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Abstract

Linear Pseudo-Boolean (LPB) constraints denote inequalities
between arithmetic sums of weighted Boolean functions and pro-
vide a significant extension of the modeling power of purely propo-
sitional constraints. They can be used to compactly describe many
discrete EDA problems with constraints on linearly combined, pa-
rameterized weights, yet also offer efficient search strategies for
proving or disproving whether a satisfying solution exists. Further-
more, corresponding decision procedures can easily be extended
for minimizing or maximizing an LPB objective function, thus pro-
viding a core optimization method for many problems in logic and
physical synthesis. In this paper we review how recent advances
in satisfiability (SAT) search can be extended for pseudo-Boolean
constraints and describe a new LPB solver that is based on gener-
alized constraint propagation and conflict-based learning.

Categories and Subject Descriptors:
I.2.3 [Deduction and Theorem Proving]: Inference engines;
G.1.6 [Optimization]: Integer programming
General Terms: Algorithms, Verification
Keywords: satisfiability, pseudo-Boolean, 0-1 ILP

1 Introduction
Recent advances in solving Boolean satisfiability problems

caused a significant resurgence of their application in multiple EDA
domains. For example, bounded model checking is based on solv-
ing a series of SAT formulas which represent finite unfolding of
the design to be checked. Only the latest improvements in SAT
search [1, 2] made this method practical in comparison with early
approaches, e.g. in sequential test pattern generation.

The efficiency of modern SAT solvers can be attributed to three
key features: (1) fast Boolean Constraint Propagation (BCP) based
on effective filtering of irrelevant parts of the problem structure,
(2) learning of compact facts representing large infeasible parts of
the solution space, and (3) fast selection of decision variables. All
three features heavily exploit the simple structure of a SAT problem
represented in conjunctive normal form (CNF) – a conjunction of
multiple constraints each being a disjunction of literals.

Although SAT is generally useful for propositional decision
problems, other families of constraints such aslinear pseudo-
Boolean (LPB) constraintscan encode many EDA problems more
compactly. LPB constraints have the form∑ai · l i ≥ k; ai ,k∈R; l i
is the variablexi or its negation ¯xi andxi ∈ {0,1}. The special case
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∑ l i ≥ k is also denoted ascardinality constraints. Binate covering-
based technology mapping, constraint-based placement and rout-
ing [3, 4], current estimation and timing and noise analysis can di-
rectly apply LPB constraints to encode feasible solutions. Further-
more, an additional pseudo-Boolean objective function of the form
∑ai l i → max can be maximized by a series of decision problems
making a corresponding solver applicable for optimization prob-
lems from the above mentioned domains.

Conventionally, LPB problems are handled by generic Integer
Linear Program (ILP) solvers. The drawback is that they typically
ignore the Boolean nature of the variables and thus cannot apply
specialized methods for efficient constraint propagation and prun-
ing of the search space. On the other hand, LPB decision prob-
lems could be encoded as pure CNF-SAT instances which are then
solved by any of the highly specialized SAT approaches. How-
ever, the number of clauses required for expressing the LPB con-
straints is large [5], and moreover, a pure CNF encoding may pre-
vent the solver from effectively processing the search space. For
example, the pigeonhole problem states thatn+ 1 pigeons cannot
be placed inn holes without sharing. The length of the shortest
resolution proof of unsatisfiability of the corresponding CNF prob-
lem is exponential in the number of holes [6]. Therefore, every
Davis-Putnam-Logeman-Loveland-style (DPLL) solver [7, 8] will
exercise an exponential runtime. In contrast, a description based on
cardinality constraints suits this problem naturally and the length
of the shortest cutting plane proof [9, 10] of unsatisfiability is only
quadratic [11].

All modern, general purpose SAT solvers are based on the
DPLL [12, 8] backtrack search procedure and apply conflict-based
learning to derive new clauses for representing an abstraction of
unsatisfiable parts of the solution space. This learning mechanism
effectively implements a heuristic for scheduling individual reso-
lution steps to assist the backtrack search. In this paper we de-
scribe how this scheduling scheme can be generalized for cutting
plane proofs and thus be applied for problems that include LPB
constraints. We further present a generalized watch-literal strat-
egy [2] which is applicable for Boolean constraint propagation on
LPB constraints.

