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ABSTRACT1 
This paper describes a SAT-based unbounded symbolic model 
checking algorithm. BDDs have been widely used for symbolic 
model checking, but the approach suffers from memory overflow. 
The SAT procedure was exploited to overcome the problem, but it 
verified only the states reachable through a bounded number of 
transitions. The proposed algorithm deals with unbounded 
symbolic model checking. The conjunctive normal form is used to 
represent sets of states and the transition relation, and a SAT 
procedure is modified to compute the existential quantification 
required in obtaining a pre-image. Some optimization techniques 
are exploited, and the depth first search method is used for 
efficient safety-property checking. Experimental results show the 
proposed algorithm can check more circuits than BDD-based 
symbolic model checking tools. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification  

General Terms Algorithms, Verification. 

Keywords 
Formal verification, symbolic model checking, unbounded 
symbolic model checking, Boolean satisfiability checking. 

1. INTRODUCTION 
As the design complexity is increasing rapidly, design verification 
is attracting more attention in recent years. Formal verification 
has emerged during the last decade as a promising verification 
method that can detect corner-case errors that are hardly detected 
by simulation [1]. Formal verification has a variety of methods, 
and model checking is most widely used among them. A major 
difficulty in applying model checking to practical designs is the 
state explosion problem that the problem size grows very rapidly 
as the size of a target design grows.  

In 1990, K. L. McMillan and et al. proposed a BDD-based model 
checking algorithm [2], and many methods have been proposed to 
improve the algorithm. Although the BDD-based model checking 
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is efficient and being widely used, it is still restricted to a limited 
range of circuits because of the memory explosion. In order to 
manage large circuits, it is required to properly order the variables, 
but it is another difficult problem to find good orderings. Bounded 
Model Checking (BMC) [3] uses Boolean Satisfiability Checking 
(SAT) procedures instead of BDDs. The SAT problem is to 
determine whether a given Boolean formula has a satisfying 
assignment [4], [5]. Although BMC algorithms can check large 
circuits, they guarantee the property’s truth only for bounded 
transitions. In opposition to BMC, model checking that is not 
limited by a bound is sometimes called Unbounded Model 
Checking (UMC) [6]. 

In this paper, we propose a SAT-based UMC algorithm. Sets of 
states and the transition relation are expressed in Conjunctive 
Normal Form (CNF). The proposed algorithm performs 
quantification required in image or pre-image computation by 
using a modified SAT procedure that generates all satisfying 
assignments. The generated assignments are compressed by a 
two-level logic minimizer. A conventional SAT solver determines 
whether a fix-point is reached. To make the proposed algorithm 
more efficient, iterative squaring and score adjustment are 
proposed. In addition, some depth first techniques are exploited 
for faster safety-property checking. 

The rest of this paper is organized as follows: Section 2 discusses 
the differences between the related works and the proposed 
algorithm. Section 3 explains how a SAT procedure is modified to 
perform quantification. Section 4 presents the proposed algorithm, 
and Section 5 shows experimental results. Concluding remarks 
are made in Section 6. 

2. RELATED WORKS 
The main reason why BDDs cannot deal with large circuits is that 
BDDs are based on canonical representation requiring much 
memory. Therefore, some works have been made to reduce the 
memory requirement by using non-canonical representation. 

A. Gupta and et al. proposed an algorithm that represents sets of 
states in BDDs and the transition relation in CNF [7]. The 
algorithm performs quantification with a modified SAT procedure 
similar to ours. However, when a value is assigned to a variable, 
the algorithm checks whether the assignment makes the state set 
BDD a zero BDD. The proposed algorithm does not require the 
separate checking because sets of states are also represented in 
CNF. 

Algorithms in which sets of states and the transition relation are 
represented in formula have been proposed in [8], [9]. They 
usually use their own representations for formulas, such as Binary 
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Expression Diagrams (BEDs) and Reduced Boolean Circuits 
(RBCs). They do quantification ∃x.f(X) by generating an equation 
f(X)|x=0 and an equation f(X)|x=1 and taking the disjunction of the 
two equations. Though the algorithms include some reduction 
techniques, the lengths of formulas increase exponentially for 
quantification. Therefore, they can be applied to a limited range 
of circuits. 

K. L. McMillan proposed a SAT-based UMC algorithm [6] which 
represents sets of states and the transition relation in CNF and 
performs quantification ∃x.f(X) by invoking a SAT procedure 
with a CNF formula equivalent to ~f(X) and gathering clauses that 
are complements of satisfying assignments. The algorithm 
requires redrawing an implication graph and consumes much time, 
while the proposed algorithm does not redraw the implication 
graph and has some efficient techniques. 

