
Dynamic Global Buffer Planning Optimization Based on
Detail Block Locating and Congestion Analysis

Yuchun Ma1, Xianlong Hong1, Sheqin Dong1, Song Chen1, Yici Cai1, C.K.Cheng2, Jun Gu3

1
 Department of Computer Science & Technology, Tsinghua University, Beijing, China,100088 2 Department of

Computer Science and Engineering, University of California,San Diego CA 92093-0114,USA

3
 Department of Computer Science, Science & Technology University of HongKong

clara99@mails.tsinghua.edu.cn; hxl-dcs@tsinghua.edu.cn

ABSTRACT
By dividing the packing area into routing tiles, we can give the
budget of the buffer insertion. And the detail locating of the
blocks in their rooms can be implemented for each iterations
during the annealing process to favor the later buffer planning.
The buffer insertion will affect the possible routes as well the
congestion of the packing. The congestion estimation in this
paper takes the buffer insertion into account. So we devise a
buffer planning algorithm to allocate the buffer into tiles with
congestion information considered. The buffer allocation
problem is formulated into a net flow problem and the buffer
allocation can be handled as an integral part in the floorplanning
process. Since there is more freedom for floorplan optimization,
the floorplanning algorithm integrated with buffer planning can
result in better performance and chip area.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
Routing

General Terms
Algorithms, Performance, Design.

Keywords
Floorplanning, Routability, Congestion, Buffer Insertion.

1. INTRODUCTION
Due to the recent advances in VLSI technology, the number of
transistors in a design is increasing rapidly and so are their
switching speeds. This has increased the importance of the
interconnect delay in the overall performance of a circuit. Many
techniques are employed to reduce interconnect delay. Among
them, buffer insertion has shown to be an effective approach to
achieve timing closure. As transistor count and chip dimension
get larger and larger, more and more buffers are expected to be
needed for high performance. It was projected that over 700K

buffers will be inserted on a single chip in the 70nm
technology[1]. Since buffers are implemented by transistors, they
cannot be placed over the existing circuit blocks. Placing a large
number of buffers between circuit blocks could significantly
impact the chip floorplan. Therefore, it is necessary to start
buffer planning as early as possible. It is very useful that a good
planning of the block positions can be obtained during the
floorplanning stage so that buffers can be inserted wherever
needed in the later routing stages.

1.1 Previous Works
There are several previous works addressing the interconnect

issues in floorplanning design. Cong[2] define the term “feasible
region” (FR) of a net, that is, the largest polygon in which a
buffer can be inserted such that the timing constraint can be
satisfied. Sarkar[3] added the notion of independence into
feasible regions so that the feasible regions of different buffers
on a net can be computed independently. These two papers gives
the basic idea of Feasible Region, based on which they proposed
the buffer planning algorithms. But both of their methods take
complex scanning to obtain the feasible buffer insertion sites.
Tang and Wong[4] propose an optimal algorithm based on net
flow to assign buffers to buffer blocks assuming that only one
buffer is needed per net. Alpert et al.[5] make use of tile graph
and dynamic programming to perform buffer block planning,
while they propose that buffers should be allowed to be inserted
inside macro blocks. But all of these algorithms are based on
fixed die placement and it is difficult to embed those methods
into the iterations of the floorplanning process because of the
complexity of those algorithms. Unfortunately, the fixed
placement is likely to generate some timing-constraint violations
which are beyond repair unless the topological relation between
blocks can be changed. Sham[6] proposed a routability driven
floorplanner while the buffer insertion are assumed to be
inserted at a flexible interval from each other for long enough
wires. Therefore, the buffer insertion is just estimated by
probabilistic budget, while the buffer blocks are not allocated in
Ref.[6]. Hence, to create a performance-feasible floorplan, a
performance-driven floorplanner that simultaneously considers
area and buffer block insertions is needed. Although many

 This work is supported by the National Natural Science Foundation of

China 60121120706 and National Natural Science Foundation of USA
CCR-0096383, the National Foundation Research(973) Program of
China G1998030403, the National Natural Science Foundation of
China 60076016 and 863 Hi-Tech Research & Development Program
of China 2002AA1Z1460, the National Doctoral Foundation of China
20020003008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00

806

47.3

approaches have been proposed to make use of the dead space
for buffer insertion, few of them optimize the buffer planning by
changing the distribution of the dead-space in the placement.

