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ABSTRACT 
This paper describes the key challenges, design methods, CAD 
and learnings in the area of interconnect and noise immunity 
design for the Intel Pentium  4 processor.  
This high frequency (currently at 3 Ghz with 6 Ghz execution 
core) design required aggressive domino, pulsed and other novel 
high speed circuit families that are very noise sensitive. 
Controlling interconnect delay, capacitive and inductive coupling 
is of paramount importance at such high frequencies and edge 
rates, made more difficult by die cost pressures of a high volume 
chip. 
We first describe our wire/ repeater design methods and silicon 
results. We then describe a proprietary noise simulator (NoisePad) 
and our noise robust cell library, both of which were critical to 
noise robustness. Finally,our test chip results and use of a 
distributed power grid to manage inductance is described.  

Categories & Subject Descriptors: B.7 Integrated 
Circuits 

General Terms: Design 

INTERCONNECT DELAY AND 
CROSSCAPACITANCE SCALING 
With traditional process scaling, interconnect delays have not kept 
pace with the speedup obtained in transistors. The problem has 
become significant enough to require entire architectural pipe 
stages in the Pentium  4 processor for interconnect 
communication. At the circuit level, widespread use of repeaters 
has become necessary.  
Nowadays, bulk of the wire capacitance is to parallel neighboring 
wires in the same layer which can get routed together for long 
distances. This can either lead to max delay, coupling noise 
functionality, or min delay problems, depending on the switching 
direction of neighboring wires. As can be seen from Figure 1, 
avoiding these delay and noise problems in a modern technology 
would involve drastically increased wire spacing or extensive 
shielding  
Thus, there is a fundamental design tradeoff between a simple, 
robust, wiring solution employing extensive spacing and shielding 
vs. an aggressive solution employing short wiring with only 
judicious shielding leading to high density. The latter requires 
sophisticated CAD tools, has more risks, but ultimately is much 
more optimal for a high-volume product. It was therefore the 
choice for the Pentium 4 processor. 
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Figure 1: Coupling capacitance scaling with technology 

 
Figure 2: Dedicated repeater banks in the Pentium  4 

processor effectively form a virtual repeater grid 

WIRE AND REPEATER DESIGN 
METHODOLOGY FOR THE PENTIUM  4 
PROCESSOR 
Delay, noise, slope limits, and gate oxide wearout were all 
considered when drafting the guidelines for the wire and repeater 
methodology. Notable features were an increased emphasis on 
noise robustness and “pushed process” considerations for delay 
(repeater distance guidelines were made shorter than optimal for 
delay with the existing process, in anticipation of end of life 
process trending when transistors speed up a lot compared to 
wires). Repeater sizing, rather than best delay optimization for 
non-coupled wires, was picked to be optimal for noise rejection, 
for equal rise and fall delays, and for better delay in the presence 
of coupling. Stringent limitations were put on maximum sizing of 
repeaters, especially in buses, to reduce power supply collapse 
caused by a simultaneously switching bank of repeaters. The 
methodology and tools allowed us to use both inverting and non-
inverting repeaters. Simple length-based design rules were 
provided for repeaters, and further optimization was possible 
through internally developed proprietary tools: NoisePad, 
ROSES, and Visualizer (net routing and timing) analysis. 

The extensive use of dedicated repeater blocks is evident in the 
Pentium  4 processor floorplan (with repeater blocks 
highlighted) shown in Figure 3. Our analysis shows that 90% of 
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the M5 wire segments of the Pentium 4 processor are shorter than 
2000 microns in 0.18 um process, while the same percentage of 
Pentium III processor wires are 3500 microns long. This is 
notable, given that the Pentium 4 processor has more than twice 
as many full-chip nets as the Pentium III processor and has 
architecturally much bigger blocks. These short wires are a key to 
enabling high-frequency operation. 

Crosscapacitance and Density Comparative 
Results of the Pentium 4 Processor Interconnect 
The Pentium 4 processor designers’ wiring philosophy was to 
emphasize short, tight pitch wires. High crosscapacitance was 
tolerated as the price that had to be paid for dense wiring.  

Cumulative %Xcap for long wires 
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Figure 3: Coupling comparison of Pentium  4 

processor/Pentium  III processor wires 

Figure 3 clearly shows that the Pentium 4 processor has 
significantly more wires with high crosscapacitance than does the 
Pentium III processor. This aggressive wiring makes additional 
accuracy in noise CAD tools (discussed later) even more 
important. 

