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ABSTRACT 
By dividing the packing area into routing tiles, we can give the 
budget of the buffer insertion. And the detail locating of the 
blocks in their rooms can be implemented for each iterations 
during the annealing process to favor the later buffer planning. 
The buffer insertion will affect the possible routes as well the 
congestion of the packing. The congestion estimation in this 
paper takes the buffer insertion into account. So we devise a 
buffer planning algorithm to allocate the buffer into tiles with 
congestion information considered. The buffer allocation 
problem is formulated into a net flow problem and the buffer 
allocation can be handled as an integral part in the floorplanning 
process. Since there is more freedom for floorplan optimization, 
the floorplanning algorithm integrated with buffer planning can 
result in better performance and chip area.   

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Placement and 
Routing 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Floorplanning, Routability, Congestion, Buffer Insertion. 

1. INTRODUCTION 
Due to the recent advances in VLSI technology, the number of 
transistors in a design is increasing rapidly and so are their 
switching speeds. This has increased the importance of the 
interconnect delay in the overall performance of a circuit. Many 
techniques are employed to reduce interconnect delay. Among 
them, buffer insertion has shown to be an effective approach to 
achieve timing closure. As transistor count and chip dimension 
get larger and larger, more and more buffers are expected to be 
needed for high performance. It was projected that over 700K 

buffers will be inserted on a single chip in the 70nm 
technology[1]. Since buffers are implemented by transistors, they 
cannot be placed over the existing circuit blocks. Placing a large 
number of buffers between circuit blocks could significantly 
impact the chip floorplan. Therefore, it is necessary to start 
buffer planning as early as possible. It is very useful that a good 
planning of the block positions can be obtained during the 
floorplanning stage so that buffers can be inserted wherever 
needed in the later routing stages. 

1.1  Previous Works  
There are several previous works addressing the interconnect 

issues in floorplanning design. Cong[2] define the term “feasible 
region” (FR) of a net, that is, the largest polygon in which a 
buffer can be inserted such that the timing constraint can be 
satisfied. Sarkar[3] added the notion of independence into 
feasible regions so that the feasible regions of different buffers 
on a net can be computed independently. These two papers gives 
the basic idea of Feasible Region, based on which they proposed 
the buffer planning algorithms. But both of their methods take 
complex scanning to obtain the feasible buffer insertion sites. 
Tang and Wong[4] propose an optimal algorithm based on net 
flow to assign buffers to buffer blocks assuming that only one 
buffer is needed per net. Alpert et al.[5] make use of tile graph 
and dynamic programming to perform buffer block planning, 
while they propose that buffers should be allowed to be inserted 
inside macro blocks. But all of these algorithms are based on 
fixed die placement and it is difficult to embed those methods 
into the iterations of the floorplanning process because of the 
complexity of those algorithms. Unfortunately, the fixed 
placement is likely to generate some timing-constraint violations 
which are beyond repair unless the topological relation between 
blocks can be changed. Sham[6] proposed a routability driven 
floorplanner while the buffer insertion are assumed to be 
inserted at a flexible interval from each other for long enough 
wires. Therefore, the buffer insertion is just estimated by 
probabilistic budget, while the buffer blocks are not allocated in 
Ref.[6]. Hence, to create a performance-feasible floorplan, a 
performance-driven floorplanner that simultaneously considers 
area and buffer block insertions is needed. Although many 
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approaches have been proposed to make use of the dead space 
for buffer insertion, few of them optimize the buffer planning by 
changing the distribution of the dead-space in the placement. 

1.2 Our Contributions 
Previous methods of buffer planning are based on the fixed 
blocks. We have found that by changing the positions of the 
blocks within their rooms will not affect the total area and the 
topological relations, but the buffer insertions may be optimized. 
In our floorplanner, we will divide the packing area into routing 
tiles and we can give the budget of the buffer insertion at each 
tile.  Therefore, we devise a novelty method of the detail process 
of locating the blocks in their rooms to favor the buffer 
insertions. The dead spaces in each tile can be computed. 
The buffer insertion will influence the routing ways greatly. So 
we estimate the congestion information based on 2-bend routes 
with some blocked tiles considered.  This method is very 
effective since we can use the routes matrix to figure out all the 
possible routes instead of computing all the routes by scanning 
the tiles. Taking advantage of the buffer budget and congestion 
estimation, the buffer planning algorithm is based on net flow 
method to optimize both the congestion and the buffer insertion.  
To speed up our algorithm, the simulated annealing process is 
divided into two phases: timing optimization phase and buffer 
insertion phase. 
The rest of the paper is composed as follows: Sect.2 gives the 
overview of our floorplanner; Sect.3 gives the budget of the 
buffer insertion and the floorplanning algorithm to locate the 
circuit blocks in their rooms. The buffer planning algorithm and 
the two-phase annealing process are described in Sect.4 and 
Sect.5. The experimental results are shown in Sect.6. Finally, the 
conclusion is given. 