1.2 Our Contributions
Previous methods of buffer planning are based on the fixed
blocks. We have found that by changing the positions of the
blocks within their rooms will not affect the total area and the
topological relations, but the buffer insertions may be optimized.
In our floorplanner, we will divide the packing area into routing
tiles and we can give the budget of the buffer insertion at each
tile. Therefore, we devise a novelty method of the detail process
of locating the blocks in their rooms to favor the buffer
insertions. The dead spaces in each tile can be computed.
The buffer insertion will influence the routing ways greatly. So
we estimate the congestion information based on 2-bend routes
with some blocked tiles considered. This method is very
effective since we can use the routes matrix to figure out all the
possible routes instead of computing all the routes by scanning
the tiles. Taking advantage of the buffer budget and congestion
estimation, the buffer planning algorithm is based on net flow
method to optimize both the congestion and the buffer insertion.
To speed up our algorithm, the simulated annealing process is
divided into two phases: timing optimization phase and buffer
insertion phase.
The rest of the paper is composed as follows: Sect.2 gives the
overview of our floorplanner; Sect.3 gives the budget of the
buffer insertion and the floorplanning algorithm to locate the
circuit blocks in their rooms. The buffer planning algorithm and
the two-phase annealing process are described in Sect.4 and
Sect.5. The experimental results are shown in Sect.6. Finally, the
conclusion is given.

2. OVERVIEW OF OUR
FLOORPLANNER

In this paper, we concentrate on the buffer planning problem
with the floorplanning. The insertion of buffers should be in the
dead spaces between circuit blocks. We seek a floorplanning
methodology to produce the optimal floorplan such that the

floorplan area, wire length and the timing violations are
minimized and the buffers can be inserted in the dead spaces as
much as possible and the congestion between routes can be
minimized. We assume that the wires are routed over-the-cell.
The general flow of our algorithm is given in Fig.1. Our
algorithm consists of three key steps: block planning, buffer
planning and solution perturbation and evaluation.

The dead spaces besides the blocks will affect the insertion of
buffers. Traditional room-based floorplanner will pack the
blocks at the lower-left corner or the center of the blocks’ rooms.
Thus the dead spaces are distributed without considering the
buffer insertion demands. Different from the traditional block
planning method, to favor the buffer planning, we firstly pack
the blocks by given solutions to obtain their room partitions,
then the positions of the blocks are determined by the buffer
budget in whole packing area. And the later buffer planning is
based on the result of the detail locations of the blocks. The
congestion information is estimated taken into account the
buffer requirement for all nets. The buffers are allocated based
on net flow algorithm considering both buffer position and the
congestion estimation.

3. Floorplanning Algorithm
In the room-based representation such as (BSG, SP, CBL,

Slicing), the blocks are packed within the range of the rooms. If
we can move the blocks in their room, the buffer insertion will
be optimized since it can leave much more dead space where the
buffers are needed.

3.1 Rooms in the packing
The chip can always be dissected into small rectangles,

denoted as room(Fig.2(a)). Given an n-block set, it divides the
chip into at least n rooms and assigns no more than one block to
each room. And the topological relations between the rooms
depend on the representations of the floorplanning. Most of the
rooms are not held entirely by the circuit blocks. Therefore,
some dead-spaces may be generated. And in the non-slicing
structure, some rooms may contain no circuit blocks but dead
space so called necessary empty room (Fig.2).

Definition 1: the necessary empty room is the empty room
without circuit block and it can not be removed by merging with
the other rooms.

The blocks can be moved within their rooms while the area
and the topological relations remain. The dead space in
necessary empty room should be fixed and the dead space in the
block room can be redistributed by moving the block within its
room(Fig2(b)).

3.2 Budget of buffer insertion
 Each driver/buffer is modeled as a switch-level RC circuit[8]

and the Elmore delay formula[7] is used for delay computations.

E E

(a) room partition (b) move blocks within rooms

Fig.2. room partition(E is the necessary empty room)

Solution perturbation and
decrease the temperature

Fig.1. Overall algorithm

Specs of blocks, nets, timing

Initial Solution of annealing process

Buffer planning

Solution evaluation

Stop annealing ?
No

Yes

Buffer planning

Congestion estimation

Buffer allocation

Block planning

Buffer budget

Detail blocks locating

Block planning
Room partition

807

The notation for the physical parameters of the interconnect and
buffer we use in this paper is as follows:

r wire resistance per unit length
c wire capacitance pre unit length
Tb intrinsic buffer delay
Cb buffer input capacitance
Rb buffer output resistance
CL sink capacitance;
Rd driver resistance;
Ln the length of sink-source net N(two pin net)

