
SAT-Based Unbounded Symbolic Model Checking
Hyeong-Ju Kang and In-Cheol Park

Dept. of EE, KAIST
373-1 Guseong-dong Yueong-gu

Daejeon, KOREA
+82-42-869-4405

{dk,icpark}@ics.kaist.ac.kr

ABSTRACT1
This paper describes a SAT-based unbounded symbolic model
checking algorithm. BDDs have been widely used for symbolic
model checking, but the approach suffers from memory overflow.
The SAT procedure was exploited to overcome the problem, but it
verified only the states reachable through a bounded number of
transitions. The proposed algorithm deals with unbounded
symbolic model checking. The conjunctive normal form is used to
represent sets of states and the transition relation, and a SAT
procedure is modified to compute the existential quantification
required in obtaining a pre-image. Some optimization techniques
are exploited, and the depth first search method is used for
efficient safety-property checking. Experimental results show the
proposed algorithm can check more circuits than BDD-based
symbolic model checking tools.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Verification

General Terms Algorithms, Verification.

Keywords
Formal verification, symbolic model checking, unbounded
symbolic model checking, Boolean satisfiability checking.

1. INTRODUCTION
As the design complexity is increasing rapidly, design verification
is attracting more attention in recent years. Formal verification
has emerged during the last decade as a promising verification
method that can detect corner-case errors that are hardly detected
by simulation [1]. Formal verification has a variety of methods,
and model checking is most widely used among them. A major
difficulty in applying model checking to practical designs is the
state explosion problem that the problem size grows very rapidly
as the size of a target design grows.

In 1990, K. L. McMillan and et al. proposed a BDD-based model
checking algorithm [2], and many methods have been proposed to
improve the algorithm. Although the BDD-based model checking

This work was supported by the Korea Science and Engineering
Foundation through the MICROS center.

is efficient and being widely used, it is still restricted to a limited
range of circuits because of the memory explosion. In order to
manage large circuits, it is required to properly order the variables,
but it is another difficult problem to find good orderings. Bounded
Model Checking (BMC) [3] uses Boolean Satisfiability Checking
(SAT) procedures instead of BDDs. The SAT problem is to
determine whether a given Boolean formula has a satisfying
assignment [4], [5]. Although BMC algorithms can check large
circuits, they guarantee the property’s truth only for bounded
transitions. In opposition to BMC, model checking that is not
limited by a bound is sometimes called Unbounded Model
Checking (UMC) [6].

In this paper, we propose a SAT-based UMC algorithm. Sets of
states and the transition relation are expressed in Conjunctive
Normal Form (CNF). The proposed algorithm performs
quantification required in image or pre-image computation by
using a modified SAT procedure that generates all satisfying
assignments. The generated assignments are compressed by a
two-level logic minimizer. A conventional SAT solver determines
whether a fix-point is reached. To make the proposed algorithm
more efficient, iterative squaring and score adjustment are
proposed. In addition, some depth first techniques are exploited
for faster safety-property checking.

The rest of this paper is organized as follows: Section 2 discusses
the differences between the related works and the proposed
algorithm. Section 3 explains how a SAT procedure is modified to
perform quantification. Section 4 presents the proposed algorithm,
and Section 5 shows experimental results. Concluding remarks
are made in Section 6.

2. RELATED WORKS
The main reason why BDDs cannot deal with large circuits is that
BDDs are based on canonical representation requiring much
memory. Therefore, some works have been made to reduce the
memory requirement by using non-canonical representation.

A. Gupta and et al. proposed an algorithm that represents sets of
states in BDDs and the transition relation in CNF [7]. The
algorithm performs quantification with a modified SAT procedure
similar to ours. However, when a value is assigned to a variable,
the algorithm checks whether the assignment makes the state set
BDD a zero BDD. The proposed algorithm does not require the
separate checking because sets of states are also represented in
CNF.

