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ABSTRACT
As processing technology scales down to the nanometer regime,

capacitive crosstalk is having an increasingly adverse effect on

circuit functionality, leading to increasing number of chip failures.

In this paper, we propose mapping the static crosstalk functional

noise problem into the well understood static timing problem. The

key differences between static noise and static timing analyses,

namely the injection of noise, accurate noise window propagation

and register sensitive window computation are the contributions of

this work. We demonstrate the effectiveness of this approach in

two industrial designs by achieving 5X reduction in functional

noise failures over noise propagation without considering timing

of the composite noise pulse envelope, and 30X reduction in

functional noise failures over net based noise failure metrics.
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1. INTRODUCTION
Early research on noise analysis in digital circuits focused on

functional failures caused by charge sharing, crosstalk and leakage

noise in dynamic circuits [1]. Recently noise induced chip failures

are manifested in static cell based designs as well, where most of

the research up to now has been focused on the noise effects on

delay [2][3]. However, functional noise failures are real even in

static CMOS logic. If the noise glitch at the input of a storage

element is large enough and occurs at the right time, a functional

violation will occur resulting in the wrong logic state being stored.

Once noise violations are detected, they must be fixed by design

changes that involve either buffer insertion, driver sizing or

rewiring [4][5]. Existing techniques in noise analysis tend to

overestimate noise violations, resulting in unnecessary design

changes. Making the matter worse is the fact that crosstalk

problems are heavily dependent on detail routing, hence the

accurate analysis and design changes can only take place late in

the design flow. Hence, reducing false noise violations is critical

to design closure.
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We now review existing techniques in functional noise analysis.

The most basic approach to functional noise analysis is to simply

calculate the glitch noise magnitude at every net and report the

nets with glitch magnitude exceeding a certain voltage threshold as

potential violators [4]. This approach often reports hundreds or

even thousands of false violations so it is difficult to use. Timing

windows are often employed to filter aggressors that cannot switch

simultaneously [6], which helps reduce false violations.

Shepard and Narayanan [1] suggested using noise stability as a

conservative metric to measure the response of the receiving gates

to a given noise glitch using circuit simulation. A violation is

reported only when the receiving gate is amplifying the input

noise, regardless of the magnitude of the input noise itself. This

approach, though conservative, often reduces false violations by an

order of magnitude or more over the previous approaches, as glitch

noise is fundamentally AC in nature and CMOS gates are low pass

filters. A characterization scheme has been proposed [7] to

improve runtime while trading off some accuracy.

To further reduce false violations, two industrial noise analysis

tools [8][11] allow noise to propagate through combinatorial cells

and non-linearly combine with downstream crosstalk noise. In [8],

coupling noise is performed at the cell level, whereas noise

propagation with any additional coupling on cell output is

performed at the transistor level. Noise stability is checked only at

the inputs of registers. This further reduces false violations by

another order of magnitude. In many industrial designs at 0.18um

to 0.13um the number of failures reported is often much less than a

hundred.

However, the timing of the noise glitch is not considered, hence

any propagated noise is allowed to combine with any coupling

noise. Further, the timing of the resulting noise glitch at the

register input is not considered, resulting in many false violations.

Sensitivity window calculation is mentioned in [10] by backward

propagation from register inputs based on gate delays, yet the

authors also pointed out that some amount of delay compensation

is needed to account for the difference in propagation delay

between a switching signal and a noise glitch. Since the delay

difference can be cumulative through many levels of logic, the

amount of compensation can be substantial for victim nets that are

many levels upstream from the storage element.

In this paper we propose forward propagation of functional noise

windows. Noise window is defined as the worst case duration of

time that significant noise glitches can occur on a given net. The

noise window width is bounded by the union of the aggressors’

timing windows, with adjustments for the coupled interconnect

delay between aggressor and victim. Accuracy is achieved by

utilizing circuit simulation techniques for noise propagation, while

runtime is kept in check by judicious use of noise filtering to

reduce the need for unnecessary noise propagation analysis. Once

the glitch noise is propagated to the input of a register, an

additional sensitive window based on the clock trigger time, with

adjustment for setup and hold times, can be applied to further filter

glitch noise that occur outside of the sensitive period of the

register.
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2. STATIC NOISE ANALYSIS
Functional noise exists in circuits that may or may not be

detrimental to the correct functionality of the circuit. However, if a

sizable functional noise occurs at the input of a register when the

register is active, the wrong logic value could be stored in the

register. Therefore, static noise analysis should keep track of the

maximum noise value at every time point within a clock period, for

every net in the design.

