
Extending the Lifetime of a Network of Battery-Powered
Mobile Devices by Remote Processing: A Markovian

Decision-based Approach
Peng Rong and Massoud Pedram

Dept. of Electrical Engineering, University of Southern California
{prong,Pedram}@usc.edu

Abstract
This paper addresses the problem of extending the lifetime of a battery-
powered mobile host in a client-server wireless network by using task
migration and remote processing. This problem is solved by first
constructing a stochastic model of the client-server system based on the
theory of continuous-time Markovian decision processes. Next the
dynamic power management problem with task migration is
formulated as a policy optimization problem and solved exactly by
using a linear programming approach. Based on the off-line optimal
policy derived in this way, an on-line adaptive policy is proposed,
which dynamically monitors the channel conditions and the server
behavior and adopts a client-side power management policy with task
migration that results in optimum energy consumption in the client.
Experimental results demonstrate that the proposed method
outperforms existing heuristic methods by as much as 35% in terms of
the overall energy savings.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architecture
and Design – wireless communication; C.2.4 [Computer-
Communication Networks]: Distributed Systems – client/server.

General Terms Algorithms, Design, Experimentations.
Keywords: Client-server system, remote processing,
network lifetime, Markovian decision processes.

1 Introduction
Extending the battery lifetime is one of the most critical and
challenging problems in mobile battery-powered systems. Dynamic
power management (DPM), which refers to a selective shut-off or
slow-down of the idle or underutilized components, has proven to be a
very effective technique in reducing power consumption of such
systems. However, an implicit assumption in all of the previous DPM
works [11][12] is that local tasks of a mobile device are executed on the
device itself. This is true if the mobile device has no communication
capabilities with other mobile devices. However, when we consider a
mobile host within a mobile network, which carries a wireless LAN
card and can interchange data with other mobile hosts or fixed base
stations over a wireless channel, the situation becomes quite different.
A host with heavy workload may ask other hosts or the base station to
help it reduce its workload by dispatching local tasks to these remote
sites for processing. In this way, the mobile host may save power and
extend its service lifetime.
Many key applications running on mobile platforms can benefit from
task migration and remote processing. These applications include

image processing, e.g., target detection and recognition used in robot
control [1], voice recognition [2], and large-scale numerical
computations [3].
The effectiveness of the remote processing technique is limited by the
fact that data transmission over wireless channel results in additional
power consumption. Energy savings on the local host is achieved only
if the total energy for transmitting a task and receiving the result is less
than the energy consumed for local execution of that same task. The
rather large energy dissipation cost of wireless communication in
mobile network of battery-powered devices makes the problem of
deciding whether to execute a local task on the local host or to dispatch
it to another mobile host for remote processing a very important one. In
effect, energy-conscious policies must carefully consider the energy
tradeoff between communication and computation and the task
execution time from the viewpoint of the local host as well as the total
energy dissipation for executing a task from the viewpoint of the
network of mobile hosts.
A number of research results related to this problem have been reported
in the literature. Experiments performed in [2][3] demonstrated the
potential of remote processing for significant power savings in a
number of real time tasks. Based on CPU measurements, reference [5]
proposed an adaptive decision-making policy for a repetitive task. A
remote processing framework was proposed in [4], which supports
process migration at the operating system level. This adaptive policy
differs from that proposed in [5] in that it can filter out the transient
noise. Reference [1] proposed a compilation framework for remote
processing, which can identify candidate remote computations within a
single program. Unfortunately, these works do not consider any timing
constraints on the tasks and assume that the user must be able to cope
with any level of additional delay that may be introduced by remote
processing. This limitation makes these techniques unsuitable for real-
time applications, where violation of timing constraints may cause
unacceptable loss in quality of service.
IEEE 802.11 protocol supports two types of mobile networks: peer-to-
peer architecture (ad-hoc mode) and client-server architecture (infra-
structure mode). In ad-hoc network, there is no base station and
communication among mobile hosts takes place without the need for a
base station. In this case, the major issue is to balance the remaining
energy resources of all mobile hosts so as to maximize the ad-hoc
network lifetime. This problem – although interesting - is different
from the problem that we are addressing here for the infra-structure
mode and is beyond the scope of the present paper. This paper targets a
mobile device providing real time services in a client-server wireless
network. The mobile battery-powered device (client) can communicate
with and possibly migrate tasks to the “wall-powered” base station
(server). The paper first presents a new Markovian Decision Process-
based DPM framework for such a network. The proposed stochastic
model is used for minimizing the power consumption of the mobile
host by using remote processing while meeting real-time constraints.
The remainder of this paper is organized as follows. Related work and
ackground are provided in Section 2. In Section 3, details of the
roposed DPM framework are described. In Section 4, stochastic

