
Abstract
Boolean satisfiability (SAT) solvers have experienced dramatic im-

provements in their performance and scalability over the last several

years [5, 7] and are now routinely used in diverse EDA applications.

Nevertheless, a number of practical SAT instances remain difficult

to solve [9] and continue to defy even the best available SAT solv-

ers [5, 7]. Recent work pointed out that symmetries in the Boolean

search space are often to blame. A theoretical framework for detect-

ing and breaking such symmetries was introduced in [2]. This

framework was subsequently extended, refined, and empirically

shown to yield significant speed-ups for a large number of bench-

mark classes in [1].

Symmetries in the search space are broken by adding appropri-

ate symmetry-breaking predicates (SBPs) to a SAT instance in con-

junctive normal form (CNF). The SBPs prune the search space by

acting as a filter that confines the search to non-symmetric regions

of the space without affecting the satisfiability of the CNF formula.

For symmetry breaking to be effective in practice, the computation-

al overhead of generating and manipulating the SBPs must be sig-

nificantly less than the run time savings they yield due to search

space pruning. In this paper we present several new constructions of

SBPs that improve on previous work. Specifically, we give a linear-

sized CNF formula that selects lex-leaders (among others) for single

permutations. We also show how that formula can be simplified by

taking advantage of the sparsity of permutations. We test these im-

provements against earlier constructions and show that they yield

smaller SBPs and lead to run time reductions on many benchmarks.
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1. Introduction
Many search, synthesis, and optimization problems arising in algo-

rithmic applications exhibit symmetries. The presence of multiple,

symmetric solutions may slow down known algorithms for such

problems. Symmetries can make it more difficult to conclude that a

a given instance of a search problem has no solutions because sym-

metric sub-instances may be independent. However, once the sym-

metries are identified, it is often easy to eliminate parts of the search

space and, thereby, simplify the solution process.

In this paper we study the Boolean satisfiability problem—one

of the most important in Computer Science—in the presence of

symmetry. Crawford et al. [2] laid the theoretical foundation for

generating symmetry-breaking predicates for CNF formulas that

possess permutational symmetries. The basic idea is to detect all

such symmetries using a reduction to graph automorphism. For

each such symmetry, an SBP—whose CNF representation is qua-

dratic in the number of problem variables—is constructed. A SAT

solver is then applied to the conjunction of the original formula and

the SBPs created from each permutation in the group of symme-

tries. This approach breaks all permutational symmetries and will

be referred to as full symmetry breaking. The downside is that the

number of symmetries in the symmetry group is usually exponential

in the number of problem variables making such full symmetry

breaking impractical. They reduce the number of symmetries that

need to be considered by building a symmetry tree and pruning it to

remove unnecessary duplication. This, unfortunately, still does not

preclude the need to consider an exponential number of permuta-

tions in order to break all symmetries.

This general framework was extended in [1] to handle phase-

shift symmetries and their composition with permutational symme-

tries. Additionally, more efficient, albeit still quadratic, CNF con-

structions of the symmetry-breaking predicates were introduced.

Finally, symmetry-breaking was only applied to the generators of

the symmetry group as opposed to the entire set of symmetries.

They argued, and presented strong empirical evidence, that full

symmetry breaking is unnecessary and that such partial symmetry

breaking is often quite effective.

In this paper we present a computational framework for generat-

ing optimized SBPs that improves on previous work [1, 2]. Specifi-

cally, we describe SBP constructions for single permutations that

yield a CNF formula whose size is linear, rather than quadratic, in

the number of variables in the SAT problem. We also show how

that formula can be simplified by taking advantage of the sparsity of

permutations. We test these improvements against earlier construc-

tions and show that they yield much smaller SBPs and lead to sig-

nificant run time reductions on many benchmark families.

The remainder of the paper is organized as follows. Section 2

presents the necessary definitions and notation. Section 3 covers

previous work. The proposed efficient SBP constructions are de-

scribed in Section 4. We show experimental results in Section 5,

and the paper concludes in Section 6.

2. Definitions and Notation
Intuitively, a symmetry of a discrete object is a transformation, e.g.,

permutation, of its components that leaves the object intact. Symme-

tries are studied in abstract algebra in terms of groups [4]. A group

is a set with a binary associative operation defined on it such that

there is a unit element and every element has a unique inverse. In

general, a set of group elements such that any other group element

can be expressed as their product is called a generating set. The size

of any irredundant generating set is no greater than the binary loga-

rithm of the group size and in general is much smaller. A group 
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is cyclic if it consists of an element  and all elements of  are pow-

ers of ;  is known as the cyclic group generator. 

The symmetric group S( ) on a finite set  is the group of all

permutations of . If , the group is commonly de-

noted by . For an element of , its G-orbit is the set of elements

of  to which it can be mapped by elements of G. Orbits define an

equivalence relation on . 