Algorithms in which sets of states and the transition relation are
represented in formula have been proposed in [8], [9]. They
usually use their own representations for formulas, such as Binary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

48.5

840

Expression Diagrams (BEDs) and Reduced Boolean Circuits
(RBCs). They do quantification ∃x.f(X) by generating an equation
f(X)|x=0 and an equation f(X)|x=1 and taking the disjunction of the
two equations. Though the algorithms include some reduction
techniques, the lengths of formulas increase exponentially for
quantification. Therefore, they can be applied to a limited range
of circuits.

K. L. McMillan proposed a SAT-based UMC algorithm [6] which
represents sets of states and the transition relation in CNF and
performs quantification ∃x.f(X) by invoking a SAT procedure
with a CNF formula equivalent to ~f(X) and gathering clauses that
are complements of satisfying assignments. The algorithm
requires redrawing an implication graph and consumes much time,
while the proposed algorithm does not redraw the implication
graph and has some efficient techniques.

3. QUANTIFICATION BY A MODIFIED
SAT PROCEDURE
The existential quantification is denoted as follows:

() .((,))g X Y f X Y= ∃ (1)
, where X and Y are sets of variables. The equation means that an
assignment of X satisfies g(X) iff there is an assignment of Y such
that the assignments of X and Y satisfy f(X,Y). In this section, we
will present how to obtain g(X), given f(X,Y), X, and Y.

3.1 The Conventional SAT Procedure
The SAT procedure determines whether there is an assignment
that satisfies a given formula represented in CNF. A CNF formula
is the conjunction of clauses, each of which is the disjunction of
literals, where a literal is a variable or its complement. An
arbitrary Boolean formula f can be transformed into a CNF
formula fCNF with a representative variable vf, where (fCNF∧vf) is
satisfiable iff f is satisfiable and (fCNF∧~vf) is satisfiable iff ~f is
satisfiable. In this CNF form, an operation between CNF formulas
can be implemented easily. Given a binary operation ◦, the CNF
formula (f ◦g)CNF is the conjunction of fCNF∧gCNF and a CNF
formula equivalent to (vf◦g↔vf ◦ vg).

Many SAT solvers have been proposed, and most of them are
based on the Davis and Putnam procedure [4]. After a variable is
selected and its value is decided, the procedure reveals all
implications resulting from the decision. If a conflict occurs, the
procedure analyzes the conflict, inserts conflict clauses, and then
backtracks to the decision point.

3.2 The Modified SAT Procedure
The modified SAT procedure takes a CNF formula fCNF(X,Y) and
variable sets X and Y, and returns all the assignments of X that
satisfy g(X)=∃Y.(f(X,Y)). The major difference from the
conventional SAT procedure is that the modified SAT procedure
does not stop when a satisfying assignment is found. All the
satisfying assignments are needed to construct g(X). Therefore,
when a satisfying assignment is found, the assignment of X is
stored and the procedure backtracks to continue as in the case that
a conflict occurs.

Figure 1 is a pseudo code of the procedure, where G is the set of
assignments of X that have an assignment of Y satisfying f(X,Y),
in other words, the assignments of X satisfying g(X). When the

mSAT(fCNF,X,Y) {
 G = ∅;
 while(1) {
 if all clauses are satisfied {
 insert the assignment of X into G;
 insert an excluding clause to fCNF;
 if(backtrack()=fail) return G;
 } else {
 choose an undecided variable v from X U Y;
 assign a value to v;
 if(deduce()=conflict) {
 analyze the conflict;
 insert conflict clauses to fCNF;
 if(backtrack()=fail) return G;
 }
 }
 }
}

Figure 1. The modified SAT procedure.
procedure is completed, G has all the assignments satisfying g(X).
An assignment of X satisfying g(X) can have several assignments
of Y satisfying f(X,Y). To search such an assignment of X only
once and reduce the search time, an excluding clause at the sixth
line in Figure 1 is inserted, which is equivalent to the complement
of the found assignment of X.