This research was supported in part by DARPA PAC/C program under
contract DAAB07-02-C-P302 and by NSF under grant no. 9988441.
Permission to make digital or hard copies of all or part of this work for

52.2
b
p

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
models of the client, the wireless channel, and the server are provided.
In Section 5, the energy optimization problem is formulated as a
mathematical program and two DPM policies are presented.

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

906

Experimental results and conclusions are given in Sections 6 and 7,
respectively.

2 Background
Research on wireless communication has demonstrated that the multi-
path fading and shadowing (slow fading) effects in a wireless channel
may significantly degrade the signal-to-noise ratio, increase the error
rate, and thus cause a large amount of delay and energy consumption
for re-transmitting the corrupted packets. So when determining an
optimal policy for the client, a detailed and accurate model of a
wireless channel should be constructed and used.
A (controllable) continuous-time Markov decision process [13]
(CTMDP) is defined with a discrete state space; a generator matrix,
where an entry represents the transition rate from one state to another;
an action set; and a reward function. In CTMDP, the generator matrix
is a parameterized matrix that depends on the selected action. An
irreducible CTMDP has a unique limiting distribution that is
independent of the initial conditions.
A complete system may consist of several components, each modeled
by a CTMDP. The state set of the complete system is obtained as the
Cartesian product of the state set of each component minus the set of
invalid states. By using the method of [12], the generator matrix of the
whole system can be generated from the generator matrices of its
components by using the tensor sum and/or product operations.

3 DPM Framework
The proposed framework consists of three major components: the
clients (mobile hosts), a server (base station) and a wireless channel
which carries the communication packets between the client and the
server. It is assumed that the server is AC-powered and has a much
larger computational capability than the client. We also assume that the
client services only its own local tasks and receives no request for
remote processing from the server. This is a reasonable assumption
since the AC-powered high-performance server is much more powerful
from a processing point of view and has no energy limit, and thus it
will execute its own tasks (in addition, it will execute tasks sent to it by
the mobile hosts.) This also means that the server has all the hardware
and software resources required to execute the tasks that are sent to it
by the remote clients. Furthermore, for the same reasons, the server
does not turn down any request for remote processing.
When a client desires to execute a task on the server, it sends a remote
process request (RPR) to the server with a required real time constraint.
Because the server may be busy executing other tasks (some local,
other remote tasks that have previously arrived), it may reject the RPR
from the mobile host because it may have determined that it cannot
meet the required time constraint for the remote task. This is the only
case in which the server rejects a RPR, that is, the server never turns
down a RPR for reasons of server-side energy saving. When the RPR is
rejected by the server, the client will have to perform the task locally.
However, at that point, the client has wasted some valuable resources
(energy and time) trying to migrate a task to the server and because it
has failed in doing so, it still has to perform the requested task locally.
It is therefore essential for the energy efficiency of the client and for its
performance to minimize the probability for its RPR’s to be rejected by
the server.
The procedure/protocol for remote processing is explained next.
1. The client decides to migrate a task to the server. This task is

called a remote execution candidate (REC). The client calculates
the timing constraint for the execution of the REC.

2. The client sends a RPR to the server containing workload and
timing constraint information about the REC.

3. When the server receives the RPR, it checks the status of the tasks
waiting on the server to see whether the timing constraint for the
REC can be satisfied. If so, the server will accept the application,
otherwise, it will reject the application. Whether or not the

application is accepted, the server will inform the client of its
decision by sending an acknowledgment (ACK) back to the client.
Included in the ACK response are the decision to accept or reject
the RPR, and current status information about the server, i.e., the
average incoming request rate and the average execution time of
the tasks on the server side.

4. If the client receives a positive (acceptance) response from the
server, then it will start to migrate the REC to the server.
Otherwise, the client will proceed to execute the task locally.