2. OVERVIEW OF OUR 
FLOORPLANNER  

In this paper, we concentrate on the buffer planning problem 
with the floorplanning. The insertion of buffers should be in the 
dead spaces between circuit blocks. We seek a floorplanning 
methodology to produce the optimal floorplan such that the 

floorplan area, wire length and the timing violations are 
minimized and the buffers can be inserted in the dead spaces as 
much as possible and the congestion between routes can be 
minimized. We assume that the wires are routed over-the-cell. 
The general flow of our algorithm is given in Fig.1. Our 
algorithm consists of three key steps: block planning, buffer 
planning and solution perturbation and evaluation. 

The dead spaces besides the blocks will affect the insertion of 
buffers. Traditional room-based floorplanner will pack the 
blocks at the lower-left corner or the center of the blocks’ rooms. 
Thus the dead spaces are distributed without considering the 
buffer insertion demands.  Different from the traditional block 
planning method, to favor the buffer planning, we firstly pack 
the blocks by given solutions to obtain their room partitions, 
then the positions of the blocks are determined by the buffer 
budget in whole packing area. And the later buffer planning is 
based on the result of the detail locations of the blocks. The 
congestion information is estimated taken into account the 
buffer requirement for all nets. The buffers are allocated based 
on net flow algorithm considering both buffer position and the 
congestion estimation. 

3. Floorplanning Algorithm 
In the room-based representation such as (BSG, SP, CBL, 

Slicing), the blocks are packed within the range of the rooms. If 
we can move the blocks in their room, the buffer insertion will 
be optimized since it can leave much more dead space where the 
buffers are needed. 

3.1 Rooms in the packing 
The chip can always be dissected into small rectangles, 

denoted as room(Fig.2(a)). Given an n-block set, it divides the 
chip into at least n rooms and assigns no more than one block to 
each room. And the topological relations between the rooms 
depend on the representations of the floorplanning. Most of the 
rooms are not held entirely by the circuit blocks. Therefore, 
some dead-spaces may be generated. And in the non-slicing 
structure, some rooms may contain no circuit blocks but dead 
space so called necessary empty room (Fig.2).  

Definition 1: the necessary empty room is the empty room 
without circuit block and it can not be removed by merging with 
the other rooms. 

The blocks can be moved within their rooms while the area 
and the topological relations remain. The dead space in 
necessary empty room should be fixed and the dead space in the 
block room can be redistributed by moving the block within its 
room(Fig2(b)).  

3.2 Budget of buffer insertion 
   Each driver/buffer is modeled as a switch-level RC circuit[8] 

and the Elmore delay formula[7] is used for delay computations. 

E E 

(a) room partition (b) move blocks within rooms 

Fig.2. room partition( E is the necessary empty room) 
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The notation for the physical parameters of the interconnect and 
buffer we use in this paper is as follows: 

r    wire resistance per unit length 
c    wire capacitance pre unit length 
Tb  intrinsic buffer delay 
Cb  buffer input capacitance 
Rb  buffer output resistance 
CL  sink capacitance; 
Rd  driver resistance; 
Ln the length of sink-source net N(two pin net) 

  The optimal locations of the k buffers for delay minimization 
of the net as shown in [3] are 
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To budget the buffer insertion, we divide a floorplan into a set 
of 2-dimensional array of routing tiles. According to formula 
(1), the optimal position for buffer insertion is only affected by 
the wire length between source and sink. We assume that the 

pins are located at the center of the tiles. It is very effective to 
figure out the possible buffer insertion tiles for different length. 
As shown in Fig.3, there is a sub-packing with 5 blocks and 2 
nets between them. Three possible buffer tiles(B) for net(S,T) 
and two possible buffer tiles(b) for net(s,t) are shown in  
Fig.3(b).  

