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ABSTRACT
In this paper, we propose a new methodology for diagnosis of delay
defects in the deep sub-micron domain. The key difference between
our diagnosis framework and other traditional diagnosis methods lies
in our assumptions of the statistical circuit timing and the statistical de-
lay defect size. Due to the statistical nature of the problem, achieving
100% diagnosis resolution cannot be guaranteed. To enhance diagno-
sis resolution, we propose a 3-phase diagnosis methodology. In the
first phase, our goal is to quickly identify a set of candidate suspect
faults that are most likely to cause the failing behavior based on logic
constraints. In the second phase, we obtain a much smaller suspect
fault set by applying a novel diagnosis algorithm that can effectively
utilize the statistical timing information based upon a single defect as-
sumption. In the third phase, our goal is to apply additional fine-tuned
patterns to successfully narrow down to more exact suspect defect lo-
cations. Using a statistical timing analysis framework, we demonstrate
the effectiveness of the proposed methodology for delay defect diag-
nosis, and discuss experimental results based on benchmark circuits.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids

General Terms
Algorithm, Performance, Reliability

Keywords
Delay fault diagnosis, Statistical timing models, Delay ATPG

1. INTRODUCTION
Process variations, manufacturing defects and noise are major fac-

tors to affect timing of deep sub-micron (DSM) designs [1, 2]. These
DSM delay effects are often continuous in nature [3, 4], and the tradi-
tional assumptions of discrete timing and delay models in analysis and
simulations become less applicable. Instead, these factors should bet-
ter be captured and simulated using statistical models and methods [5].

Historically, the diagnosis problem was defined over the logic do-
main and no timing information was involved. In today’s industry,
the single stuck-at fault model remains one of the most affordable and
effective models for defect diagnosis. Stuck-at based diagnosis algo-
rithms are often classified into two types: an effect-cause approach and
a cause-effect approach [6]. In an effect-cause approach, the stuck-at
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fault model allows an ATPG to determine, from the failing behavior, if
a particular line should be the stuck-at. Then, by searching backward
from the failing outputs and matching to the input patterns, probable
faults can be identified. In a cause-effect approach, diagnosis relies on
the construction of a fault dictionary that contains information to dif-
ferentiate the good and faulty behavior in the presence of each stuck-at
fault. Then, for a given failing chip, the failing behavior is compared
to the information in the fault dictionary, and the most probable fault
is selected as the candidate for the defect source [6]. If we assume that
the defects are from the single stuck-at faults, then it might be possi-
ble to identify the exact fault causing the problem depending on the
existence of a test pattern set that can achieve the maximal fault reso-
lution [6]. In other words, we can say that if faults and defects are the
same, then in logic diagnosis the diagnosis resolution is the same as
the fault resolution.

In delay defect diagnosis, the problem is fundamentally different
in two ways: First, the exact delay configuration of a given failing
chip instance is usually unknown. Second, even with a single defect
assumption, the size of each possible delay defect is still a random
variable. These two aspects prevent us from applying a traditional
logic diagnosis algorithm to delay fault diagnosis and moreover, the
diagnosis resolution is very different from the fault resolution defined
in the logic domain.

In the past, much of the diagnosis research focused on two direc-
tions. One was to improve the efficiency of diagnosis by avoiding the
computational expense of creating a large fault dictionary. The other
was to extend the basic diagnosis algorithm for the single stuck-at fault
model to other defect types [8, 9] or to multiple faults [10]. Even for
diagnosing gate delay and path delay faults, most of the previous work
was based purely on logic conditions for sensitizing the faults [11,
12]. A statistical diagnosis framework for delay defects was proposed
in [13]. However, due to complexity reasons, it is not practical.

