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ABSTRACT
It appears, in principle, that the laws of quantum mechan-
ics allow a quantum computer to solve certain mathemati-
cal problems more rapidly than can be done using a classi-
cal computer. However, in order to build such a quantum
computer a number of technological problems need to be
overcome. A stepping stone to this goal is the implementa-
tion of relatively simple quantum algorithms using current
experimental techniques.

This paper explores small scale quantum algorithms from
two different perspectives. Firstly, it will be shown how
small scale quantum algorithms can be tailored to fit cur-
rent schemes for implementing a quantum computer. Sec-
ondly, I will review a simple model of computation, based
on read-only-memory. This model allows the comparison
of the space-efficiency of reversible error-free classical com-
putation with reversible, error-free quantum computation.
The quantum model has been shown to be more powerful
than the classical model.

Categories and Subject Descriptors
F.1.1 [Computation By Abstract Devices]: Models of
Computation

General Terms
Algorithms

Keywords
quantum algorithms, reversible quantum circuits

1. INTRODUCTION
Computers have become an indispensable component of

the modern world. They take on a multitude of different
forms in almost every aspect of our lives; from the familiar
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desktop personal computer, to the micro-chips located in
electronic devices such as mobile phones, microwave ovens
and even washing machines. The operation of all these com-
puters can be explained in terms of classical mechanics1.
However, quantum mechanics, not classical mechanics, is
generally accepted as being a more fundamental physical
theory.

What then, is the power of a computer which is governed
by the laws of quantum mechanics? This is the question
addressed by the field of quantum computation2. A com-
plete answer to this question is not likely to be forthcom-
ing in the near future. The analogous question for classi-
cal computation has been studied for almost a century, and
yet the answer is still unknown. What has been shown,
over the last decade, is that there are certain mathemat-
ical problems which a quantum computer can solve with
fewer computational steps than a classical computer [22,
10]. However, building a quantum computer which can out-
perform any classical computer will not be a simple task.
Although quantum mechanics holds true at the microscopic
level, macroscopic objects are governed by classical mechan-
ics. The transition between these two regimes is not well
understood. A ‘useful’ quantum computer will need to be
composed of thousands of qubits3, and therefore will reside
in the boundary region between the microscopic and the
macroscopic.

This paper centers around small scale or toy quantum al-
gorithms [26]. That is, algorithms which DO NOT solve
mathematical problems faster than can be done classically.
Rather, these algorithms act as a test-bed for quantum com-
putation, allowing us to predict the problems which will arise
as we gradually increase the ‘size’ of experimentally imple-
mentable quantum computers.

As stated in the abstract, the ideas presented in this paper
can be broken down into two parts. Section 2 is dedicated
to hybrid quantum algorithms. These are algorithms which
utilize both the discrete quantum levels of a qubit, and the
continuous levels of a quantum harmonic oscillator. In this
section we describe a quantum version of a random walk on
a line. Section 3 overviews the ROM-based model of com-

1By this statement I mean the ‘logical’ operation of these
computers is classical, of course to describe the workings of
a semi-conductor transistor requires quantum mechanics.
2For an introduction to this field the interested reader might
like to consult Nielsen and Chuang [17].
3A quantum bit or qubit is a two level quantum system.
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Figure 1: Circuit diagram for (a) an arbitrary one
qubit gate, and (b) a controlled-NOT gate.

putation, highlighting the differences between the classical
and quantum models. However, before delving into these
areas, the following subsections will very briefly introduce
the key concepts in quantum computation, and describe the
basic principles of ion trap quantum computers.