2.1 Comparison to Static Timing
Conceptually, noise glitches propagate through logic gates just as

switching signals propagate through logic gates. The similarities

and key differences are explained in this section. The terminology

for a simplified static timing model is illustrated in Figure 1.

Notice that this is intended to capture just the essence of static

timing, with many details left out. Static timing analysis calculates

the early and late arrival times in every net. For net 3 in the

diagram, this is represented by the [t3E,t3L] pair. The early and late

arrival times at register inputs are checked against the clock arrival

time tCK and the setup and hold times to determine timing

violation. An analogous diagram for static noise analysis is shown

in Figure 2. Contrary to timing analysis, the early and late arrival

times of glitch noise are not determined by the net’s fanin, but by

the net’s aggressors’ early and late arrival times. In other words,

the injection of noise and its associated noise window is

determined not by circuit topology but by a net’s capacitive

neighbors.

In Figure 2, nets a1 and a2 are aggressors to nets 1 and 2

respectively. [ta1E,ta1L] defines the early and late arrival times, or

timing windows, of aggressor net a1. When a1 switches, a noise

glitch is created on net 1 at time tDa1 delay from the switching

point of a1 to the gate input of net 1. The peak magnitude of the

noise on net 1 is represented by v1. Hence, the noise window on

net 1 is represented by the triplet [t1E,t1L,v1]. A similar calculation

is performed on net 2. Next we calculate the noise window on net

3. The detail mechanics of noise propagation is discussed in

Section 2.3, but in essence we need to calculate the output noise

waveform and the propagation delay from input noise peak to

output noise peak. The propagation delay is represented by tD13
and tD23. The output noise magnitude from input noises at net 1

and net 2 are represented by v13 and v23 respectively. The noise

window at net 3 is the union of the noise window on net 3

contributed by net 1, and the noise window on net 3 contributed by

net 2. Finally, when a noise window reaches a register input, the

intersection of the noise window and the register’s sensitive

window forms the effective noise window [t3E’,t3L’,v3’]. The

worst case noise waveform within the effective noise window is

used as propagated noise input to the register to determine noise

immunity.

2.2 Noise Window Computation and Propagation
The method of calculating the worst case glitch noise, the

associated noise window, and the propagation of the noise window,

is illustrated using an example shown in Figure 3. We define VL

noise to be the glitch noise above ground, and VH noise to be the

glitch noise below the power supply level. Net A has a VH noise

caused by capacitive coupling, which can be propagated onto net B

as VL noise, and combine with additional coupling on net B from a

rising transition on aggressor net C. The combined VL noise on B

gets propagated onto D as VH noise, which again gets combined

with more coupling noise from aggressor net E. Net D is the data

input to a flip flop, which has a sensitive window as defined by the

timing window of the clock padded with setup time on the early

edge and hold time on the late edge. The resulting worst case

combined noise on D is evaluated for noise stability on the flip flop

storage node with respect to D to check for noise violation.

The corresponding timing diagram is shown in Figure 4, with

arbitrary timing windows on aggressors C and E and clock CK to

illustrate noise combining and noise window propagation.