In this paper, we propose a novel methodology for diagnosing de-
lay defects based upon statistical timing models and delay simulation
methods. It consists of three phases:

1. Effect-cause phase: In this phase, a set of suspect faults are iden-
tified based purely on logic conditions.

2. Cause-effect phase: We apply a novel diagnosis algorithm oper-
ating on the probabilistic space, instead of the logic space to
obtain a much smaller set of candidate faults.

3. Fine-tuning phase: Based upon the results in phase 2, we select
a few target faults and produce additional patterns for them in
order to further narrow down to more exact fault location(s).

In phases 2 and 3, statistical timing analyzer serves as a predictor
for the delay configuration of a given failing chip instance. Because
of this, how to match the failing behavior to the probabilistic informa-
tion contained in the fault dictionary becomes an interesting question.
Since the delay defect size is a random variable, the criteria to de-
termine the maximal fault resolution for a given pattern set become
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probabilistic as well. As a result, we can no longer rely merely on the
logic conditions to decide if a test can differentiate two faults.

To measure the accuracy of matching the probabilistic fault infor-
mation in the fault dictionary to the failing behavior, we introduce a
new concept called diagnosis error function. In the second phase, we
utilize an Euclidean-distance-based diagnosis error function to decide
the fault suspects. To obtain a good diagnostic pattern set, in the sec-
ond phase, we use a path delay fault ATPG without considering timing
(for a set of longest paths). Then, in the third phase we use a Genetic
Algorithm based timed ATPG to derive additional fine-tuning patterns.

By separating phase 2 from phase 1, we avoid the construction of
the fault dictionary for the faults that can be excluded as a cause of the
failing behavior using only logic criteria. Hence, the effectiveness of
our phase 2 diagnosis algorithm can be better observed. By separat-
ing phase 3 from phase 2, we avoid the application of a more complex
(timed) ATPG to a large number of faults. Therefore, in our 3-phase
methodology, we apply a more complicated algorithm to solve a prob-
lem aspect only when it cannot be solved by an easier approach.

While deciding which suspect faults should be kept after phase 1 is
deterministic (because this decision is based purely on logic criteria),
deciding which suspect faults should be used in phase 3 can only be
probabilistic. Because of this, we re-define the concept of diagnosis
resolution and discuss heuristics to separate faults in phases 2 and 3.

2. PROBABILISTIC FAULT DICTIONARY
In logic diagnosis, the circuit model used in the simulation is as-

sumed to logically match to the chip instance. In delay diagnosis, this
is not true due to the inclusion of statistical delay information. Each
chip represents only a single instance of all possible delay configura-
tions intended to be modeled statistically by the CAD tools.

Suppose the single stuck-at fault model is used in logic diagnosis.
Let ff1; : : : ; fng be the n faults that belong to n different fault equiv-
alence classes. Suppose a pattern set is available to achieve the max-
imal fault resolution, i.e., for any pair of faults fi; fj , there exists a
pattern in the set to differentiate these two faults (detect one but not
the other). Then, in theory, given the failing behavior resulting from
a single stuck-at defect, the diagnosis algorithm can conclude exactly
which fault is the cause. On the other hand, if the pattern set does not
achieve the maximal fault resolution, then depending on the resolu-
tion, an algorithm can conclude a subset of the faults as the potential
causes. Exactly which one is unknown. Based upon these observa-
tions, we can say that the diagnosis resolution in the logic domain is
the same as the fault resolution if defects are the same as faults.

Take the single transition fault model as an example. If no delay
information is involved, then the above statement still holds. However,
if delay information is involved, then the diagnosis resolution is not the
same as the fault resolution in the logic domain. Figure 1 illustrates the
reasons.