5. When the client finishes the task migration step, it can
immediately start processing a new task if one has arrived.

6. When the server completes the task, it will store the result in its
own memory and immediately inform the client that the
computation result is ready by sending a task done (DONE)
message to the client.

7. If the client receives the DONE message from the server, then it
will immediately contact the server and collect the computation
result (RES). If the server does not see any activity from the client,
then it will resend the DONE message at the next conference time.
At that time, the client is guaranteed to be awake and therefore
will receive the DONE message and will pick up the RES from
the server. At the same time, if the client does not receive any
message from the server and has not had a conference with the
server since the last REC was sent off, then before the deadline for
REC is expired, it will contact the server to pick up the RES. 1

During the process of RPR negotiation (steps 1-3), REC handoff (step
4,5), and RES computation (step 6), and RES delivery (step 7), the
client counts the number of packets that had to be re-transmitted due to
unrecoverable errors in the received packets. This information will
enable client to determine the wireless channel condition in real time.

4 Modeling
Because this paper focuses on the client-server architecture (i.e., the
infra-structure mode of the IEEE 802.11b), we can assume that the
mobile hosts (clients) in the network are independent of each other2 and
therefore when a client learns about the status of the server, it has all
that it needs to make local decisions as to how it can improve its energy
efficiency and thereby extend its battery lifetime. The client-server
system is thus modeled by a joint CTMDP model, which is composed
of CTMDP models of only three components: a single client, a wireless
channel, and the server.

4.1 Model of the Client
We consider a (mobile) client that is continuously executing some real-
time service processes for each incoming task. The QoS requirements
for the client service are: 1) the average task delay is less than a
predetermined value D; and 2) the task loss rate is less than a threshold
Th. Different tasks differ in the task size which is exponentially
distributed. It is assumed that the relationships between the task size
and its execution time on the client and the migration time over an
error-free wireless channel are known in advance (for example, through
profiling).
The model of the client is illustrated in Figure 1. It has three processors:
Service Provider (SP), Conference Processor (CP), and Issue Processor
(IP).

1 This case really means that the server finished the RES computation, send
a DONE message to the client who was sleep and thus missed the server
ACK.
2 Other mobile hosts affect the target mobile host only because of packet
collision in the wireless channel. In this paper, we treat this collision effect
(which is transparently handled and minimized by MAC layer) as noise in
the wireless channel.

907

The SP represents the CPU of a real mobile device and can provide
service for the service requests (SR). The CP is in charge of negotiation
with the server for remote processing and task migration. When a REC
is selected, the CP first sends a request for remote processing to the
server, which includes the basic information about the REC, such as its
expected computational workload and the relevant timing constraint.
When receiving a RPR, the server checks its own resources and
workload to see whether or not it can finish the task in the required
time. If the timing constraint can be met, the request is accepted;
otherwise, it is rejected. If the CP receives an “Accept” response from
the server, it starts to send off (migrate) the task to the server. After
completing the task migration, the CP can immediately start a new
negotiation with the server for the next REC. When the server finishes
the required job, it stores the RES in its own memory and waits for the
client to get them back. If the CP receives a “Reject” response, it moves
the rejected REC out of the Conference Queue (CQ) and inserts it into
the Priority Queue (PQ). The tasks in the PQ have a higher priority in
receiving service from the SP compared to other tasks in the normal
Service Queue (SQ). This makes sense because these tasks have
already been held back because of the “failed” attempt to migrate them
to the server. A typical CP is a WLAN Card with Direct Memory
Access (DMA) capability. Since it can transmit and receive data with
very little CPU intervention, we assume that the CP and the SP can
work independently of one another. When a new task is generated, the
IP decides whether to service it locally or make it a REC, and therefore
insert the incoming task into the SQ or CQ, respectively. The IP is a
low complexity and power-efficient processor (e.g., a PIC processor).
We assume its power consumption can be neglected in comparison to
the SP and the CP. The IP is always awake waiting for the arriving
tasks and deciding whether to treat them as local or REC’s.

IP

SQ

CQ Idle

CP

Migration

Sleep

Conference
RPR

Rejected
RPR

AcceptedStart

Idle

SP

Wait

Sleep

Busy

Finish
Start

P
QSR

Data flow
State transition

Finish

Figure 1. CTMDP model of a client.