1.1 Quantum Computation Basics
The model generally used to describe quantum computa-

tion is the quantum circuit model. Rather than manipulat-
ing series of bits using classical logic gates, the quantum cir-
cuit model is based upon the axioms of quantum mechanics.
The basic unit of information in the quantum circuit model
is the quantum bit, or qubit. A qubit is simply a two level
quantum system. This means that a qubit is completely
represented by a unit vector in a two dimensional Hilbert
space. Denoting the two levels of this Hilbert space with
the symbols |0〉 and |1〉, an arbitrary state of a qubit can be
written as

|ψ〉 = a|0〉 + b|1〉, (1)

where a and b are complex numbers, and normalization re-
quires that

|a|2 + |b|2 = 1. (2)

Quantum mechanics dictates that the Hilbert space asso-
ciated with a string of qubits is the tensor product of the
individual Hilbert spaces. Thus 2m − 1 complex numbers
are required to completely describe an arbitrary state of m
qubits.

Just as AND, NOT and FANOUT form a universal set
for classical computation, one example of a universal set for
quantum computation is the set containing arbitrary one
qubit gates, and the controlled-NOT (CNOT) gate. The
quantum circuit diagrams for these gates are depicted in
Fig. 1. The operation of these gates can be completely de-
scribed by giving their matrix representation in the compu-
tational basis,

U =

[
ei(δ−α/2−β/2) cos θ/2 −ei(δ−α/2+β/2) sin θ/2

ei(δ+α/2−β/2) sin θ/2 ei(δ+α/2+β/2) cos θ/2

]

(3)

and

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







. (4)

A quantum computation proceeds by initializing a string
of qubits, which involves placing each qubit in the zero state,

|0〉n−1|0〉n−2 · · · |0〉1|0〉0. (5)

It then proceeds by performing a series of U gates and
CNOT gates. Finally the qubits are measured in the com-
putational basis, obtaining an n-bit string. The quantum
algorithm is a complete description of the sequence of U
and CNOT gates to apply. For a given problem instance,
the final measurement yields a bit string which, with finite
probability, will correspond to the problem solution.

1.2 Ion Trap Quantum Computers
In the beginning of the introduction it was stated that the

laws of quantum mechanics are generally accepted as being
fundamental physical laws. We have also stated that the
quantum circuit model obeys these laws. Why then, do we
not already use quantum computers? The key problem is
that quantum mechanics describes the evolution of isolated

physical systems. It is the dual task of controlling the evo-
lution of a physical system whilst trying to maintain a high
degree of isolation which is extremely difficult to achieve ex-
perimentally. Considerable experimental effort is underway
to develop physical systems which are suitable for quantum
computation; in various forms ranging from gas to liquid to
solid state. For a review of some schemes for implement-
ing a quantum computer see the special issues on quantum
computation in Fortschr. Phys. [8].

The hybrid algorithm discussed in the subsequent section
is based on implementation in the ion trap quantum com-
puter. Using ion traps for quantum computation was first
suggested by Cirac and Zoller [5]. There are a number of
groups world-wide who are performing quantum informa-
tion experiments with ion traps, including the University of
Aarhus, the University of Michigan, the University of Ham-
burg, IBM-Almaden, the University of Innsbruck, Kansai
Advanced Research Center, Los Alamos National Labora-
tory, the Max-Planck Institute, the National Institute of
Standards and Technology and Oxford University. For a
nice review of the status and prospects of quantum infor-
mation experiments with trapped ions I would suggest the
recent papers by Hughes et al. [11] or Sackett [20].

As the name implies, an ion trap quantum computer re-
quires the trapping of charged particles. It is impossible
to trap a charged particle in free space using static electric
fields. Thus, in the case of the linear Paul trap, the ions
are confined using time-dependent radio-frequency electric
fields [18, 9, 4, 23]. A schematic diagram of a linear Paul
trap, taken from Sackett [20], is depicted in Fig. 2. The
trap consists of four parallel rods. A radio-frequency volt-
age is applied to the continuous rods, while the segmented
rods are held at a DC potential. This gives an oscillating
field which is zero along a line between the rods. To provide
axial confinement, a positive voltage is applied to the outer
segments of the DC rods, while the inner segments are held
at ground or a negative potential.

As the electric field oscillates rapidly compared to the fre-
quencies of the ions’ motion, the time-averaged effect on
the ions can be described by a harmonic potential. Due
to Coulomb forces, the ions are strongly coupled, with 3N
different modes [12]. Each of these modes behaves as a quan-
tum mechanical harmonic oscillator.