In the figure, output arrival times are characterized as probability
distributions. When a clock is given, from each probability distribution
we can calculate the critical probability that represents the chance of
an output delay exceeding the given clock [5]. In the figure, the critical
probability at output o1 is illustrated as the shaded area.
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Figure 1: The Impact of Delays in Diagnosis

In the first case, for a fault d, suppose two patterns v1; v2 are avail-
able. In logic domain, both patterns detect d and can differentiate be-
tween d and d0. However, depending on the timing length of the sen-
sitized path (p1 or p2), the critical probability (shaded area) resulting
from each pattern can be different. If a pattern detects a fault through
a short path (like v2), then it is possible that with a small delay de-
fect size, the pattern does not detect the defect at all. Consequently,
v2 can differentiate two faults in the logic domain but cannot do so by
considering the delays (it may detect none).

In the second case, a pattern v detects both faults d1; d2, logically
through sensitized paths p1; p2, respectively. Suppose the two paths
merge at a 2-input cell and the arrival time random variables at the two
inputs are denoted as a1; a2. The output arrival time random variable
of the cell is the joint pdf random variable max(a1; a2). Suppose
Prob(a1 > a2) = 1. Then, it is possible that p1 always dominates the
output delay (or vice verse depending on the transition type). Hence,
pattern v can differentiate the two faults. As it can be seen, even though
logically, pattern v does not differentiate the two faults, timing-wise it
may.

Due to the above two reasons, in general, whether or not a test pat-
tern can differentiate two given faults should be characterized as a
probability value that depends on the given clock period clk. There-
fore, in delay defect diagnosis, given a pattern v, our first task is to
compute the probability that v detects a particular fault. This infor-
mation is used to build the probabilistic fault dictionary, and our algo-
rithm will use the dictionary to guess which fault is the most probable
one to be the cause of failure.
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Figure 2: Illustration of The Matching Problem

The probabilistic nature of the fault dictionary raises an interesting
question. Consider the example in Figure 2. Suppose the failing be-
havior of a chip instance is characterized as a 0-1 matrix (1 means
that an error is observed). Suppose we have a way to calculate (in the
simulation), for each candidate suspect fault, a probability matrix P
where pij represents the chance that a failure is observed at primary
output i during the application of test vector j. Then, in the example,
the underlying question to ask is: which probability matrix is a better
match to the failing behavior?

If we focus on matching the ”1” entries in the 0-1 matrix, we would
say that fault # 1 is a better match. However, if we focus on matching
the ”0” entries, fault # 2 would be a better match. In general, depend-
ing on our view of what do we mean by a ”better match” the diagnosis
answer can be different. Hence, in order to develop an accurate diag-
nosis algorithm, our first task is to define carefully how to match the
information in the probabilistic fault dictionary to the failing behavior.
We call such functions the diagnosis error functions.

The concept of probabilistic fault dictionary implies that an optimal
test set considering only the logical conditions may not be optimal for
delay defect diagnosis. A possible solution to obtain a good set of
diagnostic delay patterns could be to use a timed ATPG [14, 15]. In
our work, we do not consider a deterministic timed ATPG due to its
high complexity. Instead, we use a path delay fault ATPG (based on
logic sensitization conditions ) as an approximation in phase 2, and we
use a Genetic Algorithm based timed ATPG in phase 3.

3. AN ERROR-FUNCTION-DRIVEN DIAGNO-
SIS ALGORITHM

Given a failing n-output chip instance Cin and a set TP of m pat-
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terns, suppose that the failing behavior is characterized in an n �m-
matrix B. For 1 � i � n, 1 � j � m, each bij is ”1” if an error is
observed at output i while applying pattern j. Otherwise, bij = 0.

To diagnose the defect, we utilize a single-defect assumption. We
assume that the defect location and defect size are independent random
variables. In our current work, we do not consider that these random
variables are correlated. Moreover, we assume that only one defect can
occur for a given failing chip instance. This delay defect can happen
on any one of the signals in the circuit.

3.1 Phase 1: Effect-Cause Analysis
In the phase 1, for each failing pattern we perform backward analy-

sis from each failing output. We collect faults that fall on the logically
sensitized paths (to the failing output) given by the patterns. At the end
of this phase, we obtain a suspect fault set F = ff1; : : : ; flg. Each
fault fk (for 1 � k � l) falls on at least one sensitized path to one
failing output during the sensitized path to one failing output during
the application of at least one pattern.