The glitch noise on A is caused by coupling from aggresors that is

not shown here. The noise window on A is propagated to B by

gate

[t1E,t1L]

[t2E,t2L]

[t3E,t3L]

tCK

[t3E,t3L] = [min(t1E+tD,t2E+tD),max(t1L+tD,t2L+tD)]

t3L < tCK - tSETUP
t3E > tCK - tCYCLE + tHOLD

Fig. 1.  Simplified static timing model

1

2

3

[t3E’,t3L’,v3’] = [t3E,t3L,v3]

Fig. 2.  Noise window model

[t1E,t1L,v1] = [ta1E+tDa1,ta1L+tDa1,va1]

[t2E,t2L,v2] = [ta2E+tDa2,ta2L+tDa2,va2]

[tCK-tSETUP ,tCK+tHOLD]

gate

[t1E,t1L,v1]

[t2E,t2L,v2]

[t3E,t3L,v3]

tCK

1

2

 3

[ta1E,ta1L]

[ta2E,ta2L]

a1

a2

[t2E+tD23,t2L+tD23,v23]

[t3E,t3L,v3] = [t1E+tD13,t1L+tD13,v13]

A B

C

D

E

D Q

CK

Fig. 3.  Noise propagation and combining example
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shifting the window by the delay of the noise glitch from A to B.

B(A) indicates the noise constituent on B due to A.

Net C is an aggressor to net B and its timing window is shown

above. Noise window on B due to coupling from C is shown below

as B(C). By superposition of B(A) and B(C) we derive the peak

noise envelope on B as shown in B below. A combined simulation

of propagated noise from A and coupling noise from C on net B is

performed to get accurate combined noise effects. This combined

noise can be significantly larger than the superposition result due

to the non-linear characteristics of the driving gate [11]. The noise

envelope on B must be adjusted to account for this difference.

From this noise envelope we derive the noise window for B. If the

noise peak is less than a certain voltage threshold, normally

defined to be the minimum threshold voltage of the receiving

gates, it is safe to assume the noise will not be propagated to any of

the receiving gates. A rare exception is when the noise is barely

below threshold on the input of a single stage cell and the cell

output has significant coupling occurring at the same time, then the

output coupling noise can be underestimated. This issue of driver

subthreshold weakening is currently ignored. Ignoring this

exception, the noise window is derived to be the noise envelope

region that exceeds the DC threshold, as shown in B(NW).

Similarly, noise on E is caused by a combination of crosstalk from

aggressor E resulting in D(E), and the propagation of the noise

window from B resulting in D(B). Again by superposition and

combined simulation, we derive the combined noise envelope on

net D. Since net D is the data input we further constrain the noise

envelope by the sensitive window on D, which is shown below as

D(SW) which is [tCK-tSETUP ,tCK+tHOLD]. The final noise

envelope on D is shown below as D(final). The combined noise on

D is then analyzed for noise stability by performing a circuit

simulation of the flip flop with input noise on D. Note that had the

noise on D arrive a bit earlier it would have completely missed the

sensitive window, or had the noise on D arrive a bit later a much

larger noise would affect the flip flop.

In timing window based noise analysis [6], the goal has been to

derive the set of aggressors that produces the worst noise on a

given net. However, we are interested in the entire noise versus

time profile, where the bounds determine the noise window. At

every time instant a worst case noise must be produced from all the

possible noise sources, which may include coupling aggressors

from neighboring nets and propagated noise sources from the

driving gates. Under certain conditions, such as the presence of

mutually exclusive timing windows or logic constraints, several

mutually exclusive groups of noise sources must be analyzed to

determine the worst case noise group. The method we use to

determine the worst noise group is based on the linear summation

of each individual noise source’s noise contribution to the victim.

The noise group that gives the maximum noise peak by linear

summation will be selected. After the worst group is determined,

then we do a single combined simulation with multiple noise

sources acting together simultaneously. An accurate noise

waveform will be computed considering the non-linearity of the

driver under multiple noise sources.

If unbuffered latches (or flip-flops) are used in the design, an

additional overshoot/undershoot coupling noise analysis must be

performed on direct data inputs of the latches. Noise induced

glitches below Gnd or above Vdd may cause the latch to lose its

internal stored logic value even when the latch is inactive.

Therefore, two separate analysis must be performed on the inputs

of unbuffered latches. The first analysis is based on noise window

and sensitive window, as explained above. The second, additional

analysis focuses only on coupling noise on the unbuffered input.

The propagated noise component is ignored as noise propagation

cannot result in noise above Vdd or below Gnd based on device

physics. Two separate noise immunity analyses are performed on

the unbuffered latch and the worst case noise immunity is reported.