NOISE CHALLENGES ON THE PENTIUM 
4 PROCESSOR  
The performance goals of the Intel  Pentium 4 processor 
compared to the Pentium  III processor were ~2X higher 
frequency on the normal (medium) part of the chip and ~4X the 
frequency on the fast (rapid execution engine) part of the chip. 
These targets require aggressive domino pipelines. In the rapid 
execution engine, the pipeline is only eight stages deep with the 
last stage usually feeding the first domino stage after considerable 
routing. Traditional techniques such as not allowing routing into 
domino receivers or buffering domino inputs would have added 
an additional 10-20% latency to the pipe.  
Accurate noise analysis using NoisePad and circuit styles such as 
pseudo-CMOS logic shown in Figure 4 (which provide the logic 
capability of domino logic and the noise robustness of CMOS) 
were employed.  
Pulsed clocking was used in the Pentium 4 processor for higher 
speed, better time borrowing and lower clock power and load. 
However, pulsing makes charge sharing protection of domino, 
rather difficult. To reduce power and area, dynamic latches were 
used extensively as mindelay blockers. These pulsed circuits have 
no keepers; therefore, increased noise sensitivity and charge 
leakage had to be verified by noise tools. 
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Figure 4: Pseudo CMOS circuit for input noise protection 

A new form of latch called the set-dominant latch was used in the 
Pentium 4 processor for speed optimization. This weakly held 
circuit node could get routed into a domino receiver causing 
increased noise sensitivity. 

NOISE ANALYSIS ALGORITHMS 
Some amount of noise is unavoidable in digital circuits. The 
question is deciding when it causes functional failure. 
Strongly held static nodes recover after a noise transient and 
usually incur only a frequency slowdown. Dynamic latches and 
domino nodes, however, show true functional failure. The node 
goes to the wrong logic state and may not recover even after the 
frequency has been slowed down. Latches and other circuits with 
feedback show a similar failure mechanism.  
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igure 5: DC transfer function of an inverter illustrating small 
signal unity gain 

 the small signal unity gain approach illustrated in Figure 5, for 
small change in input noise to a circuit biased at an operating 
int, the resultant change in output noise is measured. If |d 
utput)/ d (Input)| > 1 then the circuit is considered unstable. 

nity gain is a good design metric but is neither necessary nor 
fficient for noise immunity. Most aggressively designed paths 
ve some noise-sensitive stages interspersed with quiet stages. 
e need to allow some noise amplification in the sensitive stage 
owing that the quiet stages will finally attenuate it. 

ailure Criteria: Noise Propagation 
ailure criteria based on unity gain tend to be extremely 
nservative in most cases and are still not proven to be 
nservative in all cases. Alternately, the entire circuit can be 
oken into circuit stages, across which noise propagation can be 
acked. To do this, we perform an AC circuit simulation of each 
rcuit stage, with noise sources injected in worst-case temporal 
shion, combined with noise propagated from previous stages, 
d measure if any circuit stage failed as a result. In this case, 
ise can be made to propagate across any number of stages, 

iminating the need for any unity gain budgeting. Failure is 
served at weakly held nodes such as domino nodes and latches, 

here the node does not recover after sufficient time. This is very 
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similar to path-based static timing analysis, which allows time 
borrowing. The computational complexity and memory cost of 
this approach is the main issue. We made significant CAD 
innovations to reduce the computational complexity of this 
approach and implemented this for the Pentium 4 processor in the 
form of a new noise simulator called NoisePad.  

Combination of Noise Sources  
Traditionally, different noise sources such as charge sharing, 
coupling, etc., used to be characterized separately, and individual 
maximum budgets were allocated for each source. This is rather 
conservative. A wide D2 domino NOR node, for example, is very 
sensitive to coupling at its inputs but has no charge sharing. The 
desirable solution is to simulate all noise sources together with no 
accounting for individual budgets. The simplest way to achieve 
this is linear superposition.. The biggest nonlinear effect is the 
finite threshold of transistors. For example, a combination of 
ground bounce and coupling at the input of a transistor leads to a 
much larger transistor current than does an addition of currents 
resulting from separate ground bounce and coupling. Another 
nonlinearity is transistor resistance as a function of drain-source 
voltage. For example, the peak noise in the event of two 
simultaneous couplers on a line is larger than the sum of these two 
events, because the couplee driver resistance increases with an 
increase in noise magnitude. A third nonlinearity is caused by 
voltage-dependent parasitics, for example, when combining 
charge sharing with coupling effects.  