 The optimal locations of the k buffers for delay minimization
of the net as shown in [3] are

{ }kixyix LLi ,...2,1)1(*** ∈+−= (1)

 Where

)
)()(

(
1

1*

c
CC

r
RRk

L
k

x bLdb
nL

−
+

−
+

+
=

)
)()(

(
1

1*

c
CC

r
RR

L
k

y bLdb
nL

−
+

−
−

+
=

The minimum number of buffers to meet the delay constraint
Treq for an interconnect of length l is

 −−−
=

4

64
2
55

min 2
4

K
KKKK

k (2)

where

bbb TCRK +=4

2
5

)(
2

2)(
2

)(

dbLb

reqLbbdbbb

RR
r

cCC
c
r

TCRCRTlcRrCK

−−−−

−++++=

reqLddL TCRlcRrCrclK −+++=)(
2
1 2

6

To budget the buffer insertion, we divide a floorplan into a set
of 2-dimensional array of routing tiles. According to formula
(1), the optimal position for buffer insertion is only affected by
the wire length between source and sink. We assume that the

pins are located at the center of the tiles. It is very effective to
figure out the possible buffer insertion tiles for different length.
As shown in Fig.3, there is a sub-packing with 5 blocks and 2
nets between them. Three possible buffer tiles(B) for net(S,T)
and two possible buffer tiles(b) for net(s,t) are shown in
Fig.3(b).

Each tile will have more than one buffer inserted. And each
buffer may have several possible insertion tiles. Thus we devise
a weight for each tile. Assuming that the probability of each
possible insertion tile for a buffer in the net are equal, Bi is a
buffer of a net and it has Ki possible insertion tiles, which
includes tile (x,y). Thus the probability P(x,y,Bi) that the buffer

Bi is inserted at tile (x,y) is: P(x,y,Bi)
iK

1
=

3.3 Detail locating of blocks
To insert the buffers as much as possible, the dead spaces

resource should be allocated as needed. Since the blocks can be
moved within their rooms, the strategies of how to place the
blocks in their rooms will affect the total packing performance.
With the budget of the buffer insertion, we introduce a novelty
method to place the blocks in their room to favor the buffer
insertion. First of all we give the weight for each tile(x,y).
Suppose that BUFF(x,y) is the set of all the buffers which can be
inserted in tile(x,y)

Weight(x,y) = ∑
∈),(

),,(
yxBUFFBi

BiyxP

Suppose that the rooms in the packing are {R1….Rn}. Since
the buffer insertion should avoid the circuit blocks, Suppose that
T_Covered(Ri) is the set of the tiles covered by circuit block in
room Ri. Some tiles along the circuit block boundary may not be
covered entirely. We define the dead space ratio in each tile is

DS_ratio(x,y) =
TileA

yxADS

_
),(

Where ADS(x,y) is the area of dead space in (x,y)
A_Tile is the area for each tile.

Therefore if tile(x,y) is covered entirely by the circuit blocks,
DS_ratio(x,y)=0 and if tile(x,y) is not covered by the circuit
blocks at all, DS_ratio(x,y)=1. Thus the object should be to
decide the position of the circuit blocks and the buffer budget of
the covered tiles is minimized. We define the unused budget in
Room Ri as:

∑ −=
∈)(cov_),(

)),(_1(*),(()(_
RieredTyx

yxratioDSyxWeightRibudgetu

 In order to optimize the buffer insertion, the unused budget
should be minimized, therefore the problem can be described as:

Object: Min ∑
=

n

i
Ribudgetu

1
)(_

We have partitioned the packing into rooms, and the budget of
buffer insertion are independent in each room. Therefore we can
handle the room one by one. As shown in Fig.4, since the tile
position is limited in the rooms, we restrict the lower-left corner
of the circuit blocks should be located at the tiles. To facilitate
the computation, the problem is handled in two directions, one is
vertical and the other is horizontal. At first, we can move the

B

B
B

3

4 5

1
2

(a) the room partition (b) the buffer budget

(d) dead space partition (c)detail locating of blocks
Fig.3 detail location of blocks

S

T s

t

b
b

B

B
B

S

T s

t

b
b

808

block by the size of tile in the vertical direction to decide the
vertical position. Then we move the block horizontally to fix the
horizontal position. At the same time, the dead spaces in each
tile are fixed.