3.2 Phase 2: Cause-Effect Diagnosis
Given F , for each fault fk, we construct an n � m- probability

matrix Ek. Each ekij represents the probability that an error can be
observed at output iwhile applying pattern j for a given clock period if
fault fk is present. Suppose we can calculate these probability matrices
for all faults in F and obtain E1; : : : ; El [7]. Then, the underlying
question to ask is: which Ek (for 1 � k � l) is a better match to the
failing behavior matrix B? To measure the accuracy of this ”match,”
we introduce the concept of diagnosis error function Err. In essence,
Err(B; Ek) measures the diagnosis error if fault fk is selected as the
answer of diagnosis.

3.2.1 An Error Function Based on Euclidean "Distance"
To simplify the problem, we first assume that n = 1. Hence, B =

[b1; : : : ; bm] and Ek = [ek1 ; : : : ; e
k

m] for fault fk. Then, the Euclidean
distance between the expected results Ek when fault fk is assumed to
be the defect, and the observed behavior B can be measured by

Err(B; Ek) = Errk =jj Ek � B jj
2
= �

m

i=1(e
k

i � bi)
2 (1)

Next, we compute Errk for all fk , 1 � k � l, and we pick the min-
imum, i.e., pick the fault that minimizes this diagnosis error function
Err().

For multiple-output circuits (n > 1), Figure 3 demonstrates a sim-
ple view about the meaning of an error in the diagnosis. Under the
equivalence checking model, an error in the diagnosis for a given pat-
tern, is defined as at least one output produces a difference. In the
figure, the delay configuration of the failing chip instance Cin is also
unknown, and is modeled in the simulation with statistical timing in
the circuit model C. What we know is the failing behavior matrix B.
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Figure 3: Error Under Equivalence Checking Model

What would be the ideal case? The ideal case, where no mismatch
occurs, would be e1 = e2 = � � � = en = 0. However, this is impossi-
ble even though we have correctly guessed the fault fk in the diagnosis

process. The reason is that we still do not know the exact delay con-
figuration of the failing chip instance Cin.

Now, suppose we have an algorithm to compute, for each suspect
fault fk , the probability pkj that ej (the ”ej” in the figure) is 1 (1 �

j � m). In other words, the algorithm outputs a probability vector for
each fk as Pk = [pk1 ; p

k

2 ; : : : ; p
k

m]. Then, since the ideal outcome we
want to see is 0 = [0; 0; : : : ; 0], we can measure the diagnosis error
between the probability vector Pk and the ideal solution 0 as simply

Errk = �
m

j=1(p
k

j )
2 (2)

Equation (2) follows the same spirit as equation (1), both of them
use the Euclidean distance to measure the diagnosis error. Hence, we
can use equation (2) to pick a fault whose error is the minimum.

ALGORITHM 3.1. (The Diagnosis Algorithm)
Inputs A circuit with statistical timing model; a pattern set TP ; a fail-

ing behavior matrix B; and a set of suspect faults F given from
phase 1 analysis; Moreover, a user-defined number K called the
diagnosis resolution.

Outputs A set of ranked diagnosis error values Err1 < � � � < ErrK
which indicate the K most likely faults causing the failing be-
havior.

Steps The clock period clk is used to observe the failing behavior
matrix B.

1. For each fault fk in F , calculate the probability matrix Ek. The
tools and methodologies used in this calculation will be summa-
rized in Section 4. From Ek and B, we use the method described
in [7] to calculate the probability vector Pk = [pk1 ; p

k

2 ; : : : ; p
k

m],
where each pkj is the probability that ej is 1 (a mismatch between
the observed and simulated results is at least at one output) if fk
is present as shown in Figure 3.