As single valence ions are generally used, their internal
states are similar to those of a neutral hydrogen atom; thus
there is a large number of states to choose from. The four
key states required for quantum computation are depicted in
Fig. 3. Two of the levels are selected as the |0〉 and |1〉 states.
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Figure 2: Schematic diagram of a linear Paul trap,
consisting of four parallel rods. A radio-frequency
voltage is applied to the continuous rods, while the
segmented rods are held at a DC potential. The star
indicates the position of the ion(s).

These levels ideally are not connected by a dipole transition;
which means they have very low spontaneous emission rates,
and are thus metastable. The |p〉 state is an unstable excited
state which is used to initially prepare the ion in a known
state. As the diagram indicates, it is possible for the electron
to decay from |p〉 to |1〉 or |0〉. But by optically pumping
the |p〉 ↔ |1〉 transition, eventually the ion will be left in
the |0〉 state with high probability. This procedure has been
used to prepare ions with fidelities greater than 0.99 [20].

p

1

d

0

Figure 3: Electronic energy levels required for an
ion qubit. States |0〉 and |1〉 are meta-stable states
which store the quantum information. State |p〉 is
used for optical pumping, required to prepare the
ion in a known state. State |d〉 is used for detection.

As well as preparing the internal state of the ions it is
also necessary to prepare the ions in the motional ground
state. One of the mechanisms used to cool the ions to their
ground state is known as sideband laser cooling [29, 19, 7].
Sideband laser cooling is accomplished by tuning a laser to
the first red sideband. This is a frequency which is one unit
of vibrational frequency below the atomic transition. Thus
a transition of the form |0, n〉 ↔ |d, n− 1〉 is induced, where
the zero denotes the internal ground state, the d denotes the
detection state (see Fig. 3), and the n and n − 1 represent
phonon number states. Thus each excitation/decay cycle of
the ion will remove approximately one quantum from the
motional mode.

Single qubit operations are performed by coherently driv-
ing the |0〉 ↔ |1〉 transition for a time t and with a phase
φ, which in the interaction picture, results in the operation
R(Ωt, φ), where Ω is Rabi frequency for the transition and

R(θ, φ) =

[
cos(θ/2) eiφ sin(θ/2)

−e−iφ sin(θ/2) cos(θ/2)

]

. (6)

Couplings between the internal states of the ions and their
motional states are achieved by applying red or blue side-

band laser pulses similar to those applied during the cooling
process [6, 14, 12].

Finally, near perfect detection of an ion can be accom-
plished by driving a transition between the states |0〉 ↔ |d〉
(see Fig. 3). If the ion is in the |0〉 state then it will fluoresce
brightly as the ion cycles between the two states. Whereas,
if the ion is in the |1〉 state, no fluorescence will be observed.
The number of photons emitted by the bright state can be
more than 105, thereby creating detection efficiencies greater
than 99% [15, 21, 3].

2. HYBRID QUANTUM ALGORITHMS
One might wonder if the term small scale is applicable

when used in conjunction with a continuous quantum sys-
tem, which spans an infinite Hilbert space. In practice, how-
ever, the size of the Hilbert space is limited by experimental
considerations, such as the precision to which a measure-
ment can be made, or the amount of energy which can be
supplied to a system.

There are several reasons why we might want to initially
implement quantum algorithms which utilize a continuous
quantum variable. Firstly, it gives us access to a Hilbert
space which, though not infinite, is far larger than we can
currently create using qubits alone. Another reason is that
certain mathematical problems are easily described in terms
of a single many level system rather than a combination of
two level systems. However, our main reason is to attempt
to fully utilize the natural dimensionality of the ion trap
quantum computer.

We describe below the implementation of a quantum ana-
log of the random walk on a line [16]. The tailoring of this
algorithm to an ion trap was initially described in [27].