2 Preliminaries
2.1 Constraints

A 0-1 ILP constraint is an inequality of the form:

∑
i

ai ·xi ≥ b, ai ,b∈ R, xi ∈ {0,1} (1)

A constraint is satisfied under some assignment of values to the
variables if the respective inequality holds. Using the relation ¯xi =
(1−xi), the general form of (1) can be converted into an equivalent
normalized LPB constraint with only positive coefficients:

∑ai · l i ≥ k, ai ,k∈ R+, l i ∈ {xi , x̄i}
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While in theory, constraints may have real-valued coefficients,
we make the same assumption as in [5], that constraints are integer-
valued. This simplifies the implementation but does not prevent
its application to real-valued problems which can be encoded by
integer coefficients in a straightforward manner.

The right-hand sidek of a normalized LPB constraint is called
its degree. An LPB constraint in which all|ai | are equal is also
known as a cardinality constraint, since it merely requires that the
number oftrue literals be greater than or equal to somek′:

∑ l i ≥
⌈

k
a0

⌉
= k′

A cardinality constraint withk = 1 is equivalent to a conventional
CNF clause, i.e.,

∑ l i ≥ 1 ⇔
∨

l i

Formally speaking, an LPB constraint is a hyperplane in
Boolean space. As demonstrated, a LBP inequality is more expres-
sive than a CNF clause, but less expressive than a unate function,
since the function(x1∧ x2)∨ x3∨ x4 can be expressed by a single
LBP constraint, but not(x1∧x2)∨ (x3∧x4).

2.2 Operations on Constraints
A proof for demonstrating satisfiability or unsatisfiability of a

set of constraints is based on a sequence of inference steps using
operations on individual constraints. The primary inference step
for CNF clauses isresolution[12] which combines a pair of clauses
in which exactly one literall appears positively in one clause and
negatively in the other, i.e.,

l1∨·· ·∨ lk ∨ l
l ′1∨·· ·∨ l ′m ∨ l̄

l1∨·· ·∨ lk ∨ l ′1∨·· ·∨ l ′m

Here we adopted the notation that the antecedents are shown above
the line and the consequences below the line.

The operation on LPB constraints which corresponds to CNF
clause resolution iscutting planes[9, 10] and computes a non-
negative linear combination of a set of LPB constraints, optionally
rounding coefficients up afterward. For example, combining two
constraints in non-normalized notation (i.e., form (1)) yields:

λ · (∑ai ·xi ≥ b)
λ′ · (∑a′i ·xi ≥ b′)

λ ·∑ai ·xi +λ′ ·∑a′i ·xi ≥ λ ·b + λ′ ·b′

As an example, the application ofλ = 1 andλ′ = 2 in conjunc-
tion with x̄3 = 1−x3 eliminatesx3 in the following:

1(x4 +3x5 +2x3 ≥ 3)
2(x1 +x2 + x̄3 ≥ 2)

2x1 +2x2 +x4 +3x5 ≥ 5

The coefficients of an LPB constraint may be rounded up, i.e.,

∑ai ·xi ≥ b

∑daie ·xi ≥ dbe

Correctness of rounding follows fromdae+ dbe ≥ da+ be. For
example, by multiplying the constraint withλ = 1/3 the following
rounding can be performed:

3x1 +x2 +x3 +x4 +x5 ≥ 6

x1 + 1
3x2 + 1

3x3 + 1
3x4 + 1

3x5 ≥ 2
x1 +x2 +x3 +x4 +x5 ≥ 2

Saturationis a corollary of rounding, i.e., all coefficientsai sat-
urate atk. This can be shown by repeatedly multiplying a constraint
with someλ betweenk−1

k and 1 and rounding until allai ≤ k. For
example:

0.6(3x1 +x2 +x3 ≥ 2)
1.8x1 +0.6x2 +0.6x3 ≥ 1.2

2x1 +x2 +x3 ≥ 2

Reduction[13] on an LPB constraint reduces coefficients on the
left-hand side and reduces the degree accordingly. For example,
reduction can be used to removex4 andx28 in the following:

x1 +x2 +x4 +2x7 +2x28 ≥ 5

x1 +x2 +2x7 ≥ 2

Cardinality constraint reductionderives a cardinality constraint
from a general LPB constraint [13]. This is done by successively
accumulating the sum of the by magnitude sorted set of coefficients
starting from the largestai , to detect the minimum number of terms
that must be satisfied for fulfilling the constraint. For example:

6x1 +5x2 +4x3 +3x4 +2x5 +x6 ≥ 17

x1 +x2 +x3 +x4 +x5 +x6 ≥ 4

This is because a successive check of∑n
i=1ai < 17 holds true for

n = 1,2,3 but not forn = 4. In addition, some of the literals with
the smallestai may be safely removed from the derived cardinality
clause. This is illustrated more clearly by first performing a reduc-
tion step to eliminatex6 from the original constraint followed by a
regular cardinality constraint reduction:

6x1 +5x2 +4x3 +3x4 +2x5 +x6 ≥ 17

6x1 +5x2 +4x3 +3x4 +2x5 ≥ 16
x1 +x2 +x3 +x4 +x5 ≥ 4

The detailed procedure for cardinality clause reduction is given
in Section 3.2.3.

3 Proof Procedures
A general procedure for proving unsatisfiability of a SAT in-

stance applies a sequence of resolution steps until an empty clause
is derived [12]. This procedure is complete but in general requires a
number of steps that is exponential in the number of variables. Even
in the practically common case that a polynomial-length proof ex-
ists, finding the actual schedule of the individual resolution steps
is difficult. The most effective SAT solvers apply a DPLL-style
backtracking procedure, which systematically searches the solution
space by making successive assignments to variables.

For a given partial variable assignments, Boolean constraint
propagation (BCP) generates a set of implied assignments which
must hold for the SAT instance to be satisfied under the current
partial assignment. If these assignments do not have any value con-
flicts, the search continues until a complete assignment is found and
thus satisfiability demonstrated. If, however, a conflict occurs, con-
flict analysis – also denoted as “learning” – computes a new clause
which represents an abstraction of the conflict context. This is done
by selectively applying resolution to a set of clauses of interest.

The general DPLL algorithm with learning as implemented by
Chaff [2] is shown in Algorithm 1. The backtrack search proce-
dure is organized as a depth-first traversal through the decision tree,
where each node is a value assignment for a particular decision
variable. The decision level of an assignment is the length of the
path from the root to that assignment.
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Algorithm 1 DPLLSATSEARCH

while (MAKEDECISION() 6= DONE)
while (BCP()= CONFLICT) // find stable assignment

if (CONFLICTANALYSIS() = CONFLICT)
return UNSAT

return SAT

There are two subtleties in the implementation of Algorithm 1
that dramatically increase the performance of SAT solvers. First,
the routine BCP must efficiently filter the clauses to be processed
during Boolean constraint propagation. This is crucial since the
SAT search spends the majority of the processing time in this part.
Second, the outlined procedure does not explicitly “flip” decision
variables. This is accomplished by constructing a conflict clause
during CONFLICTANALYSIS that includes exactly one literal on the
current decision level. The following BCP step will then automat-
ically drive the SAT search into the yet unexplored part.

General solvers for ILP problems are based on successive ap-
plications of cutting plane steps in a series of non-integral relax-
ations. The idea to solve LPB problems efficiently is to combine the
DPLL-style decision procedure given in Algorithm 1 with the ap-
plication of cutting plain steps for driving the search direction. The
main contribution of this paper is to generalize the two above men-
tioned key elements of efficient solver implementations for LPB
constraints. The following two sections outline an approach for fast
BCP for LPB constraints and a cutting plane algorithm for conflict
analysis that ensures continuous progress during the search.

3.1 Boolean Constraint Propagation
In SAT, theunit clause ruleensures whenever one literal in a

clause is unassigned and all others evaluate tofalse, BCP deduces
that this literal must be assigned totrue. The fastest known method
for BCP in SAT is based on thewatch-literal strategy [2] which
avoids a significant fraction of unnecessary clause processing but
still guarantees that all unit clauses are identified and correspond-
ing implications are processed. This strategy exploits the fact that
a clause cannot trigger an implication as long as two of its literals
remain unassigned. It is implemented by processing or “watching”
just two arbitrarily chosen literals per clause. Whenever, during the
SAT search, either watch-literal is assigned tofalse it is swapped
with a different unassigned literal. If no such literal exists an im-
plication is generated for the second unassigned watch-literal.