3. QUANTIFICATION BY A MODIFIED 
SAT PROCEDURE  
The existential quantification is denoted as follows: 

( ) .( ( , ))g X Y f X Y= ∃     (1) 
, where X and Y are sets of variables. The equation means that an 
assignment of X satisfies g(X) iff there is an assignment of Y such 
that the assignments of X and Y satisfy f(X,Y). In this section, we 
will present how to obtain g(X), given f(X,Y), X, and Y. 

3.1 The Conventional SAT Procedure 
The SAT procedure determines whether there is an assignment 
that satisfies a given formula represented in CNF. A CNF formula 
is the conjunction of clauses, each of which is the disjunction of 
literals, where a literal is a variable or its complement. An 
arbitrary Boolean formula f can be transformed into a CNF 
formula fCNF with a representative variable vf, where (fCNF∧vf) is 
satisfiable iff f is satisfiable and (fCNF∧~vf) is satisfiable iff ~f is 
satisfiable. In this CNF form, an operation between CNF formulas 
can be implemented easily. Given a binary operation ◦, the CNF 
formula (f ◦g)CNF is the conjunction of fCNF∧gCNF and a CNF 
formula equivalent to (vf◦g↔vf ◦ vg). 

Many SAT solvers have been proposed, and most of them are 
based on the Davis and Putnam procedure [4]. After a variable is 
selected and its value is decided, the procedure reveals all 
implications resulting from the decision. If a conflict occurs, the 
procedure analyzes the conflict, inserts conflict clauses, and then 
backtracks to the decision point. 

3.2 The Modified SAT Procedure 
The modified SAT procedure takes a CNF formula fCNF(X,Y) and 
variable sets X and Y, and returns all the assignments of X that 
satisfy g(X)=∃Y.(f(X,Y)). The major difference from the 
conventional SAT procedure is that the modified SAT procedure 
does not stop when a satisfying assignment is found. All the 
satisfying assignments are needed to construct g(X). Therefore, 
when a satisfying assignment is found, the assignment of X is 
stored and the procedure backtracks to continue as in the case that 
a conflict occurs.  

Figure 1 is a pseudo code of the procedure, where G is the set of 
assignments of X that have an assignment of Y satisfying f(X,Y), 
in other words, the assignments of X satisfying g(X). When the  

mSAT(fCNF,X,Y) { 
 G = ∅; 
 while(1) { 
  if all clauses are satisfied { 
   insert the assignment of X into G; 
   insert an excluding clause to fCNF; 
   if(backtrack()=fail) return G; 
  } else { 
   choose an undecided variable v from X U Y; 
   assign a value to v; 
   if(deduce()=conflict) { 
    analyze the conflict; 
    insert conflict clauses to fCNF; 
    if(backtrack()=fail) return G; 
   } 
  } 
 } 
} 

Figure 1. The modified SAT procedure. 
procedure is completed, G has all the assignments satisfying g(X). 
An assignment of X satisfying g(X) can have several assignments 
of Y satisfying f(X,Y). To search such an assignment of X only 
once and reduce the search time, an excluding clause at the sixth 
line in Figure 1 is inserted, which is equivalent to the complement 
of the found assignment of X. 

3.3 Converting a Set of Assignments into a 
CNF Formula 
The modified SAT procedure in the previous subsection provides 
a set of all the assignments satisfying g(X). However, it should be 
converted into a CNF formula to use it in the proposed model 
checking algorithm. The set of assignments, G, can be thought of 
as a two-level logic circuit in sum-of-products form. It can be, 
therefore, transformed into a CNF formula. As a result, we obtain 
a CNF formula gCNF with a representative variable vg. Before 
converting the assignment set into a CNF formula, it is processed 
by a two-level logic minimizer to reduce the size of the 
assignment set and the resulting CNF formula. Any two-level 
logic minimizer can be used, but we have used espresso [10] to 
obtain experimental results.  

4. A SAT-BASED UNBOUNDED MODEL 
CHECKING ALGORITHM 
The conventional UMC algorithm is based on BDDs. In this 
section, we will propose a SAT-based UMC algorithm. The 
algorithm is different from the BDD-based UMC algorithm in that 
BDD operations are substituted with CNF operations explained in 
Section 3.1. Due to the limit of length, we only present the 
procedures related with pre-image and fix-point calculation in this 
paper. 