2.1 Quantum Walk
Recently, several groups have investigated quantum ana-

logues of random walk algorithms, both on a line [16] and
on a circle [1]. It has been found that the quantum versions
have markedly different features to the classical versions.
Namely, the variance on the line, and the mixing time on
the circle increase quadratically faster in the quantum ver-
sions as compared to the classical versions. Here, I review a
scheme to implement the quantum random walk on a line in
an ion trap quantum computer. With current ion trap tech-
nology, the number of steps that could be experimentally
implemented will be relatively small. However, it should
be possible to implement enough steps to experimentally
highlight the differences between the classical and quantum
random walks, providing an important proof of principle. In
the limit of strong decoherence, the quantum random walk
tends to the classical random walk. By measuring the degree
to which the walk remains ‘quantum’, this algorithm could
also serve as an important bench-marking protocol for ion
trap quantum computers.

Random walks can take many different forms, starting
from the simple discrete random walk on a line, to random
walks on graphs, to continuous time random walks, such as
brownian motion. In this paper we are only considering dis-
crete time, discrete space, random walks on a line. Imagine
a person standing at the origin of a line with a coin in their
hand. They flip the coin, and if it comes up heads, they
take a step to the right, if it is tails, they take a step to
the left (all steps are of a fixed size). They then repeat this
procedure, flipping the coin, and taking a step based on the
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result. The probability, PN (d), of being in a position d after
N steps is

PN (d) =
1

2N

(
N

d+N
2

)

, (7)

where PN (d) is defined on the set d ∈ {−N,−N +2, . . . , N−
2, N} and the round brackets denote the combination of
two integers, ( n

r ) = nCr. The non-zero elements of the
distribution are simply terms from Pascal’s triangle, divided
by the appropriate factor of two.

Now let us consider a quantum version of the walk on a
line. The first modification we can make is to replace the
coin with a qubit. In this section we shall be representing
the two levels of the qubit with the states | ↓〉 and | ↑〉
rather than |0〉 and |1〉. If we start with the qubit in the
down state, and apply a Hadamard operation, we get an
equal superposition of up and down,

H| ↓〉 =
1√
2
| ↑〉 +

1√
2
| ↓〉, (8)

remembering that

H =
1√
2

[
1 1
1 −1

]

. (9)

If we were to measure the qubit, and step left or right de-
pending upon the result, we would obtain exactly the classi-
cal walk described above. Now, rather than a person holding
a coin, suppose we have a particle, whose motion is con-
fined to one dimension. We can now treat the particle as a
quantum system, and perform the quantum walk as follows.
During each iteration, we apply the Hadamard operation,
followed by the operation which steps right if the qubit is
down, and steps left if the qubit is up. That is, we apply
the operator

Û = eip̂ZH, (10)

where p̂ is the momentum operator of the particle confined
to one dimension, and Z is the Pauli-z operator acting on
the qubit. Thus, if we initially start the system with the
qubit in the down state and the particle at the origin,

|Ψ0〉 = |0〉| ↓〉, (11)

applying Eq. (10) results in the state

|Ψ1〉 = Û |Ψ0〉
= eip̂ZH|0〉| ↓〉

=
eip̂Z

√
2

(|0〉| ↓〉 + |0〉| ↑〉)

=
1√
2
(|1〉| ↓〉 + | − 1〉| ↑〉). (12)

Therefore, the state of the system after N steps is

|ΨN 〉 =
(

eip̂Z
)N

|Ψ0〉, (13)

where |Ψ0〉 is the initial state of the system. The mean of
the distribution produced by this quantum random walk is
not necessarily zero. It is dependent upon the initial state
of the qubit. For example, choosing the initial state of the
qubit to be down gives a non-zero mean after the second
step. For the remainder of this paper, we shall only be
considering the distribution created with the initial qubit

state 1√
2
| ↓〉+ i√

2
| ↑〉 which has a mean of zero for all values

of N ,

|Ψ0〉 =
1√
2
|0〉(| ↓〉 + i| ↑〉). (14)

The non-zero elements of this distribution are no longer sim-
ply terms from Pascal’s triangle which arose in the classi-
cal case. The deviations from the classical distribution are
caused by quantum interference effects.