2.3 Noise Waveform Propagation
There have been attempts in the past to characterize noise

propagation. There are two fundamental difficulties involved.

First, the number of characterization parameters is large. To

accurately model a noise waveform, at least two, may be three,

parameters are needed. These include the peak and the width of

the noise glitch, or the peak, leading and trailing slopes of the

noise glitch if higher accuracy is desired. Together with output

load, and the number of input to output arcs in a gate, the

characterization tables can be very large. Second, the combined

effect of multiple input propagated noise, and the combined effect

of noise propagation with additional crosstalk on the output net

cannot be easily modeled. Therefore, we decided to use transistor

level simulations for noise window computations. However, we

should note that the noise window method itself is independent of

the noise propagation model. A noise propagation model based on

characterization of input/output arcs and linear superposition can

be employed in the noise window framework, but with the loss of

accuracy as explained above.

Even though the peak noise in a design can be large, the

percentage of nets with noise exceeding the threshold voltage is

small. From experimental data with many large industrial designs,

the number of nets that require transistor level noise propagation

analysis, based on the minimum threshold voltage requirement, is

typically less than 5% of the total nets in a design. Therefore, the

runtime penalty for using transistor level simulations is minimal.

Table 1 shows the percentage of total runtime consumed by

transistor level circuit simulations in a static noise analysis tool.

As shown in the table, the additional runtime due to transistor level

simulations are minimal..

Special sensitization is required for noise propagation to guarantee

the worst case combination of noise glitches are captured [9]. The

sensitization algorithms employed in this work are proprietary, but

similar concepts have been published in [12] and [13]. Basically, a

circuit is partitioned into channel connected components, and

Fig. 4.  Noise window propagation timing diagram
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B(C)

DC threshold
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B(NW)

D(B)
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sensitization equations, formulated using BDDs [14], for noise

propagation are derived by logic extraction through a transistor

level network. Once the propagated noise equations are

formulated, the satisfiable vectors are enumerated for circuit

simulation. In order to reduce the number of circuit simulations,

vectors that are deemed electrically equivalent, with similar

resistance and capacitance characteristics in the transistor level

network, are simulated only once. The propagated noise

sensitization concept is illustrated with a 2 input NAND gate as

shown in Figure 5.

The table on top of Figure 5 shows the two different sensitizations

for input VL noise. At least one of the two NMOS transistors in

the pulldown stack must be ’ON’ for the input VL noise on the

other input to cause a VH noise on the output. Assuming the input

noise on A and B are equal, and the 4 transistors are well balanced,

the output VH noise on Y due to A would be slightly larger than

noise due to B because of the smaller output capacitance in the first

case. This kind of subtle effects are very difficult to capture

without exhaustive vector enumeration together with transistor

level simulation. In the bottom table, three vectors are possible to

sensitize output VL noise due to input VH noise. The worst case is

both inputs A and B having input VH noise, if they both happen

around the same time. In the previous section we described a

technique using noise superposition to arrive at the combined noise

window. Here we perform a combined simulation to get the

accurate combined effects of both input noise. The resulting

combined noise may be significantly higher than the superposition

result due to the turning-off of the pulldown N-stack. The noise

window magnitude and width are adjusted based on the combined

simulation result.

In our noise propagation formulation we have chosen to ignore a

second order noise effect to simplify the problem. An aggressor

causes a noise glitch on a victim, and the noise glitch on the victim

in turn causes a noise glitch on the victim’s victim. This second

order noise effect is shown in Figure 6. Noise windows can be

easily extended to include glitch noise caused by both switching

aggressors and glitching aggressors. An iterative noise analysis

may consider these glitching aggressors. Since the noise impact

from glitching aggressors are usually small, as shown in the Spice

simulation results in Figure 6, the iterations should converge

quickly. .

3. RESULTS
The methods described in this paper has been implemented in an

industrial static noise analysis tool. We now present experimental

results on two industrial designs. Design A consists of 15K cell

instances, 3.6M coupling capacitances, 410K grounded

capacitances and 405K resistances. It was implemented in 0.3um

technology. The design is driven by a 2.0V power supply and

400MHz and 250MHz clocks. The results are reported in Table 2.

