the Pentium 4 processor are shorter than
2000 microns in 0.18 um process, while the same percentage of
Pentium III processor wires are 3500 microns long. This is
notable, given that the Pentium 4 processor has more than twice
as many full-chip nets as the Pentium III processor and has
architecturally much bigger blocks. These short wires are a key to
enabling high-frequency operation.

Crosscapacitance and Density Comparative
Results of the Pentium 4 Processor Interconnect
The Pentium 4 processor designers’ wiring philosophy was to
emphasize short, tight pitch wires. High crosscapacitance was
tolerated as the price that had to be paid for dense wiring.

Cumulative %Xcap for long wires

0

1000

2000

3000

4000

5000

6000

%Xcap or more

No
 o

f n
et

s

Pentium III
Pentium 4

Pentium III 2694 1474 819 122 15 0

Pentium 4 5261 4147 3222 2104 474 25

0.5 0.6 0.7 0.8 0.9 >0.9

Figure 3: Coupling comparison of Pentium 4

processor/Pentium III processor wires

Figure 3 clearly shows that the Pentium 4 processor has
significantly more wires with high crosscapacitance than does the
Pentium III processor. This aggressive wiring makes additional
accuracy in noise CAD tools (discussed later) even more
important.

NOISE CHALLENGES ON THE PENTIUM
4 PROCESSOR
The performance goals of the Intel Pentium 4 processor
compared to the Pentium III processor were ~2X higher
frequency on the normal (medium) part of the chip and ~4X the
frequency on the fast (rapid execution engine) part of the chip.
These targets require aggressive domino pipelines. In the rapid
execution engine, the pipeline is only eight stages deep with the
last stage usually feeding the first domino stage after considerable
routing. Traditional techniques such as not allowing routing into
domino receivers or buffering domino inputs would have added
an additional 10-20% latency to the pipe.
Accurate noise analysis using NoisePad and circuit styles such as
pseudo-CMOS logic shown in Figure 4 (which provide the logic
capability of domino logic and the noise robustness of CMOS)
were employed.
Pulsed clocking was used in the Pentium 4 processor for higher
speed, better time borrowing and lower clock power and load.
However, pulsing makes charge sharing protection of domino,
rather difficult. To reduce power and area, dynamic latches were
used extensively as mindelay blockers. These pulsed circuits have
no keepers; therefore, increased noise sensitivity and charge
leakage had to be verified by noise tools.

noisy signal A after
long route

local signal B local signal C

noisy signal A after
long route

local signal B local signal C

Pseudo CMOS
P device for noise reduction
Pseudo CMOS
P device for noise reduction

Figure 4: Pseudo CMOS circuit for input noise protection

A new form of latch called the set-dominant latch was used in the
Pentium 4 processor for speed optimization. This weakly held
circuit node could get routed into a domino receiver causing
increased noise sensitivity.

NOISE ANALYSIS ALGORITHMS
Some amount of noise is unavoidable in digital circuits. The
question is deciding when it causes functional failure.
Strongly held static nodes recover after a noise transient and
usually incur only a frequency slowdown. Dynamic latches and
domino nodes, however, show true functional failure. The node
goes to the wrong logic state and may not recover even after the
frequency has been slowed down. Latches and other circuits with
feedback show a similar failure mechanism.

Small Signal Unity Gain

F

In
a
po
(O
U
su
ha
W
kn

F
F
co
co
br
tr
ci
fa
an
no
el
ob
w

out d(Vout)/d(Vin)
Noise attenuation

939
V

igure 5: DC transfer function of an inverter illustrating small
signal unity gain

 the small signal unity gain approach illustrated in Figure 5, for
small change in input noise to a circuit biased at an operating
int, the resultant change in output noise is measured. If |d
utput)/ d (Input)| > 1 then the circuit is considered unstable.

nity gain is a good design metric but is neither necessary nor
fficient for noise immunity. Most aggressively designed paths
ve some noise-sensitive stages interspersed with quiet stages.
e need to allow some noise amplification in the sensitive stage
owing that the quiet stages will finally attenuate it.