4.1 Pre-image and Fix-point Calculation 
Generally, a pre-image is computed as follows: 

( ) .( ( , ) ( ))S V V T V V S V′ ′ ′ ′= ∃ ∧   (2) 
, where T(V,V’) is the transition relation, V and V’ are the sets of 
the current and next state variables, S(V) and S’(V’) are the sets of 
the current and next states, and S(V) is the pre-image of S’(V’). In 
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  preImage(S’,T) { 
   X = V; 
   Y = D(T) – V; 
   substitute variables of V in S’ with the  
    corresponding variables of V’; 
   Y = Y U D(S’); 
   G = mSAT(S’�T�vS’�vT,X,Y) 
   G’ = espresso(G) 
   return convertCNF(G’); 
  } 

Figure 2. Pre-image calculation. 
our algorithm, S’(V’) and T(V,V’) are represented in CNF, and 
quantification is done by the modified SAT procedure described 
in the previous section. In fact, T(V,V’) and S’(V’) do not depend 
only on the current and next state variables. They have the input 
and output variables and some intermediate variables inserted 
when their CNF formulas are constructed. Those variables must 
be quantified, too. 

Figure 2 is a pseudo code that computes a pre-image, where D(f) 
is a function that returns a set of variables the formula f depends 
on. The modified SAT procedure in Section 3 returns a set of the 
assignments of the current state variables, G, which is equivalent 
to the pre-image of S’. The set is processed by espresso to reduce 
the number of assignments. At last, the reduced set is converted 
into a CNF formula to be returned. A fix-point is obtained by 
successively applying the pre-image calculation. The 
conventional SAT procedure is used to check whether a fix-point 
is reached. 

4.2 Improving Techniques 
Iterative squaring is used to reduce the number of iterations when 
calculating fix-points [2][9]. Before invoking the fix-point 
procedure, the transition relation is squared. Squaring the 
transition relation leads to increasing the number of variables and 
clauses in the transition relation CNF formula. Therefore, 
squaring the transition relation increases the time of each iteration, 
but reduces the number of iterations. The proposed algorithm 
squares the transition once as it leads to the best performance in 
experiments. 
In the SAT procedure, the decision algorithm affects the overall 
performance very much. Increasing the probability of selecting a 
variable in a specific variable group can reduce the searching time. 
In the pre-image computation in Figure 4, we have three groups of 
variables: the current state variables V, the next state variables V’, 
and the intermediate variables. The usual SAT problem prefers 
increasing the probability of selecting a state variable in V and V’. 
However, in the modified SAT procedure, increasing the 
probability of the intermediate variables gives better results. It is 
better to find a satisfiable assignment in which more state 
variables have unknown values because such an assignment leads 
to a shorter excluding clause that can reduce the search space 
more. If the state variables are decided earlier, almost all of them 
have values and the search space is reduced less. The proposed 
algorithm assigns higher priorities to the intermediate variables to 
decide them earlier. 

4.3 Enhancing Safety-Property Checking 
Safety properties are to assert that some bad states are never 
reached. They are usually written as AG ~p and encountered 

many times in the real model checking problems. One of the well-
known techniques that improve the safety-property checking is to 
check at each iteration whether the reached set, R, has some states 
in the initial states. By this technique, we can know whether the 
safety property is false earlier than a fix-point is found. The 
proposed algorithm also includes some other efficient techniques 
for safety properties. 

When computing a pre-image, it is not necessary to compute the 
entire pre-image at a time. In the proposed algorithm, when the 
pre-image is large, only a part of the pre-image is obtained, and 
the fix-point calculation is continued. In checking at each iteration 
whether R has some states in the initial states, some false safety 
properties can be revealed earlier. This technique does not always 
give better performance, but in many cases, it does. 

The SAT-based BMC algorithm can check a property efficiently 
up to k transitions. For safety properties, the result that a safety 
property is false means that the property is really false. Therefore, 
by exploiting the BMC algorithm before computing a fix-point, 
we can know that the property is false without obtaining the fix-
point. The proposed algorithm represents the transition relation in 
CNF and can invoke the SAT-based BMC procedure easily. 

5. EXPERIMENTAL RESULTS AND 
DISCUSSION 
The performance of the proposed algorithm is compared with 
those of BDD-based model checking tools. The proposed 
algorithm is written in C language and compiled by g++ with –O3 
option. A SAT solver modified from Chaff [5] is used in the 
experiment. The experiment is done on a SUN Blade 2000 
workstation that has a 900MHz processor and 4GB memory. The 
BDD-based model checking tools compared are VIS [11] and 
Bwolen’s SMV [12] because they are the most efficient ones ever 
known. 

ISCAS 89 benchmark circuits are used for target designs. As the 
benchmark does not provide properties nor the information on 
functionality, properties to be checked are arbitrarily generated. 
All the generated are safety properties with a form AG ~p, where 
p is a state.  