3.4 Effective update of the buffer budget
The detail locating of blocks will change the positions of the
blocks slightly. Thus the nets will be influenced at the same time.
Since the changes of one block will not affect the buffer
insertion greatly, we take a lazy update of the buffer budget. The
update process is only taken when the detail locating for a block
are fulfilled. Therefore, at the end of the locating process, all the
buffer budgets should be updated.

4. Buffer Allocation
By taking the congestion information into considered, we use

Min-cost-Max-Flow algorithm to assign the buffers to their
possible insertion sites.

4.1 Congestion Model
The congestion model employed is essentially a two

dimensional rectangular grid based probabilistic map assuming
2-bend routing for each segment.

Without loss of generality, we consider the source to be
located in tile(0, 0) and the sink to be located in tile(m, n). It is
easy to see that there are a total of m + n possible 2-bend routes
from source to sink(Fig.5). Without the buffer inserted taken
into account, the route number matrix is shown in Table 1.

 Taking the buffer sites into consideration, the possible routes

should be reduced. Thus we should count only the routes passing

through the feasible buffer insertion sites.

Definition 2: Blocked Tile: if the tile(x,y) is the possible
buffer insertion for a net, but DS_ratio(x,y) = 0 which means
tile(x,y) is covered by circuit blocks entirely, the tile(x,y) is
called blocked tile.

Since blocked tile can not be routed over, it is necessary to get
rid of the routes through tile(x,y) when doing the congestion
estimation. Since we are using 2-bend routes, it is very easy to
calculate the possible routes by reducing the routes passing
through the blocked tile(Fig.6).By scanning all the nets, the
congestion estimation for each tile can be figured out.

4.2 Buffer Planning
The objective of the buffer planning is to determine the

locations of buffers, and insert as many buffers as possible to
maximize the number of nets that meet the timing constraints.
To solve the problem, we construct a network graph G (V, E)
and then apply a min-cost max flow algorithm to get the
solution. Each edge of G represents a possible assignment from
a buffer to a tile. G (V, E), V = B ∪ L, where B represents
buffers and L represents tiles, E = {(b, l), b ∈ B, l ∈ L, b can be
inserted into tile l}. In order to insert as many buffers as
possible, we construct an s-t graph based on bipartite graph G to
find the max cardinality matchings. To take the congestion into
consideration, the capacity and cost for each edge are defined as
following:

Edge Capacity:
E(s,b) = 1; E(b,l)=1; E(l,t)=Ads(l)/A_buffer;
Edge cost:
 C(s,b) = 0; C(b,l)=0; C(l,t)=Congestion(l)
 Ads(l) is the area of dead space in tile l and A_buffer is the

area of a single buffer. Hence, E(l,t) records the capacity that
how many buffers can be inserted in the dead space within tile l.
To punish the high congestion, we use the Congestion(l), which
is the congestion estimation of all net in tile l, as the cost for
edge (l,t).Fig.7 is an example of the s-t graph.

0.4

0.2

1.2

0.3

0.6

0.4

0.2

0.3

1.2 0.6

Fig.4. the location of block in one room

(a) u_b= 1.2*1+0.6*1+0.2*0.6
+0.3*0.5=2.07

(b) u_b = 0.3*1.0+0.4*0.6=0.54

Algorithm 1 detail locating of blocks
Budget all the buffer insertions;
 Compute the Weight and DS_ratio for each tile;
For room Ri is from R1 to Rn:
 Find the best position of block in room Ri
 Update the buffer budget of the nets connecting the block in

room Ri
 End for
Update the DS_ratio for each tile.
 End.

(a) 2-bend routes for net

1/5

2/5

2/5

2/5

5/5

3/5

3/5

5/5

2/5

2/5

2/5

1/5

(b) the congestion matrix
Fig.5. 2-bend routes and congestion for net

(a) a net with blocked tile

1/3

1/3

1/3

0/3

3/3

2/3

2/3

3/3

1/3

1/3

2/3

1/3

(b) the congestion matrix
Fig.6. the routes with block tile

Table 1 Routes matrix

Tile(x,y) #routes

0<x<m, 0<y<n 2

0<x<=m,y=0 (m-x+1)

0<=x<m,y=n (x+1)

x=0,0<y<=n (n-y+1)

x=m,0<=y<n (y+1)

x=0,y=0 or x=m,y=n (m+n)

809

Finding a min-cost maximum flow in a network is a classical
problem for which several polynomial-time optimal algorithms
are available[9].