A generalized version of BCP for LPB constraints is based on
the idea that a literal is implied as soon as its coefficient must be
included for satisfying the constraint. For a formal analysis, lets
denote theslackof a constraint such that:

s= ∑
l i 6=false

ai − k (2)

wherek denotes the degree of the constraint. Informally, the slack
is the maximal amount by which the constraint can be over-satisfied
assuming that all unassigned literals aretrue. Then for any unas-
signed literall i such that

s − ai < 0 (3)

l i is implied under the current variable assignment. For the fol-
lowing example, the assignment ¯x1 results in a slacks= 3 which
impliesx2 andx̄3:

6x1 +5x2 +4x̄3 +2x4 +x5 ≥ 9 ∧ x1 = 0

x2 = 1 ∧ x3 = 0

In the following we describe how the watch-literal strategy can
be extended for LPB constraints. The idea of literal watching is
to minimize the monitoring effort for a constraint while still being
able to detect the precise moment when a constraint is violated or
some of its unassigned literals are implied.

To ensure that a constraint is not violated, it is sufficient to watch
a set oftrue or unassigned literalsLw such that

∑
i∈Lw

ai = Sw ≥ k

whereSw denotes the watch sum. This is because all the literals of
Lw could still be asserted and thus satisfy the constraint.

Detecting implied assignments requires one step of lookahead.
To ensure that no variable assignments may be implied, it is suffi-
cient to watch a set oftrue or unassigned literalsLw such that

∑
i∈Lw

ai = Sw ≥ k+amax (4)

whereamax denotes the largest coefficient of any unassigned literal
(or anything larger). This ensures that there is no unassigned literal
l i such thatai > s≥ (Sw−k)≥ amax.

Whenever a literal ofLw is assigned tofalse, it will be removed
from Lw and new,true or unassigned literals are added toLw until
condition (4) holds. If this cannot be accomplished, the literals
lmax∈ Lw are successively implied until (4) finally holds.

Algorithm 2 BCP triggered by watched literallt = false

Lw: Set of watched literals of constraint
Lu: Set of non-watched, non-false literals of constraint
SW: Watch Sum

Lw← Lw\{lt}
Sw← Sw−at
amax←max{ai | l i ∈ Lw∪Lu ∧ l i 6= true}
while (Sw < k+amax ∧ Lu 6= /0) // fill watch set

as←max{ai | l i ∈ Lu}
Sw← Sw +as
Lw← Lw∪{ls}
Lu← Lu \{ls}

if (Sw < k) // detect conflict
return CONFLICT

while (Sw < k+amax) // detect implications
IMPLY(lmax)
amax←max{ai | l i ∈ Lw ∧ l i 6= true}

return NO CONFLICT

Algorithm 2 shows the procedure for BCP processing of an LPB
constraint that was triggered by assigning a watched literal tofalse.
The following example illustrates this procedure for the constraint:

6x1 +5x2 +5x̄3 +3x4 +2x5 +2x6 +x7 ≥ 12

Suppose initiallyLw = {x1,x2, x̄3,x4}, thusSw = 19≥ 12+6. Next
the assignmentx3 = 1 triggers a swapping of watched literals, re-
sulting inLw = {x1,x2,x4,x5,x6} andSw = 18≥ 12+6. The next
assumed assignmentx4 = 0 will first swap the remaining literals
into the watch set such thatLw = {x1,x2,x5,x6,x7}. The resulting
conditionSw = 16< 12+6 causes then the implicationx1 = 1 after
which Sw = 16< 12+ 5. This again impliesx2 = 1 which finally
satisfiesSw = 16≥ 12+2. Note that at this point the constraint is
not satisfied yet. The remaining watch setSw = {x1,x2,x5,x6,x7}
is used for a continued monitoring of the unassigned literals.
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There are several adjustments of Algorithm 2 for overall effi-
ciency. For example, the re-filling of the watch set can be done in
any order as long as the literallmax is included inLw. Furthermore,
a conservative watch thresholdk+ amax can be used by selecting
the largest constraint coefficient, independent of the assignments.