3.3 Converting a Set of Assignments into a
CNF Formula
The modified SAT procedure in the previous subsection provides
a set of all the assignments satisfying g(X). However, it should be
converted into a CNF formula to use it in the proposed model
checking algorithm. The set of assignments, G, can be thought of
as a two-level logic circuit in sum-of-products form. It can be,
therefore, transformed into a CNF formula. As a result, we obtain
a CNF formula gCNF with a representative variable vg. Before
converting the assignment set into a CNF formula, it is processed
by a two-level logic minimizer to reduce the size of the
assignment set and the resulting CNF formula. Any two-level
logic minimizer can be used, but we have used espresso [10] to
obtain experimental results.

4. A SAT-BASED UNBOUNDED MODEL
CHECKING ALGORITHM
The conventional UMC algorithm is based on BDDs. In this
section, we will propose a SAT-based UMC algorithm. The
algorithm is different from the BDD-based UMC algorithm in that
BDD operations are substituted with CNF operations explained in
Section 3.1. Due to the limit of length, we only present the
procedures related with pre-image and fix-point calculation in this
paper.

4.1 Pre-image and Fix-point Calculation
Generally, a pre-image is computed as follows:

() .((,) ())S V V T V V S V′ ′ ′ ′= ∃ ∧ (2)
, where T(V,V’) is the transition relation, V and V’ are the sets of
the current and next state variables, S(V) and S’(V’) are the sets of
the current and next states, and S(V) is the pre-image of S’(V’). In

841

 preImage(S’,T) {
 X = V;
 Y = D(T) – V;
 substitute variables of V in S’ with the
 corresponding variables of V’;
 Y = Y U D(S’);
 G = mSAT(S’�T�vS’�vT,X,Y)
 G’ = espresso(G)
 return convertCNF(G’);
 }

Figure 2. Pre-image calculation.
our algorithm, S’(V’) and T(V,V’) are represented in CNF, and
quantification is done by the modified SAT procedure described
in the previous section. In fact, T(V,V’) and S’(V’) do not depend
only on the current and next state variables. They have the input
and output variables and some intermediate variables inserted
when their CNF formulas are constructed. Those variables must
be quantified, too.

Figure 2 is a pseudo code that computes a pre-image, where D(f)
is a function that returns a set of variables the formula f depends
on. The modified SAT procedure in Section 3 returns a set of the
assignments of the current state variables, G, which is equivalent
to the pre-image of S’. The set is processed by espresso to reduce
the number of assignments. At last, the reduced set is converted
into a CNF formula to be returned. A fix-point is obtained by
successively applying the pre-image calculation. The
conventional SAT procedure is used to check whether a fix-point
is reached.

4.2 Improving Techniques
Iterative squaring is used to reduce the number of iterations when
calculating fix-points [2][9]. Before invoking the fix-point
procedure, the transition relation is squared. Squaring the
transition relation leads to increasing the number of variables and
clauses in the transition relation CNF formula. Therefore,
squaring the transition relation increases the time of each iteration,
but reduces the number of iterations. The proposed algorithm
squares the transition once as it leads to the best performance in
experiments.
In the SAT procedure, the decision algorithm affects the overall
performance very much. Increasing the probability of selecting a
variable in a specific variable group can reduce the searching time.
In the pre-image computation in Figure 4, we have three groups of
variables: the current state variables V, the next state variables V’,
and the intermediate variables. The usual SAT problem prefers
increasing the probability of selecting a state variable in V and V’.
However, in the modified SAT procedure, increasing the
probability of the intermediate variables gives better results. It is
better to find a satisfiable assignment in which more state
variables have unknown values because such an assignment leads
to a shorter excluding clause that can reduce the search space
more. If the state variables are decided earlier, almost all of them
have values and the search space is reduced less. The proposed
algorithm assigns higher priorities to the intermediate variables to
decide them earlier.

4.3 Enhancing Safety-Property Checking
Safety properties are to assert that some bad states are never
reached. They are usually written as AG ~p and encountered

many times in the real model checking problems. One of the well-
known techniques that improve the safety-property checking is to
check at each iteration whether the reached set, R, has some states
in the initial states. By this technique, we can know whether the
safety property is false earlier than a fix-point is found. The
proposed algorithm also includes some other efficient techniques
for safety properties.