5. Two-phase annealing process
In our algorithm, the simulated annealing process is divided

into two phases: timing optimization phase and buffer insertion
phase. In the timing optimization phase, we try to search for an
optimal floorplanning that the timing constraints can be satisfied
as much as possible.

 In the beginning of floorplanning process, the buffer
planning is less meaningful because the locations of the blocks
are still far from their final position. The cost function used in
the phase is shown below:
Cost = Area + p*Wire + q* Tviolations
 Where Area is the area of the floorplan and Wire is the total
wirelength(p is the weight), Tviolation is the number of the net
whose optimal timing with buffer inserted is larger than the
given timing constraint.

If the violations of timing constraint is good enough(for
example that the violation propotion of timing constraints are
less than 25%) or the timing constraint can not be optimized for
a long time during the first phase, we start the phase of buffer
insertion and the cost function used in the buffer insertion
optimization phase is shown below:
Cost = Area + p*Wire + q* Tviolations +
r*Bnot_inserted+m*Congestion

Here Bnot_insert is the number of the buffers not inserted
successfully because of the limitation of the dead spaces.
Congestion is the average of 5% largest congestion estimations
in the packing.

6. Experiments
We have implemented the placement algorithm in C

programming language, and all experiments are performed on a
SUN SPARC III workstation. Some MCNC benchmarks are
used in the experiments. The parameters (Table 2) used in our
experiments are based on a 0.18um technology in [10]. We have
tested our algorithms on 5 MCNC benchmarks, as summarized
in Table 3.

In this paper, we focus on 2-pin net, so we decompose each
multi-pin net into a set of source-sink 2-pin net. Since the
MCNC benchmarks do not come with any timing information,
we generate a floorplan by running the CBL floorplanner[11]
randomly. Based on this floorplan, we assign target delays to the
two-pin nets as follows: for each net, we first compute its best
delay by optimal buffer insertion Topt, and assign its target

delay as 1.1Topt. Notice that the sizes of the blocks are enlarged
for demonstration of the effect of buffer planning.

In the following, the test results are record by : 1)#Meet: the
number of nets for which the delay constraint is met with
successful buffer insertion; 2) #Inserted B / #B: the ratio of the
total number of buffers inserted successfully and the total
number of the buffer needed to meet timing constraints,
3)Congestion: the average of 5% largest congestion estimation
in the packing.

 Based on the fixed placement, the detail distribution of
circuit blocks in their rooms can favor the buffer insertion. In
Table 4, we give the test result between different strategies to
place the blocks within their rooms. In Method LL, all the
blocks are located at the lower left corner of the rooms. In
Method CE, all the blocks are located at the center of the rooms.
The result of method DL is the result of detail locating of blocks.
The results show that the detail locating with buffer budget can
insert more buffers than the other two methods.

Table 4 The results of detail distribution
Ami33 Ami49

Meth
od

#Inserted

 B
#B #meet

#Inserted

B
#B #meet

LL 93 245 210 224 532 341
CE 80 253 204 193 524 337
DL 138 266 246 236 486 359

In Table 5, we report the experimental results of two
floorplanners: a traditional floorplanner F1 based on simulated
annealing without considering timing issue with the buffer
insertion, and a timing-driven floorplanner F2 on 2-phase
simulated annealing with buffer planning. For the result of F1,
we also perform the buffer insertion as in F2 at the end to
compare the results of F2:

Comparing F1 and F2 in Table 3, the differences between F1
and F2 on area and wirelength are very small but the timing
driven floorplanning algorithm with buffer planning (F2) can
achieve much better timing performance than the plain

 B L B L

s
t

Fig.7. s-t graph of buffer planning:

capacities are omitted in the graph

Table 3 MCNC BENCHMARK

circuit blocks nets 2-pin net

apte 9 97 172

xerox 10 203 455
hp 11 83 226

Ami33 33 123 363

Ami49 49 408 545

Table 2 PARAMETER LIST

 Description Value

R Wire resistance per unit length(Ωµm) 0.075

C Wire capacitance per unit length(fF/µm) 0.118

Tb Intrinsic buffer delay(ps) 36.4

Cs/Cb Sink/buffer capacitance(fF) 23.4

Rb/Rd Driver/buffer output resistance(Ω) 180

810

Table 5 Comparison of floorplanning algorithm and the integrated floorplanning algorithm with buffer planning
1Area(mm2) 2Wire(mm) #Inserted B/#B #Meet Congestion Time(s)