ailure Criteria: Noise Propagation
ailure criteria based on unity gain tend to be extremely
nservative in most cases and are still not proven to be
nservative in all cases. Alternately, the entire circuit can be
oken into circuit stages, across which noise propagation can be
acked. To do this, we perform an AC circuit simulation of each
rcuit stage, with noise sources injected in worst-case temporal
shion, combined with noise propagated from previous stages,
d measure if any circuit stage failed as a result. In this case,
ise can be made to propagate across any number of stages,

iminating the need for any unity gain budgeting. Failure is
served at weakly held nodes such as domino nodes and latches,

here the node does not recover after sufficient time. This is very

Vin Vin

1
Noise Amplification

similar to path-based static timing analysis, which allows time
borrowing. The computational complexity and memory cost of
this approach is the main issue. We made significant CAD
innovations to reduce the computational complexity of this
approach and implemented this for the Pentium 4 processor in the
form of a new noise simulator called NoisePad.

Combination of Noise Sources
Traditionally, different noise sources such as charge sharing,
coupling, etc., used to be characterized separately, and individual
maximum budgets were allocated for each source. This is rather
conservative. A wide D2 domino NOR node, for example, is very
sensitive to coupling at its inputs but has no charge sharing. The
desirable solution is to simulate all noise sources together with no
accounting for individual budgets. The simplest way to achieve
this is linear superposition.. The biggest nonlinear effect is the
finite threshold of transistors. For example, a combination of
ground bounce and coupling at the input of a transistor leads to a
much larger transistor current than does an addition of currents
resulting from separate ground bounce and coupling. Another
nonlinearity is transistor resistance as a function of drain-source
voltage. For example, the peak noise in the event of two
simultaneous couplers on a line is larger than the sum of these two
events, because the couplee driver resistance increases with an
increase in noise magnitude. A third nonlinearity is caused by
voltage-dependent parasitics, for example, when combining
charge sharing with coupling effects.

Domino StageDomino StageDomino StageCMOS driverCMOS driver

power supply
noise
power supply
noise

crosscapacitancecrosscapacitancecrosscapacitancecrosscapacitance

charge sharingcharge sharingcharge sharing

subthreshold leakagesubthreshold leakage

propagated noise

Figure 6: List of combined noise sources analyzed

Simultaneous Noise on Multiple Inputs
For multifanin circuits we have to consider not only different
noise phenomena, but also their simultaneous occurrence on
different parallel inputs. Traditionally, the injection of the same
noise on all parallel paths was the worst-case scenario. There are
several important cases such as register file arrays where this
pessimism can be the deciding factor in the feasibility of the
circuit. For example, in a multi-ported register file with a
segmented bitline, maximum coupling cannot simultaneously
occur on multiple word lines on the same port. Some background
noise such as power supply noise may still be present on the other
inputs.

DC vs. AC Noise Analysis
Some components of noise such as charge leakage and the low
frequency components of power supply noise have time constants
much larger than those of most digital circuits. Effectively, these
can be treated as DC waveforms. DC analysis and library
characterization are relatively straightforward. Further, it is easy
to combine noise sources; e.g., two couplers or coupling with
charge sharing, with a DC approach as no computationally costly
temporal shifting is required. However, noise sources such as
interconnect coupling, charge sharing, etc., have pulsewidths of
the same order as those required to charge or discharge most

circuits. In this case, approximation of the true waveform with its
peak amplitude DC produces gross conservatism. Digital circuits
work as “low pass filters” for noise due to their finite transistor
resistances and load capacitances. In many matched high-speed
circuits, this approximation can lead to a 2X difference in
tolerable noise levels. In spite of the severe computational
overhead, AC waveform analysis is necessary for the
design/verification of sensitive high-speed circuits.