Domino StageDomino StageDomino StageCMOS driverCMOS driver

power supply
noise
power supply
noise

crosscapacitancecrosscapacitancecrosscapacitancecrosscapacitance

charge sharingcharge sharingcharge sharing

subthreshold leakagesubthreshold leakage

propagated noise

 
Figure 6: List of combined noise sources analyzed  

Simultaneous Noise on Multiple Inputs 
For multifanin circuits we have to consider not only different 
noise phenomena, but also their simultaneous occurrence on 
different parallel inputs. Traditionally, the injection of the same 
noise on all parallel paths was the worst-case scenario. There are 
several important cases such as register file arrays where this 
pessimism can be the deciding factor in the feasibility of the 
circuit. For example, in a multi-ported register file with a 
segmented bitline, maximum coupling cannot simultaneously 
occur on multiple word lines on the same port. Some background 
noise such as power supply noise may still be present on the other 
inputs.   

DC vs. AC Noise Analysis  
Some components of noise such as charge leakage and the low 
frequency components of power supply noise have time constants 
much larger than those of most digital circuits. Effectively, these 
can be treated as DC waveforms. DC analysis and library 
characterization are relatively straightforward. Further, it is easy 
to combine noise sources; e.g., two couplers or coupling with 
charge sharing, with a DC approach as no computationally costly 
temporal shifting is required. However, noise sources such as 
interconnect coupling, charge sharing, etc., have pulsewidths of 
the same order as those required to charge or discharge most 

circuits. In this case, approximation of the true waveform with its 
peak amplitude DC produces gross conservatism. Digital circuits 
work as “low pass filters” for noise due to their finite transistor 
resistances and load capacitances. In many matched high-speed 
circuits, this approximation can lead to a 2X difference in 
tolerable noise levels. In spite of the severe computational 
overhead, AC waveform analysis is necessary for the 
design/verification of sensitive high-speed circuits.  

NOISE ROBUST CELL LIBRARY DESIGN  
Traditionally, chips have been designed with fixed cell sizes. The 
ability to drive different loads has been achieved by providing a 
finite number of different sizes and in some cases of different P/N 
skew. For the Pentium 4 processor, we found that additional 
performance, and area and power optimization, were possible by 
having a stretchable cell library that didn’t have the constraints of 
fixed cell sizes. Noise robustness was an important consideration 
for sequential and domino cells. A key innovation for noise 
robustness was the use of stretchable keepers for domino nodes 
and sequentials. Traditionally, when assembling domino libraries, 
keepers were designed to keep additional delay within tolerable 
limits. For the Pentium 4 processor, instead of the size of keepers 
being hard-coded, each cell had symbolic constraints describing 
its leakage and noise metric (no. of pull downs, stacking, etc.), 
along with its delay metric. The default keeper tried to maximize 
noise immunity while keeping tolerable delay. As an example, 
wide fanin domino NORs were provided with significantly larger 
keepers. Similarly, stacked configurations had larger keepers. 
However, a designer using NoisePad, optimizing for the actual 
instance-based noise and speed requirements, could easily adjust 
this keeper strength. This did not involve creating a new custom 
cell and was widely used for noise suppression.  
Each cell could be tuned for its noise environment (as needed) 
and did not have to follow conservative rules. The symbolic 
constraints also made the task of process conversion trivial instead 
of significant since the entire library did not have to be redesigned 
when leakage changed from a 0.18 to a 0.13 um process. 
Another key decision made regarding the cell library was 
forecasting the optimum leakage of future processes. We 
predicted that leakage would get much higher for optimized 0.18 
and 0.13 um technologies and therefore designed the library to 
combat this increase. Specifically, for the design of wide domino 
nodes and array and register file structures, we went with 
segmented bit-line architecture and disallowed circuits with large 
numbers of parallel pull downs (except PLA waivers). This design 
rule allowed us to tolerate significantly higher leakage in the 
process, which is necessary for transistor performance. 