2. Calculate Errk = �m

j=1(p
k

j )
2 as described above to measure

the diagnosis error.
3. After we finish the calculation for all faults in F , we have fErr1,

Err2, : : :, Errlg. We rank them in such a way that Errj1 �
Errj2 � � � � � Errjl and output the first K faults as the diag-
nosis answer.

END OF ALGORITHM

4. TOOLS AND METHODOLOGIES FOR THE
EXPERIMENTS

The key tools to realize the proposed diagnosis algorithm include a
statistical timing analysis tool and a dynamic timing simulator. More-
over, to measure the effectiveness of our diagnosis method, we need to
perform statistical defect injection and fault simulation.

4.1 Statistical Timing Analysis
In statistical timing analysis framework, the delays of

cells/interconnects are modeled as correlated random variables with
known probability density functions (pdf’s). These pdf’s can be ob-
tained using a Monte-Carlo-based SPICE simulator. Given cell/interconnect
delay functions and a cell-based netlist, the statistical framework can
derive the pdf’s of signal arrival times for both internal signals and
primary outputs using Monte-Carlo based simulation technique.

In our experiments, we use a cell-based statistical timing analysis
framework [5]. It requires pre-characterization of cells, i.e., building
libraries of pin-pin cell delays and output transition times (as random
variables). We use a Monte-Carlo-based SPICE (ELDO) [17] to ex-
tract the statistical delays of cells for a 0.25�m, 2.5V CMOS technol-
ogy. The input transition time and output loading of the cells are used
as indices for building/accessing these libraries. Each interconnect de-
lay is also modeled as a random variable and is pre-characterized once
the RCs are extracted.
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4.2 Dynamic Timing Simulation
With a given set of test patterns the statistical timing analysis frame-

work can be used to perform statistical dynamic timing simulations to
obtain the pdf’s of internal signals and primary outputs for the given set
of test patterns. These pdf’s are obtained by simulating a large number
of circuit instances with different cell/interconnect delay assignments.

4.3 Defect Injection and Simulation
To measure the accuracy of our diagnosis method in the cause-effect

phase (phase 2), we apply it with single as well as multiple defect mod-
els. For both models, we adopt an exponential delay size distribution
function.

Single Defect Model. This model can be used to represent small delay
faults resulting from manufacturing defects, resistive opens and shorts,
bridging faults. We use exponential distribution for defect size �e��x

where x is the defect size and � is a constant. We use � = 0:04 in
our experiments. Other defect distributions could be used as well and
using other distributions in general should not invalidate the trends
observed in our work [7].

Multiple Defect Model. In this model, several single defects are simul-
taneously injected into the design. It can represent delay faults from a
defect localized to a certain area of the chip.

5. INITIAL EXPERIMENTAL RESULTS
For each circuit model C, we produce N circuit instances with dif-

ferent delay configurations. On each instance, we inject a delay defect
of which both location and size are drawn randomly according to the
defect model (single or multiple). These instances model the faulty
chips. We then apply our diagnosis method to each instance. The
accuracy of diagnosis for single defects is measured in two ways: 1)
In the algorithm, if the user-defined diagnosis resolution number K
value is 1 (refer to Algorithm 3.1 above), then the accuracy is a binary
value success and failure depending on whether the answer matches
the injected defect or not. 2) If the user-defined K > 1, then if the
injected defect is contained in the potential defect set answered by the
algorithm, it is counted as a success; otherwise, it fails. Then, we cal-
culate the success rate as the accuracy measurement by averaging over
the results from all N instances. Clearly, the larger the K value is,
the higher the success rate will be. For multiple faults, in the current
implementation, we evaluate the algorithm assuming that the defect
can be diagnosed if at least one of the single faults contained in the
multiple fault can be diagnosed.

For single and multiple defect models, for each injected fault, we
find a set of statistically ”long” paths through the fault site and generate
path delay tests for them without considering timing. These long paths
are derived using the false-path aware static statistical timing analysis
tool [16]. Then, robust or non-robust patterns for testing these paths
are produced.