When computing a pre-image, it is not necessary to compute the
entire pre-image at a time. In the proposed algorithm, when the
pre-image is large, only a part of the pre-image is obtained, and
the fix-point calculation is continued. In checking at each iteration
whether R has some states in the initial states, some false safety
properties can be revealed earlier. This technique does not always
give better performance, but in many cases, it does.

The SAT-based BMC algorithm can check a property efficiently
up to k transitions. For safety properties, the result that a safety
property is false means that the property is really false. Therefore,
by exploiting the BMC algorithm before computing a fix-point,
we can know that the property is false without obtaining the fix-
point. The proposed algorithm represents the transition relation in
CNF and can invoke the SAT-based BMC procedure easily.

5. EXPERIMENTAL RESULTS AND
DISCUSSION
The performance of the proposed algorithm is compared with
those of BDD-based model checking tools. The proposed
algorithm is written in C language and compiled by g++ with –O3
option. A SAT solver modified from Chaff [5] is used in the
experiment. The experiment is done on a SUN Blade 2000
workstation that has a 900MHz processor and 4GB memory. The
BDD-based model checking tools compared are VIS [11] and
Bwolen’s SMV [12] because they are the most efficient ones ever
known.

ISCAS 89 benchmark circuits are used for target designs. As the
benchmark does not provide properties nor the information on
functionality, properties to be checked are arbitrarily generated.
All the generated are safety properties with a form AG ~p, where
p is a state.

Table 1 shows the processing times taken for the model checking
algorithms to check each circuit. The first column denotes the
benchmark circuits. The second, third, and forth columns specify
the number of inputs, outputs, and D flip-flops in each circuit.
The fifth and sixth columns represent the execution times taken
by the BDD-based model checking tools, VIS and Bwolen’s SMV,
and the seventh column represents those by the proposed
algorithm. The hyphen ‘-’ means that the algorithm is halted
because it takes more than 3 hours or more than 3.5GB memory.
Experimental results for the circuits with identity numbers greater
than 9234 are not shown in the table because all the three
algorithms failed. The algorithms are compared in terms of two
aspects: the number of circuits checked and the execution time.
The table shows that the proposed algorithm can check 9 more
circuits than the BDD-based ones. There is no case that the
proposed algorithm cannot check the circuits that the BDD-based
ones can. Most of the cases that the BDD-based tools fail to check
are resulted from memory overflow, as the algorithms use BDDs
to represent the transition relation and sets of states. However, the

842

proposed algorithm represents them in CNF that requires less
memory than BDDs.
The processing times of the proposed algorithm are similar to
those of the BDD-based ones except one case, s420.1. This circuit
has a very long diameter, and the property is proved after about
2,000 iterations. The BDD-based tools can prove properties fast if
the transition relation and sets of states are effectively expressed
in BDDs. For such a circuit, the proposed algorithm takes a longer
time than the BDD-based ones. This is a cost to pay for proving
more circuits.

6. CONCLUSION
In this paper, we presented a SAT-based unbounded model
checking algorithm. The sets of states and the transition relation
of a target design are represented in CNF, which is non-canonical
and memory efficient. The quantification, one of the most
frequent operations encountered in model checking, is processed
by a modified SAT procedure that generates all satisfiable
assignments. The generated assignments are reduced by using a
two-level logic minimizer, and converted into a CNF formula.
The proposed algorithm obtains a fix-point with the quantification
method. To enhance performance, incremental iterative squaring
and score adjustment are included in the proposed algorithm. The
proposed algorithm takes advantage of the depth first search to
make safety-property checking more efficient. Experimental
results show that the proposed algorithm can verify more
benchmark circuits than the pervious BDD-based unbounded
model checking algorithms.

7. REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model

Checking, MIT Press, MA: Cambridge, 1999.
[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.