Noise CAD Tool Requirements for the Pentium 
4 Processor 
In the Pentium 4 processor, we treat transistor leakage as DC 
noise. Interconnect coupling, charge sharing, and noise 
propagation need to be handled with AC waveform analysis. All 
noise sources are simulated together without linear superposition. 
The analysis does not assume maximum budgets on individual 
noise sources. Regarding simultaneous noise on multiple inputs, 
by default the same noise is applied to all parallel paths. This can 
be overridden for speed or area critical paths; in which case, 
transient noise is analyzed on specified paths with background 
power supply noise on other paths. 
The Pentium 4 processor is primarily custom designed with a 
library of parameterized/stretchable cells. In past methodologies, 
custom design resulted in a large overhead for noise analysis 
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because of required characterization. In the Pentium 4 
methodology, all cells are treated as custom cells with “on the fly” 
analysis. This requires no library pre-characterization and thus 
places no extra overhead on custom design.  

NOISEPAD: NOISE CAD TOOLS AND 
METHODOLOGY 
Using the technique of noise propagation, any path can be broken 
into small circuit stages, which can be analyzed sequentially. 
Technically, we could perform this analysis with industry-
standard SPICE-type simulators. Unfortunately, the throughput 
available in the Pentium 4 processor design timeframe was not 
acceptable for either interactive design or batch mode verification. 
A new transistor-level simulator was developed that allowed a 
throughput that was orders of magnitude higher than the 
traditional SPICE approach. The key innovations were symbolic 
circuit simulation and simplified noise analysis of distributed 
interconnect.  

Symbolic Circuit Template Simulation 
To achieve high throughput, the noise simulator reduces/matches 
circuits to a list of predefined parameterized circuit templates. The 
differential equations governing these circuit templates have been 
solved symbolically in a piecewise linear manner and don’t need 
to be solved at runtime. The simulation consists of evaluating 
these piecewise linear analytical solutions at succeeding time 
points. Device nonlinearities and voltage-dependent parasitics are 
dealt with because the model is “piecewise linear” and not just 
linear. Circuit relaxation is used for DC bias point calculations to 
handle the DC noise sources. Templates exist for drivers and 
receivers of CMOS, domino, pass gate, and novel logic types.  
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region. With these simplifications, very computationally 
inexpensive transistor I-V models were developed and 
implemented with a precharacterized transistor table look-up 
model. We used a non-uniform grid to optimize for noise sensitive 
regions of operation; for example, we used much finer gridding in 
the subthreshold/weak inversion region. 

Distributed Interconnect Noise Analysis 
The computational complexity of noise analysis is often 
dominated by the coupling analysis of the distributed 
interconnect. In the past, interconnect coupling has been dealt 
with, in a lumped fashion, by putting all coupling capacitance at 
the end of a line. This produces significant conservatism. Further, 
for interconnect with side branches, there are no straightforward 
solutions.  
For handling complex interconnect networks, especially from post 
layout, Asymptotic Waveform Evaluation (AWE) analysis using 
iRICE has been integrated into our noise simulator.  

Elmore Noise Model 
To drastically increase the throughput of distributed interconnect 
noise analysis, a new analytical closed form approximation was 
been developed for multiple aggressor coupling on a distributed 
network.  

Domino receiver circuitDomino receiver circuit Domino receiver templateDomino receiver template
Figure 7: Circuit template idea for a domino receiver 

 Figure 7, a piecewise linear waveform of input noise voltage 
ded to the power supply noise creates a piecewise linear current 
 the receiver. This current is added to other current sources such 
 charge leakage, charge sharing, and current injected through 
e gate/drain miller capacitance. The differential equation 
verning this circuit has a closed form solution, which is known 

priori.  

ransistor Models 
or noise analysis, simple transistor models are often adequate. In 
is context, some transistors are normally “on”, in which case 
ey try to keep a node in its correct logic state, e.g., a domino 
eper. These are characterized by a large |VGS| and small |VDS|, 
eaning they operate in the linear region. Normally “off” 
ansistors are ones that try to upset the logic state of a node by 
rrent conduction. For small or reasonable values of noise, these 
e characterized by large |VDS| and small |VGS|, meaning they 
erate in the saturation region. Depending on the gate input 
ise, these can either be in the subthreshold or strong inversion 
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Figure 8: Elmore approximation for noise analysis 

 call this the “Elmore model” due to the analogy with Elmore 
ay used in timing analysis. The idea here is to make the 
lysis much simpler by reducing the network moments or, in 
er words, finding the dominant time constant of the network. 
Figure 8, ctotj is the sum of the total switching and non 
tching capacitance on the jthnode. All couplers are aligned for 
st-case temporal shifts, and they finish switching at time t = 0. 

isePad analysis switches between this simple model and more 
ensive AWE models, based on heuristics. 