3.2 Conflict-based Learning
Learning was proposed in [14] as a method to record “no-

goods”, i.e., partial assignments that are guaranteed to cause a con-
flict, and further extended in [1]. For a CNF-based SAT solver, a
“learned” clause can be deduced by a sequence of resolution steps
which combine the clauses leading to the conflict in reverse order
of the original implication sequence. To aid this analysis, an impli-
cation graph is used which records the actual assignment causalities
and the timing during BCP. The sequence of clauses generated by
the resolution steps corresponds to a sequence of cuts in the impli-
cation graph each separating the “conflict side” from the causing
assignments. Under the current assignment, any of these clauses
can reproduce the conflict and thus could be added to the CNF for-
mula as learned “no-good”.

GRASP [1] introduced a particularly important detail about the
cut selection which significantly contributes to the efficiency of
modern SAT solvers. Instead of choosing a clause corresponding
to an arbitrary cut, GRASP chooses a clause that includes exactly
one literal on the current decision level; all remaining literals are
from higher levels. This selection guarantees, that the value of the
variable on the current decision level is implied after backtrack-
ing, thus avoiding an explicit “flipping” of decision variables. This
scheme leads to the compact flow outlined in Algorithm 1 where
MAKEDECISIONasserts an unassigned variable to either 1 or 0; the
complemented space is then automatically searched through learn-
ing a conflict clause and BCP.

In the following we present how a learning scheme that drives
the search forward can be adopted for pseudo-Boolean constraints.
As outlined before, the operation on linear constraints that corre-
sponds to CNF clause resolution is cutting planes which computes
a linear combination of a pair of LPB constraints to eliminate a
particular variable. The problem with general cutting plane opera-
tions is that they might weaken the conflict situation and thus not
necessarily imply a forward leading variable assignment.

We use the following set of LPB constraints to illustrate the
general problem and to outline the suggested solution:

(a) 3x1 +2x2 +x7 +2x̄8 ≥ 3
(b) 3x̄1 +x3 +x5 +x9 ≥ 3
(c) x̄2 + x̄3 +x6 ≥ 2

(5)

Suppose thatx8 was assigned to 1 on some previous decision
level andx6 was set to 0 on the current level. Figure 1 shows the
implication graph for BCP processing for this example. The “@”
notation indicates the timing of the individual implication steps.

Conflict

constraint(c)
x3← 0 @t = 4

constraint(b)
x1← 0 @t = 5

x8← 1 @t = 1

decision level:i +1decision level:i

x6← 0 @t = 2

constraint(c)
x2← 0 @t = 3

x1← 1 @t = 6
constraint(a)

(a)(a)+(b)(a)+(b)+(c)(a)+(b)+(c)+(c)

Figure 1: Implication graph for conflict-based learning example.

The application of cutting plane steps (using ¯x = 1− x) elimi-
nates the variablesx1, x3, andx2 in reverse order of their implica-
tions. This results in the following sequence of constraints which
correspond to the cuts indicated in Figure 1.

t = 4 : (a)+(b) 2x2 +x7 +2x̄8 +x3 +x5 +x9 ≥ 3
t = 3 : +(c) x2 +x7 +2x̄8 +x5 +x9 +x6 ≥ 3
t = 2 : +(c) x̄3 +x7 +2x̄8 +x5 +x9 +2x6 ≥ 4

(6)

Note that the original pair of constraints(a) and(b) is in conflict
for the given partial assignment (¯x2, x̄3, x̄6,x8), however, the result
of the first cutting plane step combining the two att = 4 is not. This
is because a single cutting plane step is a weakening operation and
may not preserve the full information available in the original set
of constraints [15]. This is particularly problematic if the result-
ing learned constraint is too weak to “flip” the variable on the cur-
rent decision level which is essential for driving the search forward
in the outlined flow. In the given example, the partial assignment
x8∧ x̄6 necessarily leads to the conflict, thus the fact ¯x8∨x6 could
be asserted. However, this information is not preserved in the last
constraint learned att = 2, which represents the cutting plane for
the given partial assignment, i.e.,x8 does not implyx6.