NOISE ROBUST CELL LIBRARY DESIGN
Traditionally, chips have been designed with fixed cell sizes. The
ability to drive different loads has been achieved by providing a
finite number of different sizes and in some cases of different P/N
skew. For the Pentium 4 processor, we found that additional
performance, and area and power optimization, were possible by
having a stretchable cell library that didn’t have the constraints of
fixed cell sizes. Noise robustness was an important consideration
for sequential and domino cells. A key innovation for noise
robustness was the use of stretchable keepers for domino nodes
and sequentials. Traditionally, when assembling domino libraries,
keepers were designed to keep additional delay within tolerable
limits. For the Pentium 4 processor, instead of the size of keepers
being hard-coded, each cell had symbolic constraints describing
its leakage and noise metric (no. of pull downs, stacking, etc.),
along with its delay metric. The default keeper tried to maximize
noise immunity while keeping tolerable delay. As an example,
wide fanin domino NORs were provided with significantly larger
keepers. Similarly, stacked configurations had larger keepers.
However, a designer using NoisePad, optimizing for the actual
instance-based noise and speed requirements, could easily adjust
this keeper strength. This did not involve creating a new custom
cell and was widely used for noise suppression.
Each cell could be tuned for its noise environment (as needed)
and did not have to follow conservative rules. The symbolic
constraints also made the task of process conversion trivial instead
of significant since the entire library did not have to be redesigned
when leakage changed from a 0.18 to a 0.13 um process.
Another key decision made regarding the cell library was
forecasting the optimum leakage of future processes. We
predicted that leakage would get much higher for optimized 0.18
and 0.13 um technologies and therefore designed the library to
combat this increase. Specifically, for the design of wide domino
nodes and array and register file structures, we went with
segmented bit-line architecture and disallowed circuits with large
numbers of parallel pull downs (except PLA waivers). This design
rule allowed us to tolerate significantly higher leakage in the
process, which is necessary for transistor performance.

Noise CAD Tool Requirements for the Pentium
4 Processor
In the Pentium 4 processor, we treat transistor leakage as DC
noise. Interconnect coupling, charge sharing, and noise
propagation need to be handled with AC waveform analysis. All
noise sources are simulated together without linear superposition.
The analysis does not assume maximum budgets on individual
noise sources. Regarding simultaneous noise on multiple inputs,
by default the same noise is applied to all parallel paths. This can
be overridden for speed or area critical paths; in which case,
transient noise is analyzed on specified paths with background
power supply noise on other paths.
The Pentium 4 processor is primarily custom designed with a
library of parameterized/stretchable cells. In past methodologies,
custom design resulted in a large overhead for noise analysis

940

because of required characterization. In the Pentium 4
methodology, all cells are treated as custom cells with “on the fly”
analysis. This requires no library pre-characterization and thus
places no extra overhead on custom design.

NOISEPAD: NOISE CAD TOOLS AND
METHODOLOGY
Using the technique of noise propagation, any path can be broken
into small circuit stages, which can be analyzed sequentially.
Technically, we could perform this analysis with industry-
standard SPICE-type simulators. Unfortunately, the throughput
available in the Pentium 4 processor design timeframe was not
acceptable for either interactive design or batch mode verification.
A new transistor-level simulator was developed that allowed a
throughput that was orders of magnitude higher than the
traditional SPICE approach. The key innovations were symbolic
circuit simulation and simplified noise analysis of distributed
interconnect.

Symbolic Circuit Template Simulation
To achieve high throughput, the noise simulator reduces/matches
circuits to a list of predefined parameterized circuit templates. The
differential equations governing these circuit templates have been
solved symbolically in a piecewise linear manner and don’t need
to be solved at runtime. The simulation consists of evaluating
these piecewise linear analytical solutions at succeeding time
points. Device nonlinearities and voltage-dependent parasitics are
dealt with because the model is “piecewise linear” and not just
linear. Circuit relaxation is used for DC bias point calculations to
handle the DC noise sources. Templates exist for drivers and
receivers of CMOS, domino, pass gate, and novel logic types.

In
ad
in
as
th
go
a

T
F
th
th
ke
m
tr
cu
ar
op
no

region. With these simplifications, very computationally
inexpensive transistor I-V models were developed and
implemented with a precharacterized transistor table look-up
model. We used a non-uniform grid to optimize for noise sensitive
regions of operation; for example, we used much finer gridding in
the subthreshold/weak inversion region.