Permutations of , often denoted by lower-case Greek letters,

can be written in tabular form where the elements of  are written

in the first row and their images in the second row. For example, the

image of element i under the permutation  will be denoted  and

written below i. We also use cycle notation, which can be produced

from the tabular notation by (i) constructing directed edges from el-

ements of  to their images, and (ii) listing the disjoint cycles of

this directed graph. Single-element cycles are implicit and never

listed. For example, (12)(456) can denote a permutation that swaps

elements 1 and 2, and maps 4 to 5, 5 to 6 and 6 to 4. Cycle notation

is preferable to tabular notation for sparse permutations that map

most elements of  to themselves. 

A symmetry (automorphism) of a graph is a permutation of its

vertices that maps edges to edges. If vertices are labeled by integers

(colors), we may additionally require symmetries to preserve labels.

Consider the set of Boolean variables . A literal is ei-

ther a variable or its negation. A clause is a disjunction of literals,

e.g., , and a CNF formula is a conjunction of claus-

es, e.g., . A binary clause has two

literals and can be viewed as an implication between variables, e.g.,

. The CNF-SAT decision problem seeks to find a truth

assignment that satisfies a given CNF formula or to prove that the

formula is unsatisfiable.

We will assume a total ordering on the variables  and

consider the induced lexicographic ordering of the  truth assign-

ments, i.e., 0-1 strings of length n. We now assume that a group acts

on the set of literals, subject to the Boolean consistency constraint,

which requires that if  then for any literals a and b.

Such an action unambiguously induces a corresponding action on

the set of truth assignments. We focus on orbits of this action. The

lex-leader of an orbit is defined as the lexicographically smallest el-

ement. A lex-leader predicate (LL-predicate) for the action is a

Boolean function on  that evaluates to true only on lex-

leaders of orbits. 

Consider a permutation on the set of literals. Given a CNF for-

mula, we can permute literals in it, potentially changing the formu-

la. A permutation of literals is a symmetry of a given CNF formula

if Boolean consistency is observed and the formula is preserved un-

der the permutation (in other words, every clause must map into a

clause with the same polarities of literals). In particular, we consider

simultaneous negations of sets of variables (phase-shifts) and com-

positions of permutations and phase-shifts (mixed symmetries) [1].

Given a CNF formula, we consider its group of symmetries and its

corresponding action on truth assignments. A symmetry-breaking

predicate (SBP) is a Boolean function that evaluates to true on at

least one element from each orbit of the group of symmetries. In this

work, we will consider SBPs that are expressed by CNF formulae,

and the size of an SBP is taken to be the number of literals in its

CNF formula. Observe that adding an SBP to the original CNF for-

mula does not affect the satisfiability, but restricts the possible solu-

tions to those selected by the SBP.

A full SBP is an SBP that selects exactly one element from each

orbit; otherwise we call an SBP partial. A lex-leader SBP (LL-SBP)

is an SBP that selects lex-leaders only. An LL-SBP is a full SBP.

For SBPs that are not full, it is often important that they select lex-

leaders, among other elements. We call such SBPs partial lex-lead-

er SBPs (PLL-SBPs).

3. Previous Work

3.1 CNF Symmetries via Graph Automorphism
Given a CNF formula, a graph is constructed such that the group of

CNF symmetries is isomorphic to the group of graph automor-

phisms. A simple construction [1] represents every clause by a ver-

tex of color 2, and every variable by two vertices of color 1 (one for

the positive and one for the negative literal) connected by Boolean

consistency edges. Every literal in the CNF formula is then repre-

sented by a bi-partite edge. The construction in [2] treats binary

clauses differently. It leaves out their clausal vertices and connects

their literal vertices by double-edges. Since some graph automor-

phism programs (e.g. GAP/NAUTY - http://www.gap-system.org/)

do not allow double-edges, the work in [1] uses a model with single

edges which can result in spurious graph automorphisms (one-sided

error) if the original CNF formula contains binary clauses forming

circular chains of implications. Fortunately, this rarely happens in

CNF applications and spurious graph symmetries can be easily test-

ed for [1]; in our experiments, we did not find any.

Note that the graph automorphism problem is believed to be out-

side P, yet not NP-complete. In general, finding CNF symmetries is

often easier than solving SAT. Furthermore, excellent graph auto-

morphism software is currently available [6] and typically returns a

small set of irredundant generators, rather than the complete set of

permutations, which ensures exponential compression.

3.2 The Lex-Leader Formulae
The entire construction of symmetry-breaking predicates rests on

the notion of lex-leader formulae introduced by Crawford et al. [2].