Each tile will have more than one buffer inserted. And each 
buffer may have several possible insertion tiles. Thus we devise 
a weight for each tile. Assuming that the probability of each 
possible insertion tile for a buffer in the net are equal, Bi is a 
buffer of a net and it has Ki possible insertion tiles, which 
includes tile (x,y). Thus the probability P(x,y,Bi) that the buffer 

Bi is inserted at tile (x,y) is:   P(x,y,Bi)
iK

1
=  

3.3 Detail locating of blocks 
To insert the buffers as much as possible, the dead spaces 

resource should be allocated as needed. Since the blocks can be 
moved within their rooms, the strategies of how to place the 
blocks in their rooms will affect the total packing performance. 
With the budget of the buffer insertion, we introduce a novelty 
method to place the blocks in their room to favor the buffer 
insertion. First of all we give the weight for each tile(x,y). 
Suppose that BUFF(x,y) is the set of all the buffers which can be 
inserted in tile(x,y) 

Weight(x,y) = ∑
∈ ),(

),,(
yxBUFFBi

BiyxP   

Suppose that the rooms in the packing are {R1….Rn}. Since 
the buffer insertion should avoid the circuit blocks, Suppose that 
T_Covered(Ri) is the set of the tiles covered by circuit block in 
room Ri. Some tiles along the circuit block boundary may not be 
covered entirely. We define the dead space ratio in each tile is  

DS_ratio(x,y) = 
TileA

yxADS

_
),(

  

Where ADS(x,y) is the area of dead space in (x,y) 
A_Tile is the area for each tile. 

Therefore if tile(x,y) is covered entirely by the circuit blocks, 
DS_ratio(x,y)=0 and if tile(x,y) is not covered by the circuit 
blocks at all, DS_ratio(x,y)=1. Thus the object should be to 
decide the position of the circuit blocks and the buffer budget of 
the covered tiles is minimized. We define the unused budget in 
Room Ri as: 

∑ −=
∈ )(cov_),(

)),(_1(*),(()(_
RieredTyx
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 In order to optimize the buffer insertion, the unused budget 
should be minimized, therefore the problem can be described as: 

Object:     Min      ∑
=

n

i
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1
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We have partitioned the packing into rooms, and the budget of 
buffer insertion are independent in each room. Therefore we can 
handle the room one by one. As shown in Fig.4, since the tile 
position is limited in the rooms, we restrict the lower-left corner 
of the circuit blocks should be located at the tiles. To facilitate 
the computation, the problem is handled in two directions, one is 
vertical and the other is horizontal. At first, we can move the 
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block by the size of tile in the vertical direction to decide the 
vertical position. Then we move the block horizontally to fix the 
horizontal position. At the same time, the dead spaces in each 
tile are fixed. 

3.4 Effective update of the buffer budget 
The detail locating of blocks will change the positions of the 
blocks slightly. Thus the nets will be influenced at the same time. 
Since the changes of one block will not affect the buffer 
insertion greatly, we take a lazy update of the buffer budget. The 
update process is only taken when the detail locating for a block 
are fulfilled. Therefore, at the end of the locating process, all the 
buffer budgets should be updated. 

4. Buffer Allocation 
By taking the congestion information into considered, we use 

Min-cost-Max-Flow algorithm to assign the buffers to their 
possible insertion sites.  

4.1 Congestion Model  
The congestion model employed is essentially a two 

dimensional rectangular grid based probabilistic map assuming 
2-bend routing for each segment. 

Without loss of generality, we consider the source to be 
located in tile( 0, 0) and the sink to be located in tile( m, n). It is 
easy to see that there are a total of  m + n possible 2-bend routes 
from source to sink(Fig.5). Without the buffer inserted taken 
into account, the route number matrix is shown in Table 1. 

 Taking the buffer sites into consideration, the possible routes 

should be reduced. Thus we should count only the routes passing 

through the feasible buffer insertion sites. 

Definition 2: Blocked Tile: if the tile(x,y) is the possible 
buffer insertion for a net, but DS_ratio(x,y) = 0 which means 
tile(x,y) is covered by circuit blocks entirely, the tile(x,y) is 
called blocked tile. 

Since blocked tile can not be routed over, it is necessary to get 
rid of the routes through tile(x,y) when doing the congestion 
estimation. Since we are using 2-bend routes, it is very easy to 
calculate the possible routes by reducing the routes passing 
through the blocked tile(Fig.6).By scanning all the nets, the 
congestion estimation for each tile can be figured out. 