This design has been fabricated and the silicon was functional, as

correctly predicted by the noise analysis result that indicates the

absence of noise violation.

Design B consists of 14K cell instances, 36K coupling

capacitances, 55K grounded capacitances and 58K resistances. It

was implemented in 0.12um technology. The design is driven by a

1.32V power supply and 300MHz and 150MHz clocks. The

results are reported in Table 3.

First we perform static noise analysis using a voltage threshold as

the noise immunity metric. We define the threshold to be 30% of

supply voltage. Next we analyze the same designs using the noise

sensitivity metric [1], which is conservative yet significantly

reduce the number of reported failures. Then we run noise

analysis again with noise propagation enabled, but without noise

windows and register sensitive windows. Finally we run noise

analysis with noise window propagation and register sensitive

window enabled. In Tables 2 and 3 we report the number of noise

violations as defined by the four different noise metrics. The

results are listed under Vp (peak), dVo/dVi (sensitivity), prp (noise

propagation) and nw (noise window propagation).

Unfortunately in the original designs the number of noise failures

are relatively small, so whichever noise metric was used the

Table 1: Transistor level simulation runtime as a percentage of
total noise analysis runtime

Process # Nets
%Transistor
simulation

runtime

0.18 um 114,647 1.4%

0.15 um 174,009 0.4%

0.15 um 1,399,476 0.1%

0.13 um 457,091 0.9%

0.13 um 532,178 6.2%

A B

Vdd

Y

1

1

A B Y (VH)

1

1

A B Y (VL)

Fig. 5 Noise Propagation

Silvaco International Thu Mar 14 11:46 200
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0.4V
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1.0V

* v(a1)
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Fig. 6.  Victim behaving as an aggressor
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victim

victim’s victim
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difference in the number of noise violations is not significant. This

is possibly due to the designs not being routing congested. For

routing congested designs at higher clock speeds we expect the

number of noise failures to increase. To show the effectiveness of

the noise window methodology, we artificially increased all

coupling capacitances in the designs while keeping all other design

parameters unchanged. As shown in Tables 2 and 3, the reduction

in false noise violations using noise windows is more than 200

times over the peak noise metric. The improvement over the net

based sensitivity metric [1][8][9] is also significant at over 30

times. The improvement over noise propagation without

considering noise windows is 5 times.

Figure 7 graphically suggests where this improvement is coming

from for Design B. The figure plots the number of register input

nets with significant noise (noise peak exceeding Vdd/2) against

their arrival times at the register input within the clock period. As

shown in the grey box, most noise in this design arrives at register

inputs during the middle of the clock period when the clock is

inactive, which gets pruned away by the register sensitive window,

and will not result in functional failure.

The runtime impact of noise window analysis is insignificant and

therefore is not reported here.

4.  CONCLUSION
We have presented a method of noise propagation considering

noise windows and the sensitive window of the receiving registers.

Our results on industrial designs proved this method to be highly

effective in reducing the number of reported false noise violations.

We will continue to test this methodology on additional designs

that may have more noise problems, and hopefully demonstrate the

scalability of the methodology.

In terms of future direction, we plan to run the same analyses again

considering small, or insignificant, aggressors. For a given victim

net, the number of small aggressors can exceed a thousand

depending on the coupling capacitance extraction threshold. If

each small aggressor is analyzed separately the impact on runtime

will be unacceptable. However, the timing behavior of small

aggressors can be nicely captured in the noise window by

superposition. A timed virtual aggressor can be created to model

the combined effects of the small aggressors at any given time.
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Table 2: Noise metric comparison for Design A

Design A Vp
dVo/
dVi

prp nw

Original 7 1 0 0

10x Coupling 1569 261 27 6

Table 3: Noise metric comparison for Design B

Design B Vp
dVo/
dVi

prp nw

Original 10 1 0 0

5x Coupling 2465 398 66 12

Fig. 7.  Register input noise distribution over clock period
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