J. Hwang, “Symbolic model checking: 1020 states and
beyond,” in Proc. Symp. Logic in Comput. Sci., 1990, pp.
428-439.

[3] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, “Symbolic
model
checking without BDDs,” in Proc. Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems,
vol. 1579 of Lecture Notes in Comput. Sci., 1999, pp. 193-
207.

[4] M. Davis and H. Putnam, “A computing procedure for
quantification theory,” Journal of the ACM, vol. 7, pp. 201-
205, 1960.

[5] M. W. Moskevicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering and efficient SAT solver,” in Proc.
ACM/IEEE Design Automation Conf., 2001, pp. 530-535.

[6] K. L. McMillan, “Applying SAT methods in unbounded
symbolic model checking,” in Proc. Int. Conf. Computer Aided
Verification, vol. 2404 of Lecture Notes in Comput. Sci., 2002,
pp. 250-264.

[7] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “SAT-based
image computation with application in reachability analysis,”
in Proc. Int. Conf. Formal Methods in Computer Aided Design
of Electron. Circuits, vol. 1954 of Lecture Notes in Comput.
Sci., 2000, pp. 354-371.

[8] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta,
“Combining decision diagrams and SAT procedures for
efficient symbolic model checking,” in Proc. Int. Conf.
Computer Aided Verification, vol. 1855 of Lecture Notes in
Comput. Sci., 2000, pp. 124-138.

[9] P. A. Abdulla, P. Bjesse, and N. Eén, “Symbolic reachability
analysis based on SAT-solvers,” in Proc. Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems, vol.
1785 of Lecture Notes in Comput. Sci., 2000, pp. 411-425.

[10] Espresso.[Online]. Available: http:// www-cad.eecs.Berkeley.
edu/Software/software.html

[11] The VIS Group. VIS 1.4. [Online]. Available: http://vlsi.
colorado.edu/~vis/.

[12] B. Yang. SMV 2.4b. [Online]. Available: http://www-
2.cs.cmu.edu/~bwolen.

Table 1. Experimental results for ISCAS 89 circuits
Circuits #In #Out #DFF VIS SMV Proposed Circuits #In #Out #DFF VIS SMV Proposed

s27 4 1 3 0.03 2.92 0.05 s938 34 1 32 - - -
s208.1 10 1 8 0.2 3.47 3.6 s953 16 23 29 0.94 14.18 0.78
s298 3 6 14 0.26 3.36 0.34 s967 16 23 29 0.98 9.66 0.7
s344 9 11 15 0.31 5.24 0.32 s991 65 17 19 1.08 349.03 0.03
s349 9 11 15 0.33 4.42 0.37 s1196 14 14 18 1.11 30.9 0.94
s382 3 6 21 0.52 4.56 0.39 s1238 14 14 18 1.08 158.55 0.94
s386 7 7 6 0.25 4.03 0.31 s1269 18 10 37 - 154.39 1.05
s400 3 6 21 0.56 3.7 0.36 s1423 17 5 74 - - 2.75

s420.1 18 1 16 9.71 10.63 151.44 s1488 8 19 6 1.21 15.85 6.62
s444 3 6 21 0.47 4.23 0.36 s1494 8 19 6 1.23 23.36 8.09
s499 1 22 22 0.33 5.88 0.39 s1512 27 21 57 - 18.04 1.63
s510 19 7 6 0.42 6.04 1.75 prolog 36 73 136 - - -
s526 3 6 21 0.54 4.31 0.56 s3271 26 14 116 - - 2.68
s526n 3 6 21 0.54 4.39 0.49 s3330 40 73 132 - - 2.93
s635 2 1 32 - - - s3384 43 26 183 - - 3.14
s641 35 24 19 0.85 5.4 0.56 s4863 49 16 104 - - 3.74
s713 35 23 19 0.86 5.93 0.6 s5378 35 49 179 - - 4.47
s820 18 19 5 0.6 7.87 0.96 s6669 83 55 239 - - 5.52
s832 18 19 5 0.59 8.78 1.09 s9234.1 36 39 211 - - 9.13

s838.1 34 1 32 - - - s9234 19 22 228 - - 9.29

843

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