Distributed Interconnect Noise Analysis
The computational complexity of noise analysis is often
dominated by the coupling analysis of the distributed
interconnect. In the past, interconnect coupling has been dealt
with, in a lumped fashion, by putting all coupling capacitance at
the end of a line. This produces significant conservatism. Further,
for interconnect with side branches, there are no straightforward
solutions.
For handling complex interconnect networks, especially from post
layout, Asymptotic Waveform Evaluation (AWE) analysis using
iRICE has been integrated into our noise simulator.

Elmore Noise Model
To drastically increase the throughput of distributed interconnect
noise analysis, a new analytical closed form approximation was
been developed for multiple aggressor coupling on a distributed
network.

Domino receiver circuitDomino receiver circuit Domino receiver templateDomino receiver template
Figure 7: Circuit template idea for a domino receiver

 Figure 7, a piecewise linear waveform of input noise voltage
ded to the power supply noise creates a piecewise linear current
 the receiver. This current is added to other current sources such
 charge leakage, charge sharing, and current injected through
e gate/drain miller capacitance. The differential equation
verning this circuit has a closed form solution, which is known

priori.

ransistor Models
or noise analysis, simple transistor models are often adequate. In
is context, some transistors are normally “on”, in which case
ey try to keep a node in its correct logic state, e.g., a domino
eper. These are characterized by a large |VGS| and small |VDS|,
eaning they operate in the linear region. Normally “off”
ansistors are ones that try to upset the logic state of a node by
rrent conduction. For small or reasonable values of noise, these
e characterized by large |VDS| and small |VGS|, meaning they
erate in the saturation region. Depending on the gate input
ise, these can either be in the subthreshold or strong inversion

We
del
ana
oth
In
swi
wor
No
exp

FU
The
ver
is d
reco
gate
a n
dom
dep

charge sharing

charge leakage

keeper

charge sharingcharge sharingcharge sharing

charge leakagecharge leakagecharge leakage

keeper
R(keeper)

Iinput +
Imiller +
Ichargesharing +
Ichargeleakage

Cload +
Cmiller

R(keeper)

Iinput +
Imiller +
Ichargesharing +
Ichargeleakage

Cload +
Cmiller

941
Figure 8: Elmore approximation for noise analysis

 call this the “Elmore model” due to the analogy with Elmore
ay used in timing analysis. The idea here is to make the
lysis much simpler by reducing the network moments or, in
er words, finding the dominant time constant of the network.
Figure 8, ctotj is the sum of the total switching and non
tching capacitance on the jthnode. All couplers are aligned for
st-case temporal shifts, and they finish switching at time t = 0.

isePad analysis switches between this simple model and more
ensive AWE models, based on heuristics.

LL-CHIP WIRE NOISE VERIFICATION
 key idea behind the Pentium 4 processor full-chip noise

ification is “strobed signaling”. A non-restoring node for noise
efined as a node, which if falsely tripped due to noise, will not
ver with the passage of time (e.g., domino node or off pass
 latch). A signal is called “strobed,” if its logic cone leading to

on-restoring noise node is controlled with a clock (e.g., D1k
ino). In this case, the effect of noise on this node may be

endent on clock frequency.

eval clk

A as a result of coupling

eval node

High Frequency

eval node

eval clk

A as a result of coupling

low frequencyA

eval clk

eval node
C

A, B, C are from same phase.

B

Figure 9: Impact of frequency on noise failure

As shown with the D1-k example in Figure 9, at a lower
frequency, the noise will settle down before the signal is sampled
and as such will not fail at the lower frequency. In most cases, the
timing of aggressors switching for noise is earlier than predicted
by max delay timing analysis due to a reduced Miller Coupling
Factor (MCF) in the noise case. Further, the worst noise case is
usually on fast silicon at high voltage (good for speed). As such,
in most cases, we can ignore the cases leading to a slight
frequency slowdown in our analysis. The tricky situations are
those that lead to excessive frequency slowdown or even worse,
frequency shmoo holes. Before spending valuable CAD tool
resources on these non-trivial cases, we needed to convince
ourselves that the common benign case is indeed the dominant
one and therefore the one on which to base our full-chip wiring
methodology.
Most full-chip signals are busses (~59,000 out of 72,000 nets),
and less than 10% of full-chip signals are “sensitive” (feeding
domino receivers or direct pass gate, etc.). Most busses have
similar timing among different bits, which should ease the
frequency slowdown and shmoo problem. Figure 10 shows the
significant effect of this analysis. Most of the effect of this
filtering was due to the “required filtering” that characterized
frequency slowdown, and very little was due to “valid filtering,”
which looks for aggressors not switching together.