The definitions of the states of the SP are as follows.
Busy: a working state, where the SP service the tasks waiting in the SQ

or CQ.
Idle: a full-power but non-functional state, during which the Power

Manager (PM) may issue any of the following commands to the
SP: Go-to-Busy, Go-to-Wait, Go-to-Sleep, Stay-in-Idle.

Wait and Sleep: low power states. The SP in the Wait state has a
higher power consumption compared to the Sleep state, but its
transition to Busy or Idle state requires more time and energy.

The detailed states of the CP are explained as follows:
Idle: State reached when a RPR negotiation is concluded with a

“Reject” response, or when the RPR is accepted by the server and
the client has completed the task migration step. It is also the state
in which the CP receives commands from the PM to determine
whether to start a new negotiation, go to sleep, or stay in idle.

Conference: In this state, the client sends the RPR’s to the server,
waiting for a server response indicating acceptance or rejection of

the current RPR. If the request is rejected, the CP goes to the Idle
state and the REC is fetched out of the CQ and inserted into the PQ.
If the REC is accepted, the CP goes to the Migration state.

Migration: This state is reached after a RPR is accepted by the server.
In this state, the client sends all the data necessary for performing
the task to the server through the wireless channel. When the data-
sending process is concluded, the CP goes back to the Idle state and
at the same time the migrated task is removed from the CQ.

Sleep: State reached when the PM decides to put the CP into the lowest
power mode to save energy. In this state the front-end of the
wireless LAN card is turned off, thus no communication from the
server can be received.

It is worth noting that in the CP model, we do not explicitly create a
state for receiving the data RES of an RPR that has been serviced by
the server. The reasons are: 1) The remote processing
protocol/procedure described previously guarantees the transmission of
computation RES from the server to the client. 2) It is more convenient
from a modeling point of view to account for the time and power
consumption overhead of receiving the data RES of a RPR in the
Migration state.
All of the state transitions of the CP are assumed to be either
exponentially distributed (e.g., the transition from the Migration state to
the Idle state) or instantaneous (the only case is for the transition from
the Idle state to the Conference state.)
4.2 Model of the Wireless Channel
The Markovian chain model has proven to be a very successful
mathematical tool to describe a wireless channel. A lot of Markovian
chain based models have been proposed, from two-state “Gilbert
Elliot” model [7] to hierarchical hidden Markov model [8]. Complex
models work better in terms of capturing the higher order statistics of
the wireless channel, but result in a nearly exponential increase in
model complexity [9]. A real wireless channel is usually exposed to
both fast and slow fading effects. The study in [10] suggests that a two-
state Markov chain model is quite accurate and remains insensitive to
different coding/modulation schemes when the fading is slow, whereas
independent, identically distributed (i.i.d.) processes are suitable for
describing the fast fading effects. Based on this study and other similar
published results, in this paper, we adopt a two-state continuous-time
Markov process to model the slow fading effect. We assign a constant
packet error rate PER to each state. These rates represent the expected
packet error rate of the i.i.d. processes for describing the fast fading
effect. The wireless channel model is shown in Figure 2, where 1/v(1,2)
and 1/v(2,1) represent the expectation time that the wireless channel
remains in state w1 and w2, respectively. Notice that it is
straightforward to extend the two-state model to a higher-order model
with more states to achieve higher accuracy, but a two-state wireless
channel model is sufficient for our purpose.

w 1 w 2
1P E R 2P E R)1,2(ν

)2,1(ν

Figure 2. Two-state CTMDP model of wireless channel.

Let’s define the average packet error rate (PER, 0≤ PER≤1) as the ratio
of the number of un-recoverable packets, in spite of error-correction
techniques such as CRC coding, to the total number of packets. We
assume that any packet that is corrupted during transmission and for
which error correction circuitry on the receiver side cannot fix the error
must be re-transmitted. Let t denote the time required for transmitting
an n-packet data over an error-free wireless channel. The expected time
ta for transmitting the same data over an error-prone wireless channel
can be calculated as follows:

908

PER
t

PER
ntPERtnt

m

m
a −

=
−

=⋅⋅= ∑
∞

= 11
0

0
0

,

where, t0 denote the time for transmitting a single packet over an error-
free wireless channel, and m is the number of re-transmissions.
4.3 Model of the Server
The server can be represented as an infinite M/M/1 queue [6] with a
multi-state task generator as shown in the Figure 3. Usually a server
connects to a number of clients and has to perform a large amount of
local computations. So we can assume that, in the stationary state
condition, 1) the rate of incoming tasks to the server is independent of
any particular client and 2) this rate changes slowly. From the client’s
viewpoint, what is important is the rejection probability of its RPR’s.
Thus we can reduce the order of the model as explained below.

sµ
∞

1,sλ

2,sλ

ms,λ

Figure 3. Queuing model of the server.