Given a group of symmetries  for a CNF formu-

la defined over a set of totally-ordered variables ,

the LL-SBP is defined as follows:

(1)

(2)

In the sequel we will refer to  as the permutation predicate

for  permutation . By introducing auxiliary variables

, each PP can be translated to a CNF formula with

5n clauses and  literals.

In general, the CNF representations of the PPs defined in (1)

tend to have duplicate clauses and even tautologies. In addition, the

PPs of different permutations may have identical clauses leading to

duplication in the LL-SBP defined in (2). Recognizing the existence

of such redundancies, Aloul el al. [1] introduced a more efficient

version of (1) that eliminates duplicate clauses and tautologies.

They also noted that the LL-SBP in (2) can be replaced by a much

smaller partial LL-SBP that uses only an irredundant set of genera-

tors  for the group , i.e.,

(3)
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4. Improved SBP Constructions
In this section we present several improvements to the constructions

in [1, 2].

4.1 Linear-Sized Permutation Predicates
The first improvement we present is a CNF formula for PPs whose

size is linear, rather than quadratic, in the number of variables. To

facilitate the following derivation let ,

, and . Noting that , the PP in (1)

can now be expressed as:

(4)

Factoring out the common prefix  and simplifying yields:

(5)

The recursive structure of the formula is now revealed by compar-

ing (4) and (5). Let  be a sequence of bit predicates de-

fined by:

(6)

Note that predicate  represents the entire formula (4). The satisfi-

ability of (4) can, thus, be determined by checking the satisfiability

of the following equivalent, but simpler formula:

(7)

One final simplification replaces the equalities in (7) with implica-

tions since we are only interested in satisfying each of the predi-

cates. We thus obtain:

(8)

The CNF representation of (8) consists of  3-literal and  4-lit-

eral clauses for a total size of  literals. Schematically, (8) can be

viewed as a multi-level logic circuit (see Figure 1). Hence, the truth

assignments that satisfy (1) are those assignments that set the circuit

output  to 1. It is also interesting to note that bit predicates form

a chain that is reminiscent of carry chains in ripple adders.

4.2 Elimination of Tautologies in PPs
For a given permutation, choosing an SBP with fewer literals is also

important for empirical success. Since the permutations are typical-

ly sparse, the size of the CNF representation of (8) can be further re-

duced by eliminating all tautologies. We illustrate our approach

with an example. Consider the permutation:

 (9)

expressed in cycle notation. The permutation can be expressed in

tabular form as follows:

(10)

We proceed to create a sequence of bit predicates  us-

ing (7). The only difference is that we eliminate the predicates of the

variables that do not move. For such variables note that

. In this example, . This im-

mediately simplifies the predicates of those variables to:

 (11)

which allows us to express  directly in terms of : 

(12)

and  reduces to:

(13)

The pattern should now be clear. Given a permutation, where vari-

ables  and  move and  do not move, the PP can

be simplified to:

(14)

All other bit predicates, representing variables that move, use the

format described in (6).

4.3 Options for Partial Symmetry Breaking
Breaking all symmetries may not speed up search because there are

often exponentially many of them and their PLL-SBPs may be re-

dundant [2]. Breaking enough symmetries, whose SBPs are short

CNF clauses, may provide a better trade-off. Irredundant generators

are good candidates for symmetries to be broken because they can-

not be expressed in terms of each other, which minimizes redundan-

cies. Alternatively, we can use the powers or compositions of

generators as candidates for symmetry breaking. 

Additionally, we can reduce the size of SBPs by considering

only the first  bits from each permutation. This is achieved by gen-

erating the SBPs up to the -th predicate and setting the last used

predicate to 1.

5. Experimental Results
In this section, we empirically show the advantage of using the pro-

posed SBP constructions. The experiments were performed on an

AMD Athlon 1.2 GHz machine with 1 GB of RAM running Linux.

The run time limit for all experiments was set to 1000 seconds. The

benchmarks included pigeon-hole [3], randomized Urquhart (URQ)

[10], global routing (s3) [1], FPGA routing (fpga, chan) [8], and

xor-chains [9]. We used the best available backtrack SAT solver

Chaff [7]. Since Chaff is randomized, its run time varies, and we av-

eraged all results over 200 independent runs.

Table 1 lists symmetry detection run times, number of symme-

tries, symmetry generators, and phase shifts. We use the reduction

to graph automorphism from [1] which detects a wider range of

symmetries than that from [2]. The table clearly shows the signifi-

cant savings obtained when generators are used to represent the

complete set of symmetries. Note that all generators consisted of cy-

cles of size 2 only. The table also shows the percentage of bits that

map to themselves (shown as “%RB”). Clearly, more than 80% of

the bits in all instances are redundant and can lead to significant

savings in run time and memory if removed from the SBPs.