Table 1 shows results on the accuracy of diagnosis. As expected,
the rates of success increase for larger K. Values S1, S2 and S3 rep-
resent the average number of suspect faults per injected fault for sin-
gle, double and triple faults, respectively after the phase 1 effect-cause
analysis. The number of applied diagnostic patterns is in the range
of few tens of patterns, depending on the fault model and the circuit.
The results in the table can be interpreted in the following way: For
example for s15850, for the case of single faults, 38% of the failing
chip instances can be diagnosed successfully with a diagnosis reso-
lution K = 2, 57% can be diagnosed successfully with a diagnosis
resolution K = 6, etc.

These numbers forK should be compared to the number of potential
suspect faults 224 given at the end of the phase 1. In other words, at
the start of phase 2 where we apply our main diagnosis algorithm, we
have already excluded the faults that are impossible to cause the faulty
behavior by considering the logic sensitization conditions of the given

Ckt; average number of K Single Double Triple
suspect faults after Phase 1 (%) (%) (%)

s1196 1 23 38 32
Ssingle = 123 2 48 56 44
Sdouble = 189 3 60 67 70
Striple = 239 5 80 86 82

s1423 1 7 22 50
Ssingle = 230 2 29 32 50
Sdouble = 209 4 52 63 68
Striple = 414 9 75 71 82

s5378 1 29 20 27
Ssingle = 137 4 58 42 54
Sdouble = 100 6 86 63 72
Striple = 189 9 86 80 81

s9234 1 15 45 17
Ssingle = 118 3 35 72 56
Sdouble = 116 5 64 89 88
Striple = 170 8 73 89 93

s15850 2 38 54 43
Ssingle = 224 6 57 90 64
Sdouble = 258 10 76 93 71
Striple = 289 13 95 97 94

Table 1: Diagnosis Accuracy on Benchmarks

pattern set. Hence, the effectiveness of our algorithm can be clearly
observed by the small K relative to the large suspect set in each case.

From comparing the results for double and triple faults with the re-
sults for single faults, it can be seen that our single defect-based di-
agnosis algorithm performs very well for the case of multiple defects
as well. In the cases of double and triple faults, a success is declared
if at least one of the faults is diagnosed correctly. Note that this does
not imply that the diagnosis problems become easier because the effect
resulting from multiple faulty delay random variables is statistical and
remains hard to predict.

5.1 Questions Left After Phase 2
Two fundamental questions remain at the end of the phase 2. First,

although the experimental results indicate that a small diagnosis reso-
lution K can usually give us good results, how do we know that our
selection of K is good enough? Second, suppose we want to further
improve the diagnosis resolution by adding more patterns, how can we
produce the additional good diagnosis patterns? Moreover, what faults
should be targeted for producing these additional patterns? As it can
be seen, the answer to the second question partly depends on the an-
swer to the first question. In the following section, we will present our
methodology in phase 3 to answer these questions.

6. PHASE 3: FINE-TUNING
In phase 3, we use a Genetic Algorithm (GA) based ATPG to pro-

duce additional fine-tuning patterns. The ATPG process is guided us-
ing a fitness function based on the timing information. Since including
timing can significantly increase the cost of test generation, we are
interested in finding a small set of target faults. The additional tests
for these faults should produce the greatest impact on the diagnosis
accuracy.

6.1 Selection of Target Suspects
After phase 2, we can rank the set of suspects for a given fault ac-

cording to the value of the diagnosis error. Then, using the ranking and
user-specified K value, we can pick a set of most likely faults as the
target faults in phase 3 for generating additional patterns. However,
what if a user does not know what K value to pick?