Assuming that the incoming task rate of the server is λs and its average
service time is 1/µs. the probability that the number of waiting tasks in
the server queue equals n, is computed as:









−








=

s

s
n

s

s
np

µ
λ

µ
λ 1 .

Suppose the service time constraint of a RPR is a constant factor c
larger than its execution time on the server, where c≥1. The execution
time of an RPR on the server can be approximated by an exponential
distribution with a mean value k/µc, where 1 /µc is average service time
of the client, k is the ratio of processing speed of the client to the server,
k≤1. So the RPR rejection probability is calculated as:

() ()

0

(,) 1 Pr{ },
1

, 1
1

w
reject s s n s

n

s c

s s s c

tp f p t
c

c
k c

λ µ

λ µ
µ µ λ µ

∞

=

= = − ⋅ >
−

= ⋅ >
− − +

∑

01 , 1.rejectp p c= − =

where ts is the execution time of the RPR on the server and tw denotes
the waiting time of the RPR on the server. LST-1[·] represents the
reverse Laplace-Stieltjies Transform. Consequently, the model of the
server can be reduced to a two-state Markovian process with rejection
probabilities attached to each server state as shown in Figure 4. The
rejection probability Preject,1, Preject,2 and Preject,m correspond to the
incoming task rate states, respectively.

1,sλ 2,sλ

2,1η

1,2η1,rejectp 2,rejectp

ms,λ

mrejectp ,

Figure 4. CTMDP model of the server with rejection probabilities.

5 Policy Optimization
We describe two policies: an off-line optimal policy and an on-line
adaptive policy. The off-line optimal policy is computed based on the
joint stochastic model of the client, the wireless channel and the server
by using a linear programming approach. If the key characteristics of
the wireless channel and the server are stable, then using the offline
policy will result in the optimum energy saving solution. In practice,
however, the channel conditions and the server workloads vary in time.

For this time-varying situation, an on-line adaptive policy is devised to
handle this time-varying situation. This on-line policy is based on
dynamic lookup of pre-computed off-line optimal policies from a
Cached Policy Table [14][15]. The key into this cache table is the
parameter set that describes the channel conditions (packet error rate)
and the server status (rejection probability for RPR’s.) The value is the
optimal policy that should be put to practice. Although the optimality
of the on-line policy cannot be guaranteed (because of the client-side
error and/or latency in determining the channel and server parameters),
it has proven to be a satisfactory solution in a varying environment,
especially if the dynamics of the network change are not too fast (cf.
the results.)

5.1 Off-line optimal policy
Our goal is to find an optimal policy for minimizing the energy
consumed by the client based on the characteristics of the client, the
wireless channel, and the server. To consider the QoS requirements for
the real applications, the optimal policy is solved under hard constraints
on the expected task service time and task loss rate. A task is lost in (or
dropped by) any of the client queues (SQ, CQ or PQ) if the queue is
full when the task arrives. We formulate the policy optimization
problem as a linear program as described next.
Let x represent the state of the whole power-managed system and ax
denote an action enabled in state x. The constrained energy
optimization problem is formulated as a linear program as follows:

{ }
M inim ize x x

a x

x

a a
x xx

x a
f γ

 
  
 
∑ ∑

where, xa
xf is the frequency that state x is entered in and action xa is

chosen in that state; xa
xγ is the expected cost, which represents the

expected energy consumed when the system is in state x and action

xa is chosen. It is calculated as:

∑
≠′

′ ′+=
xx

a
xxx

a
x

a
x xxenepaxpow xxx),(),(,τγ ,

where, ∑
≠′

′=
xx

a
xx

a
x

xx
,1 στ denotes the expected duration of time that

the system will stay in state x when action xa is chosen.
Subject to:

Xxpff
xx a

a
xx

a
x

a

a
x

x

xx

x

x ∈∀=−∑∑∑
≠′′ ′

′
′

′
′ ,0,

1=∑∑
x a

a
x

a
x

x

xxf τ

0≥xa
xf

∑∑ ≤+
x a

mxx
a
x

a
x

x

xx Dpqsqf λτ)(

∑∑ ≤+
x a

mxx
a
x

a
x

x

xx Dpqcqf λτ)(

∑∑ ≤⋅
x a

cmx
a
x

a
x

x

xx Dcqf λτ

where mλ is the average rate of incoming tasks for the client.

∑∑ ≤++
x a

a
x

a
x

x

xx ThfullPQfullCQfullSQf)) () () ((δδδτ

where




=
.,0
;,1

)(
otherwise

trueisxif
xδ .

In the above inequalities, sqx, cqx and pqx represent the length of waiting
tasks in the queue SQ, CQ and PQ. Notice that, the inequalities (5-
6,7,8), which are based on the Litter’s theorem [6], impose constraints

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)

909

on the expected task delay. In (5-6), pqx is added because the tasks in
the PQ have a higher priority and can block the tasks in the SQ, which
means that a task waiting in the SQ will be serviced only when all tasks
in the PQ have been serviced. It is thus necessary to account for the
task delays in the PQ when considering the delay of a task in the SQ.
For delay calculation, we only consider the locally executed tasks,
because we assume: 1) The timing constraint of each REC, which is
assigned by the client and provided to the server during the RPR
negotiation, equals c (c≥1) times its expected execution time on the
server (cf. Section 4.3). 2) If the server accepts a RPR, it will definitely
complete the task before its timing constraint. Therefore, the average
delay of the RPR’s that are executed on the server will be less than D, if
the condition in the following theorem is satisfied.
Theorem: Let 1 /µc and 1 /µm represent the expected value of the task
execution time for locally processed tasks (this includes the task service
time on the client SP) and for remotely executed tasks (this includes the
RPR negotiation time, the REC migration time, and the RES delivery
time), respectively; k represents the ratio of processing speed of the
client processor to the server processor. If D ≥ Dc + 1 /µm + k/µc, c =
(D – Dc - 1 /µm)/(k/µc), where Dc is defined in equation (5-8) then the
expected value of the delay of remotely executed tasks is less than D.
5.2 On-line policy
For the on-line policy, we assume that the status of the wireless channel
and the server is not known a priori. So we must first construct a cache
table of M×N entries off-line. Each entry (i,j) in this table corresponds
to an optimal DPM policy computed based on the method proposed in
Section 5.1 under the condition that the packet error rate of the wireless
channel is PERi and the rejection probability of the server is Preject,j. The
sets {PERi} and {Preject,j} for which an optimal policy is precomputed
and stored in the table are determined by monitoring the channel and
the frequency of RPR rejections over a moving window measurement.
These indices of the cache table are arranged in an increasing order, i.e.,
PERi< PERi+1 and Preject,j< Preject,j+1.
In contrast to the off-line optimal policy, if during a predetermined
period there are no RPR’s, the on-line policy will arbitrarily select a
task as a REC and send a corresponding RPR to the server. This is
needed in order for the client to learn about the condition of the
wireless channel and the status of the server.
The client uses profiling and regression to estimate the value of PER
and Preject. Let APER(n) denote the percentage of corrupted packets
during the nth conference with the server. The predicted value of the
packet error rate PER(n) is calculated as:

)1()()()1(−⋅−+⋅= nnn PERAPERPER αα .
where α is a coefficient and 0≤α≤1. α should be set to a larger value in
a fast-changing wireless channel and to smaller value in a slow-
changing wireless channel.
Let RRN denote the rejection ratio of the last N RPR’s. Let λs

(n) and
1/µs

(n)
 denote the incoming task rate and the average task service time

in the server side (these are provided to the client by the server during
the nth conference time). Thus the predicted server rejection probability
Preject

(n) is:

N
n

s
n

s
n

reject RRfP ⋅−+⋅=)1(),()()()(βµλβ .