The ion trap provides a convenient setting for implement-
ing this walk, as it contains the required discrete and contin-
uous quantum variables. For the remainder of this chapter
we shall be discussing implementations based on a single
9Be+ ion, confined in a coaxial-resonator radio frequency
(RF)-ion trap, as described in [14] and references therein.

The preparation involves laser-cooling the ion to the mo-
tional and electronic ground state, |0〉| ↓〉, as described in
[13]. A sequence of four Raman beam pulses are then applied
[14] to create the state (|α〉| ↓〉 + | − α〉| ↑〉)/

√
2, where |α〉

denotes the coherent state of the oscillator. The first pulse
is a π/2-pulse which creates an equal superposition of |0〉| ↓〉
and |0〉| ↑〉. A displacement beam is then applied which ex-
cites the motion correlated to the | ↑〉 internal state. The
third pulse is a π-pulse which exchanges the internal states,
and finally the displacement beam is applied again. The
combined action of the four pulses is to effectively perform
the operator Û , defined in Eq. (10). The quantum random
walk on the line is accomplished by repeating this sequence
of pulses N times. Fig. 4 contains the Wigner function ob-
tained by tracing over the internal degree of freedom after
five steps of the quantum random walk algorithm.

−10 −5 0 5 10−2
0

2
−0.2

−0.1

0

0.1

0.2

0.3
Quantum Random Walk on a Line

W
(x

,p
)

Figure 4: Wigner function of the particle after five
steps of the quantum random walk on the line. (The
electronic level of the ion has been traced over.)

In current ion trap experiments there are a number of
sources of decoherence. The largest source in many experi-
ments is anomalous heating of the lower vibrational modes
of the ions. The theory behind this heating is not well un-
derstood. Therefore, in this section we neglect this source
of decoherence, and instead concentrate on the decoherence
of the electronic levels of the ion.

Decoherence of the electronic levels of the ion during the
application of the algorithm has the effect of gradually trans-
forming the quantum random walk to the classical random
walk. Rather than considering this to be a negative effect,
we can measure the degree to which the ion is acting as
a quantum variable rather than a classical variable, and
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thereby effectively measure the level of decoherence in the
ion trap.

The scheme for measuring the random walk utilizes sim-
ilar operators to those employed in the application of the
algorithm. After applying the random walk sequence for
some number of steps, the internal state of the ion is de-
coupled from the motional state by an appropriate Raman
pulse. An effective operator such as exp(ip̂Y ) is applied,
where Y is the Pauli-y operator. Before finally measuring
the internal state of the ion. Thus we are using the inter-
nal state of the ion to supply us with information about the
motional state. Suppose we decouple the internal state from
the motional state by measuring whether the ion is in the
state | ↑〉 or | ↓〉. We then apply the operator

M̂± = e±ip̂Y . (15)

The positive Hamiltonian is applied upon obtaining the re-
sults | ↑〉, whilst the negative Hamiltonian is applied oth-
erwise. Finally, we again measure the internal state of the
ion. This last measurement result yields information about
the spread of the probability distribution associated with
the random walk [27].

3. ROM-BASED COMPUTATION
It is well known that the measurement of a qubit can

yield a maximum of one bit of information. This does not
mean, however, that a single qubit and a single bit have the
same computational power. This section introduces a model
of computation based on read only memory (ROM), which
allows us to compare the space-efficiency of reversible, error-
free classical computation with reversible, error-free quan-
tum computation. This model, and the results presented
in this section were developed by coauthors and myself in
Travaglione et al. [28] and experimentally implemented in
[24].