LL-CHIP WIRE NOISE VERIFICATION  
 key idea behind the Pentium 4 processor full-chip noise 

ification is “strobed signaling”. A non-restoring node for noise 
efined as a node, which if falsely tripped due to noise, will not 
ver with the passage of time (e.g., domino node or off pass 
 latch). A signal is called “strobed,” if its logic cone leading to 

on-restoring noise node is controlled with a clock (e.g., D1k 
ino). In this case, the effect of noise on this node may be 

endent on clock frequency.  
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Figure 9: Impact of frequency on noise failure 

As shown with the D1-k example in Figure 9, at a lower 
frequency, the noise will settle down before the signal is sampled 
and as such will not fail at the lower frequency. In most cases, the 
timing of aggressors switching for noise is earlier than predicted 
by max delay timing analysis due to a reduced Miller Coupling 
Factor (MCF) in the noise case. Further, the worst noise case is 
usually on fast silicon at high voltage (good for speed). As such, 
in most cases, we can ignore the cases leading to a slight 
frequency slowdown in our analysis. The tricky situations are 
those that lead to excessive frequency slowdown or even worse, 
frequency shmoo holes. Before spending valuable CAD tool 
resources on these non-trivial cases, we needed to convince 
ourselves that the common benign case is indeed the dominant 
one and therefore the one on which to base our full-chip wiring 
methodology. 
Most full-chip signals are busses (~59,000 out of 72,000 nets), 
and less than 10% of full-chip signals are “sensitive” (feeding 
domino receivers or direct pass gate, etc.). Most busses have 
similar timing among different bits, which should ease the 
frequency slowdown and shmoo problem. Figure 10 shows the 
significant effect of this analysis. Most of the effect of this 
filtering was due to the “required filtering” that characterized 
frequency slowdown, and very little was due to “valid filtering,” 
which looks for aggressors not switching together.   
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Figure 10: Impact of frequency independent timing filtering 

Frequency Independent Filtering 
To solve the rare cases of real noise problems on a strobed signal, 
we decided to classify noise issues as follows: 1) functional 
failure at all frequencies; 2) slight slowdown; 3) large slowdown; 
4) frequency shmoo hole at a lower frequency as shown in Figure 
11; 5) mindelay switching induced noise failure; and 6) excessive 
coupling causing gate oxide wearout. Issue number 6 was 
achieved simply through a VCC/2 coupling noise clamp, which 
was used as a warning. For the rest, we had to implement timing 
filtering, which understood changing timing relations at different 

frequencies. Timing filtering was first implemented in an Intel 
chip  for the Pentium  Pro processor as the tool Crosswind [4], 
and it introduced the concept of valid and required time window 
filtering; valid window noise ‘profiling’ or juxtaposition of 
aggressor noise over the clock period; and rudimentary modeling 
of drive ratios with fixed thresholds for noise sensitization. Later 
implementations developed for the Pentium  II and Pentium  III 
processors improved on several aspects of driver and interconnect 
modeling. 

Figure 11: Frequency shmoo hole 

The novel features of timing filtering for the Pentium 4 processor 
include three modes of frequency analysis (low frequency for 
burn-in analysis, high frequency for at-frequency noise and delay 
tests, and all-frequency sweep for noise effects); timing skew 
between victim and aggressors; required-time filtering with victim 
recovery; and an interactive graphical waveform interface for 
timing filter debug. 
The design of the Pentium 4 processor brought new challenges to 
timing filtering because of the complexity of its clocking system. 
In earlier clocking styles, an excessive slowdown or shmoo hole 
was usually caused by a very late signal coupling into a signal 
with early-required time or by the interaction between signals 
from opposite phases. In the Pentium 4 processor, however, the 
design incorporates several clocks that are multiples of each other: 
signals are F(ast), M(edium), and S(low) clocked signals. Not 
only do signals occur in different phases, but also with different 
periods. In addition, these differently clocked signals interact as 
they are not a priori restricted to different regions of the chip. 
Thus, mid-frequency shmoo holes are much more probable in 
such a design.  
The new approach handles a clocking system with an arbitrary 
number of phases and an arbitrary number of synchronous clock 
frequencies by using a Multi-Frequency Algorithm.  
At very low frequencies, signals activated by different phases are 
widely separated in time, so much so that they do not interact. 
This represents the low end of all frequencies to be considered, 
while the target operating frequency represents the high end. 
Sweeping frequencies at a small enough increment to catch 
waveform overlaps is prohibitive due to the complexity of the 
internal scan. We, therefore, needed a more adaptive algorithm. 
Here is the entire algorithm with an all-frequency sweep as its 
outer loop: 
For each victim net: 
1. Collect aggressor set for a given victim and skew timings 