TBPU results of filtering

0

200

400

600

800

1000

1200

%Xcap

No
 o

f s
ig

na
ls

pre filter
post filter

pre filter 2 246 100 669 443 552 650 880 596 6

post filter 843 1077 785 740 273 170 102 114 38 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 >0.9

Figure 10: Impact of frequency independent timing filtering

Frequency Independent Filtering
To solve the rare cases of real noise problems on a strobed signal,
we decided to classify noise issues as follows: 1) functional
failure at all frequencies; 2) slight slowdown; 3) large slowdown;
4) frequency shmoo hole at a lower frequency as shown in Figure
11; 5) mindelay switching induced noise failure; and 6) excessive
coupling causing gate oxide wearout. Issue number 6 was
achieved simply through a VCC/2 coupling noise clamp, which
was used as a warning. For the rest, we had to implement timing
filtering, which understood changing timing relations at different

frequencies. Timing filtering was first implemented in an Intel
chip for the Pentium Pro processor as the tool Crosswind [4],
and it introduced the concept of valid and required time window
filtering; valid window noise ‘profiling’ or juxtaposition of
aggressor noise over the clock period; and rudimentary modeling
of drive ratios with fixed thresholds for noise sensitization. Later
implementations developed for the Pentium II and Pentium III
processors improved on several aspects of driver and interconnect
modeling.

Figure 11: Frequency shmoo hole

The novel features of timing filtering for the Pentium 4 processor
include three modes of frequency analysis (low frequency for
burn-in analysis, high frequency for at-frequency noise and delay
tests, and all-frequency sweep for noise effects); timing skew
between victim and aggressors; required-time filtering with victim
recovery; and an interactive graphical waveform interface for
timing filter debug.
The design of the Pentium 4 processor brought new challenges to
timing filtering because of the complexity of its clocking system.
In earlier clocking styles, an excessive slowdown or shmoo hole
was usually caused by a very late signal coupling into a signal
with early-required time or by the interaction between signals
from opposite phases. In the Pentium 4 processor, however, the
design incorporates several clocks that are multiples of each other:
signals are F(ast), M(edium), and S(low) clocked signals. Not
only do signals occur in different phases, but also with different
periods. In addition, these differently clocked signals interact as
they are not a priori restricted to different regions of the chip.
Thus, mid-frequency shmoo holes are much more probable in
such a design.
The new approach handles a clocking system with an arbitrary
number of phases and an arbitrary number of synchronous clock
frequencies by using a Multi-Frequency Algorithm.
At very low frequencies, signals activated by different phases are
widely separated in time, so much so that they do not interact.
This represents the low end of all frequencies to be considered,
while the target operating frequency represents the high end.
Sweeping frequencies at a small enough increment to catch
waveform overlaps is prohibitive due to the complexity of the
internal scan. We, therefore, needed a more adaptive algorithm.
Here is the entire algorithm with an all-frequency sweep as its
outer loop:
For each victim net:
1. Collect aggressor set for a given victim and skew timings

appropriately.

fast

medium ph2

medium ph1

slow ph1

1500 Mhz medium frequency

fast

medium ph2

medium ph1

slow ph1

1200 Mhz medium frequency

signals do not intersect at spec operating frequency

signals intersect at a slightly lower frequency

942

2. Map clock edge references onto phases of an appropriate
clocking system. For example, a set of aggressors with M and
F rising edge references requires a two-phase system.