Table 1 shows the processing times taken for the model checking 
algorithms to check each circuit. The first column denotes the 
benchmark circuits. The second, third, and forth columns specify 
the number of inputs, outputs, and D flip-flops in each circuit. 
The fifth and sixth columns represent the execution times taken 
by the BDD-based model checking tools, VIS and Bwolen’s SMV, 
and the seventh column represents those by the proposed 
algorithm. The hyphen ‘-’ means that the algorithm is halted 
because it takes more than 3 hours or more than 3.5GB memory. 
Experimental results for the circuits with identity numbers greater 
than 9234 are not shown in the table because all the three 
algorithms failed. The algorithms are compared in terms of two 
aspects: the number of circuits checked and the execution time. 
The table shows that the proposed algorithm can check 9 more 
circuits than the BDD-based ones. There is no case that the 
proposed algorithm cannot check the circuits that the BDD-based 
ones can. Most of the cases that the BDD-based tools fail to check 
are resulted from memory overflow, as the algorithms use BDDs 
to represent the transition relation and sets of states. However, the 
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proposed algorithm represents them in CNF that requires less 
memory than BDDs.  
The processing times of the proposed algorithm are similar to 
those of the BDD-based ones except one case, s420.1. This circuit 
has a very long diameter, and the property is proved after about 
2,000 iterations. The BDD-based tools can prove properties fast if 
the transition relation and sets of states are effectively expressed 
in BDDs. For such a circuit, the proposed algorithm takes a longer 
time than the BDD-based ones. This is a cost to pay for proving 
more circuits. 

6. CONCLUSION 
In this paper, we presented a SAT-based unbounded model 
checking algorithm. The sets of states and the transition relation 
of a target design are represented in CNF, which is non-canonical 
and memory efficient. The quantification, one of the most 
frequent operations encountered in model checking, is processed 
by a modified SAT procedure that generates all satisfiable 
assignments. The generated assignments are reduced by using a 
two-level logic minimizer, and converted into a CNF formula. 
The proposed algorithm obtains a fix-point with the quantification 
method. To enhance performance, incremental iterative squaring 
and score adjustment are included in the proposed algorithm. The 
proposed algorithm takes advantage of the depth first search to 
make safety-property checking more efficient. Experimental 
results show that the proposed algorithm can verify more 
benchmark circuits than the pervious BDD-based unbounded 
model checking algorithms.  
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Table 1. Experimental results for ISCAS 89 circuits 
Circuits #In #Out #DFF VIS SMV Proposed Circuits #In #Out #DFF VIS SMV Proposed 

s27 4 1 3 0.03 2.92 0.05 s938 34 1 32 - - - 
s208.1 10 1 8 0.2 3.47 3.6 s953 16 23 29 0.94 14.18 0.78 
s298 3 6 14 0.26 3.36 0.34 s967 16 23 29 0.98 9.66 0.7 
s344 9 11 15 0.31 5.24 0.32 s991 65 17 19 1.08 349.03 0.03 
s349 9 11 15 0.33 4.42 0.37 s1196 14 14 18 1.11 30.9 0.94 
s382 3 6 21 0.52 4.56 0.39 s1238 14 14 18 1.08 158.55 0.94 
s386 7 7 6 0.25 4.03 0.31 s1269 18 10 37 - 154.39 1.05 
s400 3 6 21 0.56 3.7 0.36 s1423 17 5 74 - - 2.75 

s420.1 18 1 16 9.71 10.63 151.44 s1488 8 19 6 1.21 15.85 6.62 
s444 3 6 21 0.47 4.23 0.36 s1494 8 19 6 1.23 23.36 8.09 
s499 1 22 22 0.33 5.88 0.39 s1512 27 21 57 - 18.04 1.63 
s510 19 7 6 0.42 6.04 1.75 prolog 36 73 136 - - - 
s526 3 6 21 0.54 4.31 0.56 s3271 26 14 116 - - 2.68 
s526n 3 6 21 0.54 4.39 0.49 s3330 40 73 132 - - 2.93 
s635 2 1 32 - - - s3384 43 26 183 - - 3.14 
s641 35 24 19 0.85 5.4 0.56 s4863 49 16 104 - - 3.74 
s713 35 23 19 0.86 5.93 0.6 s5378 35 49 179 - - 4.47 
s820 18 19 5 0.6 7.87 0.96 s6669 83 55 239 - - 5.52 
s832 18 19 5 0.59 8.78 1.09 s9234.1 36 39 211 - - 9.13 

s838.1 34 1 32 - - - s9234 19 22 228 - - 9.29 
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