The slack as defined in equation 3 can be used to analyze the
cause of the constraint weakening and to control the cutting plane
steps such that the resulting constraint remains strong enough to
drive the search forward. The following gives the slack of the indi-
vidual constraints in reverse order of the implication process:

Constraint Partial assignment Slack
t = 5 3x1 +2x2 +x7 +2x̄8 ≥ 3 x̄1, x̄2, x̄3, x̄6,x8 −2
t = 4 3x̄1 +x3 +x5 +x9 ≥ 3 x̄2, x̄3, x̄6,x8 +2
t = 3 x̄2 + x̄3 +x6 ≥ 2 x̄2, x̄6,x8 ±0
t = 2 x̄2 + x̄3 +x6 ≥ 2 x̄6,x8 ±0

(7)
Clearly, the combined slack will be 0 after processing the first

two constraints, which is the reason why the resulting constraint is
not in conflict anymore for the partial assignments att = 4,3,2.

In general, the constraint at the conflict will always have a neg-
ative slack. During the cutting plane steps, only the addition of a
positive slack constraint may weaken the result such that the con-
flict information is lost. This can be avoided by reducing all con-
straints to be added beforehand such that the combined slack will
remain negative. For example, constraint(b) can be reduced by
first removingx9 followed by saturatingx1 resulting in:

(b′) 2x̄1 +x3 +x5 ≥ 2

which has a slack of+1. The resulting cutting plane sequence is:

t = 4 : 2(a)+3(b′) 4x2 +2x7 +4x̄8 +3x3 +3x5 ≥ 6
t = 3 : +3(c) x2 +2x7 +4x̄8 +3x5 +3x6 ≥ 6
t = 2 : +(c) x̄3 +2x7 +4x̄8 +3x5 +4x6 ≥ 7

(8)

Note that the resulting learned constraint att = 2 is strictly
stronger than ¯x8∨x6 and will “flip” x6 as desired.

Key to the outlined approach is to reduce each constraint to be
added by removing unassigned variables followed by saturation
such that the combined slack after the cutting plane step remains
negative. This process is guaranteed to work since a repeated re-
duction of constraints will eventually lead to a simple CNF clause
with a slack of 0. However, as shown in the example, a complete
CNF reduction can often be avoided leading to stronger constraints.
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Algorithm 3 CONFLICTANALYSIS for conflicting constraintccon f

I : Set of implications precedingccon f in conflict graph;
sorted in reverse BCP processing order

ci : Constraint causing implicationi
xi : Variable asserted by implicationi
di : Decision level of implicationi
Ad: Set of assignments made on decision levels 1. . .d

c← ccon f
while (I 6= /0)

i← REMOVENEXT (I )
c← REDUCE1 (c)
c′← REDUCE2 (ci)
c← CUTRESOLVE (c,c′,xi)
if (Adi−1 triggers literal implication inc)

c← REDUCE3 (c)
LEARN c
BACKTRACK to smallestd such thatAd implies literal inc
return NO CONFLICT

return CONFLICT

Algorithm 3 gives the formal high-level procedure for comput-
ing a learned constraint. Starting from the conflicting constraint,
the procedure processes the implication graph in reverse topologi-
cal order by applying repeated cutting plane steps (CUTRESOLVE).
It stops when the assignments of the previous decision levels imply
at least one literal of the learned constraint. The operation RE-
DUCE transforms a constraint via the rules outlined in Section 2.2
such that the combined constraint remains in conflict. The follow-
ing sections discuss three options for learning constraints based on
variants of the REDUCEoperations. In Section 5 we present a com-
parison of the different methods based on detailed benchmarking.

3.2.1 Learning CNF Clauses
In this method, the REDUCE1 and REDUCE2 operations per-

form a plain CNF reduction on a constraint by combining the im-
plied literal and the literals of the constraint causing the implica-
tion into a single CNF clause. If there is a choice in literals, we
exploit idempotency for obtaining shorter clauses by choosing lit-
erals already known to be in our “conflict clause”. This operation
is safe and will by construction preserve the property that the re-
solved clauses remain in conflict. This approach fits smoothly into
a CNF based SAT solver as proposed in [5], however, the signif-
icant reduction generally causes a redundant processing of search
space and a corresponding performance reduction as evaluated in
Section 5.