It is obvious that selection of K affects the diagnosis results. A
larger K provides a higher confidence that the defect is contained in
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the final set of suspects, while a smaller K provides a better diagnosis
resolution. For the purpose of selecting the target faults in phase 3, a
larger K implies more ATPG effort. Given the ranking of the suspects
at the end of phase 2, the underlying question becomes how to choose
K so that we strike a good balance among all these concerns. From the
experimental results shown above, in general we expect that a small K
value should be good enough.

To help us answer this question, we focus again on the diagnosis
error values for the suspects after phase 2. Figures 4 and 5 show plots
of the diagnosis error values for every suspect in 4 faulty chips for
s5378 and s15850. These chip instances are randomly chosen from
the set of defects being diagnosed in the experiment in Section 5. The
suspects in the x-axis are the ones remaining after eliminating all the
impossible faults based on phase 1.

In these plots, we can observe a clear trend showing that after a cer-
tain fault index there is a rapid increase of the diagnosis error values.
This trend suggests that there is a small set of faults for which the fail-
ing patterns result in a much better match between the observed and
the statistically simulated behavior (as defined by the diagnosis error).
Therefore, we can select K based upon when the rapid increase hap-
pens. Our experimental results in Section 5 support this easy approach
to be a good heuristic for selecting the K value.

For example, next to each curve in Figure 4, we show the K value
that results in successful diagnosis, i.e. the injected defect is one of the
first K faults (as validated by our experiments). Hence, for the curve
denoted as ”fault #9” this curve was obtained based upon the injection
of fault #9 in the experiments. And, with a selection of K = 3, the
fault # 9 is contained in the first three suspects being diagnosed in
phase 2. We note that for fault #9, the diagnosis error values increase
rapidly after the first 5 suspects. Similar trends can be observed for
other faults and the other design as well.

The shape of these diagnosis error curves reveals the obvious heuris-
tic of selecting the first K suspects based upon the rapid increase of
the error values. Based upon this heuristic, we select a small set of K
suspect faults for test generation of the additional fine-tuning patterns.
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Figure 4: Diagnosis Errors For Four Defects, s5378

6.2 Pattern Generation for Diagnosis
Generating ”good” diagnostic patterns for delay faults is a complex

task. Since the ATPG has the burden of ensuring that small defects
are not missed due to poor quality patterns, in general, it means that
timing information needs to be involved.

A given path can be sensitized with many different patterns result-
ing in different path delays. ”Good” patterns are defined as those that
sensitize the fault through long paths and produce a long delay on it.
It is the task of the pattern generator to generate patterns resulting in
longer path delays.

Due to complexity reasons, most conventional path delay fault pat-
tern generators do not take timing information into account and gen-
erate tests based purely on logic path sensitization conditions. Thus,
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Figure 5: Diagnosis Errors For Four Defects, s15850

the patterns might not always exercise the worst-case timing scenarios
and result in longest path delays. One possible solution for generat-
ing high quality patterns could be a timed ATPG technique in which
the timing information is used in addition to the logic information to
generate deterministic patterns [14]. However, due to its complexity,
timed ATPG is not practical. In addition, due to the statistical nature of
the timing information, patterns derived using nominal or worst-case
delays might not be best for all circuit instances. On the other hand,
considering statistical timing would just further hurt the efficiency of
this method.

From previously published work [19], Genetic Algorithm based ATPG
seems to be able to strike a good balance between the quality of pro-
duced test patterns and complexity. Therefore, we use this approach to
generate fine-tuning patterns for enhancing the diagnosis resolution in
phase 3.

6.2.1 Genetic Algorithm based ATPG
For each target fault, we select a small set of long paths based on

statistical timing analysis. Next, for each path, we assign the manda-
tory logic assignments to sensitize it. After assigning the mandatory
values to sensitize a given path, usually there are still many unspeci-
fied values at the primary inputs. Even though the path sensitization
does not depend on the assignment of these values, the path delay does.
Therefore, we use an iterative GA process to specify these PI values
such that they result in longer path delays.