In this section we consider mappings between strings of
boolean variables (bits) of the following form,

u1u2 . . . uj 00 . . . 0
︸ ︷︷ ︸

n (qu)bits

F−→ u1u2 . . . ujf1f2 . . . fn, (16)

where each ui ∈ {0, 1} and each fi ∈ {0, 1}. It is evident
from Eq. (16) that the first j bits have the same initial and
final values; however in our model we shall require that the
values of the first j bits are also not altered during any of
the steps of the computation, so we can consider them to
be read-only memory or ROM bits. Each of the last n bits
are mapped to zero or one, depending on the values of the
ROM bits. Therefore we can think of each of these n bits as
writable bits, whose final value is a boolean function of the
ROM-bits,

fi(u1, u2, . . . , uj) : B
j
2 → B2 i ∈ {1, 2, . . . , n}, (17)

where B
j
2 denotes a binary string of length j.

In the classical case, a given function fi is generated by a
sequence of arbitrary classical reversible gates acting on the
n writable bits. Additionally, any of these gates can be ap-
plied conditionally upon the value of one of the j ROM bits.
We are using only reversible gates to preserve the number
of writable bits.

In the quantum case, arbitrary quantum gates can be ap-
plied to the n qubits, and once again any of these gates
can be applied conditionally upon the value of one of the

j ROM bits. However, it should be remembered that each
of the fi are boolean expressions; thus whilst the qubits
can exist in superpositional states during the computation,
at the conclusion they must be in a computational basis
state. This means that the entire computation (including
measurement) is deterministic and reversible, as measuring
the n qubits at the end of the computation will have no ef-
fect on their state. Intermediate measurements can be made
in neither the quantum or classical models, as the storing of
the measurement result would be effectively expanding the
workspace.

Just as in conventional quantum circuit theory, we can
use circuit diagrams to represent ROM-based computations.
As is standard in quantum computational circuit diagrams,
the writable (qu)bits will be represented as horizontal lines,
whose states change as various gates are applied from left
to right. The ROM bits will be depicted above the circuit
diagram, with a line from a ROM bit to a gate implying
that this gate is applied only if the ROM bit has value one.
Fig. 5 contains an example of a ROM computation circuit
diagram. This diagram depicts the computation

u1u2u3|0〉|0〉 F−→ u1u2u3|f1〉|f2〉, (18)

where

|f1(u1, u3)〉 = |u1 ⊕ u3〉 and

|f2(u1, u2)〉 = |u1 ⊕ u1u2〉. (19)

u3u1 u2

u1

u11

u11 u2

u30

0

Figure 5: An example of a ROM-based circuit dia-
gram. The variables at the top of the diagram are
the ROM bits.

There are 2∧(n2j) Boolean functions from j bits to n bits.
We shall define as universal a ROM-based computer which
is capable of calculating all of these functions.

Theorem 1. A ROM-based quantum computer with one

writable qubit is universal.

For brevity, we omit the proof of this theorem, which can
be found in [28].

On the other hand, a ROM-based classical computer with
one writable bit will not be universal. This can be seen as
a consequence of theorem 5.2 from [25], which states that
there exist invertible functions of order n which cannot be
obtained by composition of generalized Toffoli gates of order
strictly less than n.

Now consider a ROM-based classical computer with two
writable bits. It is possible to deduce that this will be uni-
versal using Lemma 7.3 from Barenco et al. [2]. Thus we
have the following theorem:

Theorem 2. A ROM-based classical computer with two

writable bits is universal.
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These two theorems imply that the a quantum computer is
more space efficient within this model.

4. CONCLUSIONS
We have shown how certain simple quantum algorithms

can be tailored to fit current experimental schemes. In par-
ticular, we have reviewed an implementation scheme for a
quantum random walk using ion trap technologies. At this
point it is unclear whether discrete quantum walks will have
any useful algorithmic applications. However, they can pro-
vide an important tool for exploring the effects of decoher-
ence within an ion trap quantum computer. We have also
shown that quantum computation is more space efficient
within the ROM-based model of computation.

In conclusion, although large scale quantum computers
may not be built for many years to come, this paper has
pointed to some small scale algorithmic tasks which can be
investigated using current experimental techniques. These
small scale quantum algorithms allow us to analyze essential
aspects of quantum computation; such as decoherence rates
and minimum resource requirements.
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