where 0≤β≤1 is a coefficient. β should be large if the workload status
of the server changes rapidly; otherwise it should be small.
If one of the two conditions take place:
(PERi-1+PERi)/2 < PER(n) ≤ (PERi+PERi+1)/2 < PER(n-1) or
PER(n-1) ≤ (PERi-1+PERi)/2 < PER(n) < (PERi+PERi+1)/2,
then the policy corresponding to the entry (i, ⋅) will be activated.
Similarly, if condition
(Preject,j-1+Preject,j)/2 <Preject

(n) ≤ (Preject,j+Preject,j+1)/2 < Preject
(n-1) or Preject

(n-

1) ≤ (Preject,j-1+Preject,j)/2 <Preject
(n) < (Preject,j+Preject,j+1)/2,

is satisfied, the policy corresponding to entry (⋅, j) will be activated.
Note that “⋅” represents the unchanged index or index changed based
on other conditions. The index i and j are calculated independently.
The flow diagram of the on-line policy is shown in
Figure 5.

tsilence>Th ?

No

A RPR
candidate?

Calculate timing constraint
and start a new conference

and wait for an
acknowledgement from the

server

Yes

Yes

Execute the task
locally

No

A new task
generated

RPR
accepted?

Migrate the task

Yes
Count number of

retransmitted
packets

Monitoring status
change of wireless

channel

No

)(

)()(

 recompute
; recompute

 ,,Get

n
reject

n
s

n
s

P
RRN

µλ
)(

)(A Compute
n

n

PER
PER

Calculate new values
of index i and j of
policy lookup table

policy corresponding
to entry (i,j) of policy

lookup table is
activated

Make decision

tsilence denotes the length of the time
period since last RPR finished.
Th is a predetermined threshold

time dependence
action dependence

process flow

Figure 5. Flow diagram of the on-line policy.

6 Experimental Results
In our simulations, we used a StrongARM SA-1110 processor as the
SP in the mobile host. The StrongARM processor was running at a
clock frequency of 206MHz. The CP in the host was Orinoco WLAN
PC card. The power consumption and state transition times of the
StrongARM processor and the Orinoco WLAN PC card are reported as:

Table 1. Features of StrongARM SA1110 and Orinoco WLAN.
StrongARM SA1110 Busy Wait Sleep
Power (mW) 600 (with MEM) 100 0.2

Wait to Busy
Busy to Wait

10 us

Sleep to Busy 160 ms

Transition Time

Busy, Wait to Sleep 90 us
Orinoco WLAN card Transmit Receive Sleep
Power (mW) 1400 900 50

Wake-up time 34 ms Transition Time
Sleep-down time 62 ms

In the simulation, we assumed that the average task execution time on
the mobile host is 400ms, the conference time is 40ms, and the average
RPR data migration time plus the RES pick up time is 80ms. The task
incoming rate is 0.625 per second. The Maximum task loss rate is
0.1%. The average task delay constraint is less than 0.8s.
We compare the results of both our offline policy and online policy
with two baseline techniques. These two baseline methods are:
M1: No RPR. The client will execute every task locally.

910

M2: Always try RPR first. For every incoming task, the client will first
send a RPR to the server. The client will execute the task locally only if
the server rejects the RPR.
Off-line policy
In
Figure 6, Assume the state of the wireless channel and the server are
unchanged. MDPBP, stands for Markov decision processes based
policy, is our proposed method.

PER = 0

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RPR Rejection Probability

A
ve

ra
ge

 P
ow

er
(W

)

M 1

M 2

M DPBP

PER = 0.4

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RPR Rejection Probability

A
ve

ra
ge

 P
ow

er
(W

)

M 1

M 2

M DPBP

Figure 6. Comparison of simulation results of the three policies

with an invariable wireless channel and server.
When the PER and RPR rejection probabilities are small, the M2
method results in large power savings compared with the M1 method.
However, as the PER and RPR rejection probabilities increase, the
average power consumption of M2 increases and finally significantly
outweighs M1. This occurs because of both the energy wasted by the
CP during the RPR negotiations and the extra energy consumed by the
SP due to more stringent timing constraints (since an amount of time
has been wasted for RPR negotiations.) The MDPBP always consumes
the least power and achieves power savings as much as 34.9%.
Now consider a wireless channel and a server with time-varying
characteristics. In this simulation, the server is simulated as an infinite
queue with a Markovian process based task generator (task incoming
rates λs,1 and λs,2). We assumed that the average task execution time on
the server is 25ms and the processing speed of the server is 20 times
faster than the client. Set Dc, c.f. inequality (5-8), was set equal to 0.65s.
The rest model parameters are shown in Table 2. Results of the off-line
policy are compared with the two baseline polices in Table 3.