4.2 Buffer Planning 
The objective of the buffer planning is to determine the 

locations of buffers, and insert as many buffers as possible to 
maximize the number of nets that meet the timing constraints. 
To solve the problem, we construct a network graph G (V, E) 
and then apply a min-cost max flow algorithm to get the 
solution. Each edge of G represents a possible assignment from 
a buffer to a tile. G (V, E), V = B ∪ L, where B represents 
buffers and L represents tiles, E = {(b, l), b ∈ B, l ∈ L, b can be 
inserted into tile l}. In order to insert as many buffers as 
possible, we construct an s-t graph based on bipartite graph G to 
find the max cardinality matchings. To take the congestion into 
consideration, the capacity and cost for each edge are defined as 
following: 

Edge Capacity:  
E(s,b) = 1;  E(b,l)=1; E(l,t)=Ads(l)/A_buffer; 
Edge cost:   
 C(s,b) = 0;  C(b,l)=0; C(l,t)=Congestion(l) 
 Ads(l) is the area of dead space in tile l and A_buffer is the 

area of a single buffer. Hence, E(l,t) records the capacity that 
how many buffers can be inserted in the dead space within tile l. 
To punish the high congestion, we use the Congestion(l), which 
is the congestion estimation of all net in tile l, as the cost for 
edge (l,t).Fig.7 is an example of the s-t graph. 
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Fig.4. the  location of block in one room 
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(b) u_b = 0.3*1.0+0.4*0.6=0.54 

Algorithm 1 detail locating of blocks 
Budget all the buffer insertions; 
 Compute the Weight and DS_ratio for each tile; 
For room Ri is from R1 to Rn: 
  Find the best position of block in room Ri 
  Update the buffer budget of the nets connecting the block in 

room Ri 
  End for 
Update the DS_ratio for each tile. 
 End. 
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Finding a min-cost maximum flow in a network is a classical 
problem for which several polynomial-time optimal algorithms 
are available[9].  

5. Two-phase annealing process 
In our algorithm, the simulated annealing process is divided 

into two phases: timing optimization phase and buffer insertion 
phase. In the timing optimization phase, we try to search for an 
optimal floorplanning that the timing constraints can be satisfied 
as much as possible.  

   In the beginning of floorplanning process, the buffer 
planning is less meaningful because the locations of the blocks 
are still far from their final position. The cost function used in 
the phase is shown below: 
Cost = Area + p*Wire + q* Tviolations  
 Where Area is the area of the floorplan and Wire is the total 
wirelength( p is the weight), Tviolation is the number of the net 
whose optimal timing with buffer inserted is larger than the 
given timing constraint.   

If the violations of timing constraint is good enough( for 
example that the violation propotion of timing constraints are 
less than 25%) or the timing constraint can not be optimized for 
a long time during the first phase, we start the phase of buffer 
insertion and the cost function used in the buffer insertion 
optimization phase is shown below: 
Cost = Area + p*Wire + q* Tviolations + 
r*Bnot_inserted+m*Congestion 

Here Bnot_insert is the number of the buffers not inserted 
successfully because of the limitation of the dead spaces. 
Congestion is the average of 5% largest congestion estimations 
in the packing. 

6. Experiments 
We have implemented the placement algorithm in C 

programming language, and all experiments are performed on a 
SUN SPARC III workstation. Some MCNC benchmarks are 
used in the experiments. The parameters (Table 2) used in our 
experiments are based on a 0.18um technology in [10].  We have 
tested our algorithms on 5 MCNC benchmarks, as summarized 
in Table 3. 

In this paper, we focus on 2-pin net, so we decompose each 
multi-pin net into a set of source-sink 2-pin net. Since the 
MCNC benchmarks do not come with any timing information, 
we generate a floorplan by running the CBL floorplanner[11] 
randomly. Based on this floorplan, we assign target delays to the 
two-pin nets as follows: for each net, we first compute its best 
delay by optimal buffer insertion Topt, and assign its target 

delay as 1.1Topt. Notice that the sizes of the blocks are enlarged 
for demonstration of the effect of buffer planning. 

In the following, the test results are record by : 1)#Meet: the 
number of nets for which the delay constraint is met with 
successful buffer insertion; 2) #Inserted B / #B: the ratio of the 
total number of buffers inserted successfully and the total 
number of the buffer needed to meet timing constraints, 
3)Congestion: the average of 5% largest congestion estimation 
in the packing. 