3.2.2 Learning LPB Constraints
This most general form of learning attempts to preserve a max-

imum strength is the learned constraint by applying careful reduc-
tion steps. Key for the REDUCE2 operation is to analyze the set of
unassigned literals of the two constraints to be combined and max-
imally exploit cancellation of complementary literals, which are
double counted in slack computations. As shown in the example
the actual reduction is then performed by successively removing
true or unassigned literals followed by saturation until the com-
bined constraint is expected to retain negative slack. Further, for
LPB learning, operations REDUCE1 and REDUCE2 also deal with
possible coefficient overflows by pro-actively reducing them.

3.2.3 Learning Cardinality Constraints
Cardinality constraints provide a middle ground between

CNF clauses and general LPB constraints with arbitrary coeffi-

cients [13]. In comparison with the latter, cardinality constraints
offer a compact representation and fast processing of BCP and
conflict-based learning because of their uniform structure. The cor-
responding learning scheme first generates a LBP constraint as out-
lined in the previous section and then reduces the result to a cardi-
nality constraint in REDUCE3. The formal pseudo-code for cardi-
nality reduction is presented in Algorithm 4. As illustrated by the
example in Section 2.2, the algorithm first collects the minimum
number of literals needed for satisfying the original constraint. It
then drops as many of the low-coefficient literals as possible.

Algorithm 4 CARDINALITY REDUCTION of constraintc
L: Set of literals in constraintc

s← 0
k′← 0
L′← L
while (s< k ∧ L 6= /0) // collect minimum number ofl i

amax←max{ai | l i ∈ L}
L← L\{lmax}
s← s+amax
k′← k′+1

slack←min{k,min{ai | l i ∈ L′}−1}
while (min{ai | l i ∈ L′}−1}< slack) // drop l i with smallerai

asel←SELECT({ai | l i ∈ L′, ai < slack})
slack← slack−asel
L′← L′ \{lsel}

return ∑l i∈L′ l i ≥ k′ // constraint witha′i = 1

Since this algorithm performs a weakening, it may happen that a
“learned” conflict constraint is no longer in conflict, by changing
the relative importance of literals. We conservatively detect this
beforehand by checking ifs+ ∑l i=false(ai −1) ≥ 0. If this holds,
we reduce away alltrue and unassigned literals before performing
a cardinality reduction.

4 Previous Work
Barth [13] was one of the first to investigate the application of

modern DPLL-style search procedures for solving special cases of
ILP instances and introduced the concept of cardinality reduction
for fast constraint processing. In [5] a pseudo-Boolean solver based
on Chaff is described which uses counters to detect logical impli-
cations and conflicts. The presented technique does not apply a
watch literal scheme for BCP of LPB constraints and uses only
simple learning of plain CNF clauses. The authors of [16] inte-
grated a plain cutting plane method into a DPLL-style constraint
solver. However, if the resulting constraint is too weak, their ap-
proach reverts to full CNF clause reduction.

This paper extends existing work in two critical areas. First,
we present a generalized watch-literal scheme for fast BCP of LPB
constraints. This technique is similarly critical for a high perfor-
mance LPB solver as the two-watch-literal strategy for Chaff [2].
Second, we give a general algorithm for LPB learning based on cut-
ting plane operations which guarantees forward progress without
the explicit need to generate CNF clauses and avoids unnecessary
weakening of the learned facts.

5 Experimental Results
We have implemented a new LPB solver,Galena , in C++

which incorporates all the features described earlier and random
restarts [2]. Clause deletion [2] is not implemented. An initial
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Benchmark Vars Clauses/ Runtime (s)
Cardinality CNF CARD LPB OSL

grout-4.3-1 672 1872/77 0.11 0.21 0.07 1.89
grout-4.3-2 648 1803/77 15.25 0.1 0.65 2.09
grout-4.3-3 648 1796/80 4.96 0.32 0.79 4.31
grout-4.3-4 696 1940/80 4.39 0.11 0.1 1.25
grout-4.3-5 720 1992/88 0.06 0.04 0.04 8.79
grout-4.3-6 624 1750/69 0.46 0.13 0.06 14.74
grout-4.3-7 672 1875/76 0.16 0.08 0.4 1.27
grout-4.3-8 432 1176/71 0.2 0.03 0.05 2.27
grout-4.3-9 840 2330/96 76.63 0.11 0.29 1.73
grout-4.3-10 840 2343/90 0.25 0.13 0.07 0.45
acc-tight:0 1620 1548/468 0.04 0.03 0.05 15.87
acc-tight:1 1620 1827/738 0.18 0.24 0.6 524.84
acc-tight:2 1620 1944/855 98.63 0.21 0.34 *
acc-tight:3 1620 2673/855 0.12 1.69 0.73 *
acc-tight:4 1620 2691/891 16.66 0.67 0.23 *
acc-tight:5 1335 2319/1010 5.98 6.05 24.8 *
acc-tight:6 1335 2321/1003 1.05 3.44 127.2 *
* Timeout (1200s)