Table 1 also compares SAT-solving run times for the original

CNF instance and the instances augmented with generator SBPs us-

ing the construction in equation (3), reference [1], and the proposed

constructions in Sec. 4.1 and 4.2. Clearly, the addition of SBPs sig-
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nificantly reduces the search run time, and the approach in Sec. 4.2

leads to the greatest savings in run time. 

Table 2 compares the size of SBP predicates produced by the

above four constructions. The construction proposed in Sec. 4.2 en-

tails the smallest number of variables, clauses, and literals for all an-

alyzed instances.

In order to further reduce the size of SBPs, we tested all present-

ed instances after considering only the first  bits from each permu-

tation. Figure 2 plots the total search run time for all instances as a

function of . The construction proposed in Sec. 4.2 was used in the

experiment. Interestingly, the total search run time decreases as ad-

ditional bits are considered. Nevertheless, the performance im-

provements fade after considering 10 bits per permutation for

almost all instances. This confirms the intuition that breaking all

symmetries does not necessarily speed up the search process. In

fact, breaking the symmetries for only a subset of permutations, i.e.

irredundant sets of generators, and considering a limited number of

bits from each permutation seems to be sufficient to significantly re-

duce the search run times in all cases.

Our final experiment compares the search run time and memory

requirements of different choices of permutation sets to break. We

considered three such sets: generators, powers of generators, and

compositions of generators. Since all generators produced by the

graph automorphism program were expressed as products of length-

2 cycles, the set of their powers did not yield additional permuta-

tions. However, the set of permutations obtained by composing the

372 generators yielded a total of 5402 permutations. Using the con-

struction proposed in Sec. 4.2, the SBPs for these permutations con-

sisted of 326K variables, 1.3M clauses, and 4.5M literals. This

significant increase in the size of the SBP was reflected in a much

larger search run time: 29 seconds as opposed to 3.4 seconds for the

generator-only SBP. This provides further empirical evidence for

the use of generator-only SBPs to speed up satisfiability search.

6. Conclusions
In this work we extended and improved the framework of symme-

try-breaking predicates for solving Boolean Satisfiability by con-

structing more efficient CNF representations of symmetry-breaking

predicates. The proposed techniques lead to empirical speed-ups in

backtrack search and smaller memory requirements for the best

available SAT solvers. Additionally, we gave new justifications of

partial symmetry-breaking by generators.
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Table 1. Search run times of CNF-SAT instances with and without PLL-SBPs (for generators only). Symmetry statistics including 
symmetry detection run time, number of symmetries, generators, and phase shifts are also provided.

Instance V C
Symmetry statistics Chaff run time (sec) Sec. 4.2 speedup over

Find (sec) #Sym #Gen #P.S. %RB Orig (3) [1] Sec. 4.1 Sec. 4.2 Orig [1]

hole11 132 738 0.09 1.9E+16 21 0 83 219 5.43 0.03 3.52 0.02 11K 1.5

hole12 156 949 0.12 2.9E+18 23 0 84 1000 11.0 0.04 8.65 0.02 >50K 2

Urq3_4 36 220 0.10 5.2E+05 19 19 97 0.85 0.16 0.01 0.08 0.01 85 1

Urq3_9 37 236 0.04 1.1E+06 20 20 97 12.8 0.05 0.01 0.02 0.01 1280 1

s3-3-3-3 960 9156 8.92 6.9E+10 29 0 95 44.4 200 2.85 65.3 0.50 89 5.7

s3-3-3-8 912 8356 6.95 3.5E+10 28 0 95 21.3 141 2.61 138 0.93 23 2.8

fpga13_10 195 905 0.25 1.9E+17 28 0 88 1000 517 0.09 7.70 0.03 >33K 3

fpga13_12 234 1242 0.81 9.0E+20 32 0 89 1000 1000 0.08 25.8 0.05 >20K 1.6

chnl11_13 286 1742 0.96 1.2E+35 45 0 90 788 882 0.16 108 0.05 16K 3.2

chnl11_20 440 4220 4.48 1.9E+52 59 0 92 1000 1000 0.30 92.6 0.09 >11K 3.3

xor1_32 94 250 0.17 4.3E+09 32 32 98 830 12.6 1.7 1.73 1.7 488 1

xor1_36 106 282 0.34 6.9E+10 36 36 99 938 0.61 0.01 0.1 0.01 94K 1

Total 3588 28296 23 1.9E+52 372 107 - 6854 3770 7.9 452 3.4 - -

Table 2. Total size of generator-only SBPs using various SBP 
constructions for the instances presented in Table 1.

# (3) [1] Sec. 4.1 Sec. 4.2

Var 120K 8.6K 120K 8.6K

Cl 599K 44K 478K 34K

Lit 36M 404K 1.7M 119K
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