Table 2. Model parameters of wireless channel and server.
PER1 PER2 v(1,2) v(2,1)

0% 20% 1/15000 1/10000

λs,1 λs,2 η(1,2) η(2,1)
16 per sec. 24 per sec. 1/20000 1/20000

Table 3. Simulation results of the off-line policy.
Policy M1 M2 MDPBP
Average Power (W) 0.2742 0.2746 0.2412

MDPBP Improvement 12.0% 12.2% --

On-line policy
In this simulation, the server is simulated as an infinite queue with a
randomly generated task trace; the parameters of the wireless channel is
slowly and randomly increased or decreased. The on-line policy is
based on a 5×5 decision table. Due to the limited space, we cannot
include this table here. Simulation results are shown in Table 4.

Table 4. simulation results of the on-line policy.
Mode M1 M2 MDPBP
Average Power (W) 0.2742 0.2570 0.2310

MDPBP Improvement 15.8% 10.1% --

7 Conclusion
A new mathematical framework for extending the lifetime of a mobile
host in a client-server wireless network by using remote processing was
proposed. The client-server system was modeled based on the theory of
continuous-time Markovian decision processes. The DPM problem
was formulated as a policy optimization problem and solved exactly by
using a linear programming approach. Based on the off-line optimal
policy computation, an on-line adaptive policy was developed ad
employed in practice. Experimental results demonstrated the
effectiveness of our proposed methods.
8 References
[1] U. Kremer, J. Hicks, and J. Rehg, “A compilation framework for
power and energy management on mobile computers,” International
Workshop on Languages and Compilers for Parallel Computing, Aug.
2001.
[2] A. Smailagic, M Ettus, “System design and power optimization
for mobile computers,” VLSI on Annual Symposium, IEEE Computer
Society ISVLSI 2002, pp. 15 –19, 2002.
[3] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving
portable computer battery power through remote process execution,”
Mobile Computing and Communications Review, 2(1):19–26, 1998.
[4] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “The remote
processing framework for portable computer power saving,” ACM
Symposium on Applied Computing, San Antonio,TX, Feb. 1999.
[5] M. Othman and S. Hailes, “Power conservation strategy for
mobile computers using load sharing,” Mobile Computing and
Communications Review, 2(1):44–50, 1998.
[6] J. H. Dshalalow, Frontiers in queueing: models and applications
in science and engineering, Boca Raton, Fla.: CRC Press, 1997.
[7] E. O. Elliot, “Estimates of error rates for codes on burst-noise
channels,” Bell Syst. Tech.J., 42:1977-1997, Sep. 1963.
[8] H. Yang, Alouini M. -S, “A hierarchical Markov model for
wireless shadowed fading channels,” Vehicular Technology
Conference, pp. 640-644, 2002.
[9] O. Haggstrom, Finite Markov chains and algorithmic
applications, Cambridge Univ. Press, Cambridge, New York, 2002.
[10] M. Zorzi, R. R. Rao, L. B. Milstein, “Error statistics in data
transmission over fading channels,” IEEE Transactions on
Communications, vol. 46, No. 11, Nov. 1998.
[11] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans.
Computer-Aided Design, pp. 813–833, Jun. 1999.
[12] Q. Qiu, Q. Wu and M. Pedram, “Stochastic modeling of a power-
managed system-construction and optimization,” IEEE Transactions
on Computer-Aided Design, pp. 1200-1217, Oct. 2001.
[13] E. A. Feinberg, A. Shwartz, Handbook of Markov decision
processes: methods and applications, Kluwer Academic, 2002.
[14] C.-H. Hwang and A. C.-H. Wu, “A predictive system shutdown
method for energy saving of event-driven computation,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 28-32, 1997
[15] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu and G. De Micheli,
“Dynamic power management for nonstationary service requests,”
IEEE Transactions on Computers, pp. 1345-1361, Nov. 2002.

911

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