Table 1: Decision problem runtimes for various learning options.

set of experiments showed that in our implementation a watch-
ing scheme is beneficial for clauses and cardinality constraints, but
not for LPB constraints; therefore we use counters to implement
Boolean constraint propagation on LPB constraints. All experi-
ments are performed on a Pentium-III 800MHz with 256MB of
RAM and 256KB of L2 cache running Linux 2.4.18.

The benchmarks we run include the more difficult global rout-
ing benchmarks from [5] and scheduling benchmarks from [17].
Table 1 gives the results for solving these decision problems. The
routing benchmarks were run through a trivial preprocessor to ob-
tain a more compact form [16]. The three main columns “CNF”,
“CARD”, and “LPB” correspond to the different learning schemes
presented in Sections 3.2.1, 3.2.3, and 3.2.2, respectively. For each
method, the initial constraints consist of clauses and cardinality
constraints. The column headings for the runtimes refer only to the
type of learnedconstraints; the column denoted by “OSL” reports
the results obtained from IBM’s OSLv3 [18] ILP solver.

As the results in Table 1 show, the LPB and CARD learning
schemes generally perform better than CNF, since they may exploit
some of the structure in a problem. Both also dramatically outper-
form OSL in finding a solution to a constraint satisfaction problem.
For nontrivial problems, the CARD scheme outperforms the LPB
scheme because of the overhead of manipulating LPB constraints.

To increase the difficulty of the benchmarks, we run the same
routing examples, with the objective to minimize the number of
1’s in the solution. This is done in our solver by incrementally
solving a set of decision problems in a linear search. The results
are given in Table 2. Here, it is clear that CARD is the overall best
learning scheme of the ones presented. Under the CNF scheme,
the solver frequently runs out of memory, because it learns many

Benchmark Optimum Runtime (s)
CNF CARD LPB OSL

grout-4.3-1 62 + 3.5 869 0.88
grout-4.3-2 64 1071 24.19 39.25 1.55
grout-4.3-3 62 * 5.94 739 0.84
grout-4.3-4 60 + 8.05 519 0.85
grout-4.3-5 60 + 17.25 * 0.32
grout-4.3-6 66 88.57 9.06 90.1 1.85
grout-4.3-7 64 44.61 6.09 7.17 1.03
grout-4.3-8 36 * 3.48 234 0.43
grout-4.3-9 68 238 3.73 4.42 1.32
grout-4.3-10 70 4.34 0.76 1.21 1.15
* Timeout (1200s), + Out of memory

Table 2: Optimization runtimes for various learning options.

weak clauses. For optimization, the OSL solver runs faster than
all other methods, and outperforms itself when compared to the
“easier” decision problems. The former may be due to the high
symmetry in the benchmarks, and the latter to OSL’s reliance on an
objective to drive the search.

6 Conclusions
In this paper we presented a fast pseudo-Boolean constraint

solver which is based on generalizing multiple concepts learned
from modern SAT solvers. In particular, we described how effi-
cient Boolean constraint propagation using the watch-literal strat-
egy can be extended for pseudo-Boolean constraints and how the
general DPLL search scheme can be adopted to drive a cutting
plane proof for this class of problems. Our experimental results
show that the presented constraint solver outperforms existing ap-
proaches and thus may offer an attractive new approach to solve
many EDA problems that can be modeled with a combination of
classical CNF clauses and pseudo-Boolean constraints.

Our LPB optimizer is still slow in comparison with a commer-
cial ILP solver. In our future work we plan to improve this by using
a binary search on the objective and tuning the decision heuristic
using an LP solver.
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