3. Perform a noise sweep, computing aggressor interaction sets
and generating timing “filter table.”

4. Compute the next highest frequency of interaction among
signals.

5. Return to step 2 until there is no more interaction among
signals.

a
b

d
e

c

List of possible switching
sets at this frequency

abcde
11100
01010
00101

Figure 12: Illustrating logical switching set groups

The most difficult part of the algorithm is to compute the
frequencies of interaction, as illustrated in Figure 12. Given that
an O(N log N) scan is in the internal loop, the algorithm cannot
afford to sweep with a very fine grain to catch all interactions.
The key to computing the next frequency of interaction is to
comprehend the relative velocity of timing edge references as one
slows the primary clock. By carefully searching the edges most
close to one another and keeping track of their relative velocities,
this algorithm can be made reasonably efficient. One difficulty is
handling edges that refer to a previous clock phase that are
actually moving backward with respect to other timing edges as
frequency is increased. To handle this and other difficulties, we
developed a general approach to handling both the modular nature
of signal timings and measuring the frequency at which they may
intersect, based on the concept of relative edge velocity.

MUTUAL INDUCTANCE METHODOLOGY
At low frequencies, flip-chip C4 packaging provides a very low
resistance current return path. For high-speed transients, the large
inductance of the package return causes significant return current
to flow through the on-die power grid, as shown in Figure 13. For
simultaneous switching of wide busses, the impedances in the
signal and current return path can be of comparable magnitude
leading to large inductive noise.

Figure 13: Signal inductance problem with flip-chip packaging

A test chip was fabricated with test structures to measure mutual
inductance noise on wide busses. In this chip, signal busses of
varying width could be made to switch in any combination, with
several combinations of return scenarios, one of which is shown
in Figure 14. We were also able to measure simultaneous
capacitive and inductive noise, which helped us develop empirical

design rules. To keep the area impact small while reducing
inductance, a scheme of distributed power supply was chosen for
the Pentium 4 processor, where for top-level metals (M6 and
M5), a power signal was routed after every 5 signal wires, thus
providing a nearby current return and reducing the loop area for
inductance. Towards tapeout, a tool for crude inductance
estimation was written. This looked for any sensitive circuits (e.g.,
domino) routed for appreciable distance in the neighborhood and
parallel to long, wide busses. By taking the width of the bus,
distance from the bus, and length of overlap, an inductance noise
metric was used to flag any possible problems. This check was not
restricted to wires routed in the same metal layer.

S
W
la
m
fr
ha
in
di
m
to

A
W
fo
fo
w
ch
ri

R
1.

2.

3.

4.

5.

c4
bump

on die
power
grid

on die
power
grid

signal lines

C4 package Power Plane

high inductance
loop due
to large separation.

high inductance
loop due
to large separation.

skin depthskin depth

current
return
current
return

current

100u
Diagram not
to scale

60u

943
Figure 14: Silicon measurements showing inductive noise

UMMARY
ith the Pentium 4 example, in our experience, an architecturally
rge chip need not lead to longer physical wires if careful
ethodology and repeater design are used, thus enabling higher
equency. Aggressive, high speed circuit styles and dense wiring
ve been enabled by innovations in noise CAD tools. The
ductance problem, although significant, can be managed by a
stributed power grid and design rules. Circuit styles and a
ethodology that are robust for transistor leakage have allowed us
 push the process for speed.

CKNOWLEDGMENTS
e acknowledge all present and past members of our noise group
r the all-nighters and Brad Hoyt for discussions. Paul Madland
r guidance and for having a feel for where the silicon problems

far aggressors

near aggressors

victim
ould really be and our management for sticking with our full-
ip wire/noise direction, even though at the time, it looked quite

sky.

EFERENCES
 Rajesh Kumar, Eitan Zahavi, Desmond Kirkpatrick, “Accurate design
and analysis of Noise Immunity for high-performance circuit design”
Design and Test Technology Conference (DTTC) 1997. Intel internal
document.
 K.L. Shepard et.al. “Harmony: static noise analysis of deep submicron
digital integrated circuits” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on , Volume: 18 Issue: 8 ,
Aug 1999

 Eitan Zahavi, Rajesh Kumar et. al., “Novel Methodology and Tools for
Noise Immunity Design and Verification,” DTTC 1998. Intel internal
document.
 Madhu Swarna et. al., “Integrated timing and noise characterization of
sequentials for accuracy and increased design space,” DTTC 2000. Intel
internal document.
 Conley, Kirkpatrick et. al., DTTC 1995. Intel internal document.

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