 Test F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
Xerox_t 20.89 20.89 3389 3358 179/383 340/551 193 374 2.07 2.04 21 86
Ami33_t 1.276 1.299 2619 2596 83/254 120/206 101 255 3.76 3.25 32 305
Ami49_t 38.9 40.1 4676 4683 124/336 111/273 195 359 8.15 7.96 58 643
Apte_t 47.5 47.5 1288 1236 21/121 84/157 83 123 2.52 2.35 6.06 49
Hp_t 9.12 9.53 1884 2028 34/335 98/177 78 163 1.129 1.154 5.3 45

Average +1.88% +0.57% -- -- +89.8% -4.3% +725%
 1 before enlargement 2for 2-pin nets after enlargement: Note that the wires shorter than the critical length[2,5] should not insert buffers.

floorplanning algorithm(F1). We can see some improvement in
the results because our algorithm can give a more feasible
floorplan structure for buffer insertion. Fig.8 gives a packing
result of ami33 with 120 buffers inserted listed in Table 5.

Averagely, the number of the nets which meet their
constraints with buffer successful insertion increase 89.8% in F2
than F1. The algorithm of F2 can reduce the total wirelength,
constraints violations significantly. The experimental results
show that the algorithm F2 can reduce the timing violations
efficiently without much expense in area and wirelength.

7. Conclusion
In this paper, the buffer allocation is handled as an integral

part in the floorplanning process. By dynamically distribute the
blocks in their room according to the buffer insertion budget, we
can favor the later buffer planning greatly. Taking the 2-bend
routs as the basic model, the congestion information for whole
chip scan be estimated taken the buffer insertion into considered.
And the buffer allocation in this paper is handled as a net flow
problem. Experimental results show that our floorplanner can
reduce the timing violation efficiently without much penalty in
area and wirelength. Since our algorithm is based on the room-
based floorplanning representation, all the room-based
representations(such as BSG, SP, CBL, slicing) are fit for this
algorithm.

Reference
[1] J. Cong. “ Challenges and opportunities for design

innovations in nanometer technologies”. In Frontiers in
Semiconductor Research: A Collection of SRC Working
Papers, 1997.

[2] J. Cong, T.Kong, and D. Z. Pan, “Buffer block planning for
interconnectdriven floorplanning,” in Proc. Int. Conf.
Computer-Aided Design, Nov.1999, pp. 358–363.

[3] P. Sarkar, V. Sundararaman, and C. K. Koh. Routability-
driven repeater block planning for interconnect-
centric .floorplanning. In ISPD 2000.

[4] X. P. Tang and D. Wong. “Planning buffer locations by
network flows”. In Intl. Symp. Physical Design, pages 186–
191, 2000.

[5]C. J. Alpert and A. Devgan, “Wire segmenting for improved
buffer insertion,”in Proc. Design Automation Conf., June
1997, pp. 588–593.

[6] C.W.Sham, F.Y.Young “Routibility driven floorplanner with
buffer block planning”, In ISPD’2002

[7]W. C. Elmore, “The transient response of damped linear
networks with particular regard to wide-band amplifiers,” J.
Appl. Phys., vol. 19, pp.55–63, Jan. 1948.

[8]J. Cong and D. Z. Pan, “Interconnect delay estimation models
for synthesis and design planning,” in Proc.ASP Design
Automation Conf., Jan. 1999, pp. 97–100.

[9] T. H. Cormen, C. E. Leiserson, R.L. Rivest, Introduction to
algorithm, MIT Press.

[10] Semiconductor Industry Association, National Technology
Roadmap for Semiconductors. San Jose, CA: SIA, 1997.

[11]Hong Xianlong, Huang Gang et al. “Corner Block List: An
Effective and Efficient Topological Representation of Non-
slicing Floorplan” ICCAD’2000.pp.8-12.

[12] Yuchun Ma, Xianlong Hong, Sheqin Dong, Song Chen etc
“An Integrated Floorplanning with an Efficient Buffer
Planning Algorithm” ISPD2003 (in press)

[13] Song Chen, Xianlong Hong, Sheqin Dong, Yuchun Ma, etc
“A buffer planningalgorithm based on dead space
redistribution”, Proceeding of 8th IEEE/ACM Asia &South
Pacific Design Automation Conference (ASP-DAC2003).

Fig.8. packing of ami33 with buffer inserted

811

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