appropriately. 

fast

medium ph2

medium ph1

slow ph1

1500  Mhz medium frequency

fast

medium ph2

medium ph1

slow ph1

1200  Mhz medium frequency

signals do not intersect at spec operating frequency

signals intersect at a slightly lower frequency
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2. Map clock edge references onto phases of an appropriate 
clocking system. For example, a set of aggressors with M and 
F rising edge references requires a two-phase system. 

3. Perform a noise sweep, computing aggressor interaction sets 
and generating timing “filter table.” 

4. Compute the next highest frequency of interaction among 
signals. 

5. Return to step 2 until there is no more interaction among 
signals. 

a
b

d
e

c

List of possible switching 
sets at this frequency

abcde
11100
01010
00101

 
Figure 12: Illustrating logical switching set groups 

The most difficult part of the algorithm is to compute the 
frequencies of interaction, as illustrated in Figure 12. Given that 
an O(N log N) scan is in the internal loop, the algorithm cannot 
afford to sweep with a very fine grain to catch all interactions. 
The key to computing the next frequency of interaction is to 
comprehend the relative velocity of timing edge references as one 
slows the primary clock. By carefully searching the edges most 
close to one another and keeping track of their relative velocities, 
this algorithm can be made reasonably efficient. One difficulty is 
handling edges that refer to a previous clock phase that are 
actually moving backward with respect to other timing edges as 
frequency is increased. To handle this and other difficulties, we 
developed a general approach to handling both the modular nature 
of signal timings and measuring the frequency at which they may 
intersect, based on the concept of relative edge velocity. 

MUTUAL INDUCTANCE METHODOLOGY 
At low frequencies, flip-chip C4 packaging provides a very low 
resistance current return path. For high-speed transients, the large 
inductance of the package return causes significant return current 
to flow through the on-die power grid, as shown in Figure 13. For 
simultaneous switching of wide busses, the impedances in the 
signal and current return path can be of comparable magnitude 
leading to large inductive noise. 

 
Figure 13: Signal inductance problem with flip-chip packaging 

A test chip was fabricated with test structures to measure mutual 
inductance noise on wide busses. In this chip, signal busses of 
varying width could be made to switch in any combination, with 
several combinations of return scenarios, one of which is shown 
in Figure 14. We were also able to measure simultaneous 
capacitive and inductive noise, which helped us develop empirical 

design rules. To keep the area impact small while reducing 
inductance, a scheme of distributed power supply was chosen for 
the Pentium  4 processor, where for top-level metals (M6 and 
M5), a power signal was routed after every 5 signal wires, thus 
providing a nearby current return and reducing the loop area for 
inductance. Towards tapeout, a tool for crude inductance 
estimation was written. This looked for any sensitive circuits (e.g., 
domino) routed for appreciable distance in the neighborhood and 
parallel to long, wide busses. By taking the width of the bus, 
distance from the bus, and length of overlap, an inductance noise 
metric was used to flag any possible problems. This check was not 
restricted to wires routed in the same metal layer.  
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Figure 14: Silicon measurements showing inductive noise 

UMMARY 
ith the Pentium 4 example, in our experience, an architecturally 
rge chip need not lead to longer physical wires if careful 
ethodology and repeater design are used, thus enabling higher 
equency. Aggressive, high speed circuit styles and dense wiring 
ve been enabled by innovations in noise CAD tools. The 
ductance problem, although significant, can be managed by a 
stributed power grid and design rules. Circuit styles and a 
ethodology that are robust for transistor leakage have allowed us 
 push the process for speed.  
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