  Based on the fixed placement, the detail distribution of 
circuit blocks in their rooms can favor the buffer insertion. In 
Table 4, we give the test result between different strategies to 
place the blocks within their rooms. In Method LL, all the 
blocks are located at the lower left corner of the rooms. In 
Method CE, all the blocks are located at the center of the rooms. 
The result of method DL is the result of detail locating of blocks. 
The results show that the detail locating with buffer budget can 
insert more buffers than the other two methods. 

Table 4 The results of detail distribution 
Ami33 Ami49 

Meth
od 

#Inserted 

 B 
#B #meet 

#Inserted  

B 
#B #meet 

LL 93 245 210 224 532 341 
CE 80 253 204 193 524 337 
DL 138 266 246 236 486 359 

In Table 5, we report the experimental results of two 
floorplanners:  a traditional floorplanner F1 based on simulated 
annealing without considering timing issue with the buffer 
insertion, and a timing-driven floorplanner F2 on 2-phase 
simulated annealing with buffer planning. For the result of F1, 
we also perform the buffer insertion as in F2 at the end to 
compare the results of F2: 

Comparing F1 and F2 in Table 3, the differences between F1 
and F2 on area and wirelength are very small but the timing 
driven floorplanning algorithm with buffer planning (F2) can 
achieve much better timing performance than the plain 

 B L B L 

s 
t 

 
Fig.7. s-t graph of buffer planning:  

capacities are omitted in the graph 

Table 3 MCNC BENCHMARK 

circuit blocks nets 2-pin net 

apte 9 97 172 

xerox 10 203 455 
hp 11 83 226 

Ami33 33 123 363 

Ami49 49 408 545 

Table 2 PARAMETER  LIST 

 Description Value 

R Wire resistance per unit length(Ωµm) 0.075 

C Wire capacitance per unit length(fF/µm) 0.118 

Tb Intrinsic buffer delay(ps) 36.4 

Cs/Cb Sink/buffer capacitance(fF) 23.4 

Rb/Rd Driver/buffer output resistance(Ω) 180 
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Table 5 Comparison of floorplanning algorithm and the integrated floorplanning algorithm with buffer planning 
1Area(mm2) 2Wire(mm) #Inserted B/#B #Meet Congestion Time(s)

 Test F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
Xerox_t 20.89 20.89 3389 3358 179/383 340/551 193 374 2.07 2.04 21 86 
Ami33_t 1.276 1.299 2619 2596 83/254 120/206 101 255 3.76 3.25 32 305 
Ami49_t 38.9 40.1 4676 4683 124/336 111/273 195 359 8.15 7.96 58 643 
Apte_t 47.5 47.5 1288 1236 21/121 84/157 83 123 2.52 2.35 6.06 49 
Hp_t 9.12 9.53 1884 2028 34/335 98/177 78 163 1.129 1.154 5.3 45 

Average +1.88% +0.57% -- -- +89.8% -4.3% +725% 
 1 before enlargement      2for 2-pin nets after enlargement: Note that the wires shorter than the critical length[2,5] should not insert buffers. 

floorplanning algorithm(F1). We can see some improvement in 
the results because our algorithm can give a more feasible 
floorplan structure for buffer insertion. Fig.8 gives a packing 
result of ami33 with 120 buffers inserted listed in Table 5. 

Averagely, the number of the nets which meet their 
constraints with buffer successful insertion increase 89.8% in F2 
than F1. The algorithm of F2 can reduce the total wirelength, 
constraints violations significantly. The experimental results 
show that the algorithm F2 can reduce the timing violations 
efficiently without much expense in area and wirelength. 

7. Conclusion 
In this paper, the buffer allocation is handled as an integral 

part in the floorplanning process. By dynamically distribute the 
blocks in their room according to the buffer insertion budget, we 
can favor the later buffer planning greatly. Taking the 2-bend 
routs as the basic model, the congestion information for whole 
chip scan be estimated taken the buffer insertion into considered. 
And the buffer allocation in this paper is handled as a net flow 
problem. Experimental results show that our floorplanner can 
reduce the timing violation efficiently without much penalty in 
area and wirelength. Since our algorithm is based on the room-
based floorplanning representation, all the room-based 
representations(such as BSG, SP, CBL, slicing) are fit for this 
algorithm. 
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