Genetic algorithms [18] are search algorithms based on the mechan-
ics of natural selection and natural genetics. In our GA based delay
fault ATPG, the solution space is represented by the set of all possi-
ble patterns satisfying the mandatory values for sensitizing the target
path delay fault. Each pattern has an associated fitness value which is,
in our case, given by the path delay under the current set of patterns.
We use statistical dynamic timing simulations to evaluate the path de-
lays [16]. In the initial generation of patterns, the unspecified PI values
are randomly assigned. Next, the GA searches for the pattern(s) with
the optimal solution using three processes: selection, crossover and
mutation [19]. The objective of the GA is to evolve a population of
patterns having high fitness values. This iterative process continues
until the number of generations reaches a pre-defined value.

7. EXPERIMENTAL RESULTS
In this section, we present the final experimental results for all phases

of our diagnosis framework. For each design and each injected defect,
we first apply phase 1 and phase 2 of our diagnosis methodology. The
results after phase 2 are given in Section 5. Next, for each defect, we
select K highest ranking suspects to use them as target faults for gen-
erating the fine-tuning patterns. The value of K is determined based
on when the rapid change of the diagnosis error is observed for the
given defect, as described in Section 6.1.

Let the set of target faults be F = ff1; : : : fKg. For each target
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Ckt; average number of suspect K Phase 2 Phase 3 (%)
faults S after phase 2 (%) Random GA

s1196 1 23 27 35
S = 8 2 48 51 64

3 60 64 77
5 80 82 90

s1423 1 7 12 25
S = 11 2 29 37 62

4 52 57 75
9 75 78 87

s5378 1 29 36 58
S = 12 4 58 67 83

6 86 87 91
9 86 88 95

s9234 1 15 18 25
S = 10 3 35 41 56

5 64 73 81
8 73 81 93

s15850 2 38 45 52
S = 16 6 57 61 70

10 76 79 83
13 95 95 98

Table 2: Fine-Tuning The Diagnosis Accuracy

fault fi 2 F , we select 10 longest paths and use them in the GA based
ATPG to generate patterns. The paths are selected using statistical
timing analysis tool [16]. For each path, we set the size of the GA
population to 12 and the number of generations as 5. At the end of the
GA process, for each target fault fi, we pick 4 patterns resulting in a
longest path delay.The path delay is obtained using statistical dynamic
timing simulations [16].

Next, we use our phase 2 diagnosis methodology again with these
additional patterns. The experiment follows the same spirit as the one
described in Section 5. To evaluate the contribution of generating high
quality patterns as opposed to just generating additional patterns with-
out timing information, for each target fault, we also derive 40 ad-
ditional test patterns such that the unspecified values at the primary
inputs after sensitizing the paths are assigned randomly (rather than
generated using the GA based ATPG).

Table 2 shows the results for diagnosis resolution in the case of sin-
gle defect. The average number of target faults for which additional
test patterns are generated is given under the circuit name. The average
is taken over all injected defects for the given design. The percentages
in column 3 are the results after phase 2, i.e., they are repeated from
Table 1. The results under column marked ”Phase 3” are obtained with
the two sets of additional patterns: random and GA generated. Even
though both sets result in improved diagnosis resolution, the GA gen-
erated patterns have a clear advantage. Due to the relatively low cost of
GA based ATPG as compared to deterministic timed ATPG, the results
suggest that the extra cost is worth the effort.

8. CONCLUSIONS AND FUTURE WORK
In this work, we study the problem of delay defect diagnosis based

upon statistical timing model. We propose a 3-phase diagnosis method-
ology that gradually improves the diagnosis resolution. While most of
the previous delay diagnosis approaches stop after faults can be dis-
tinguished using logic conditions in phase 1, our main contribution is
a novel delay diagnosis methodology based on statistical timing infor-
mation used to further distinguish faults in phase 2 and phase 3. To do
this, we propose an error-function-driven diagnosis algorithm based
upon the single defect assumption, and demonstrate its effectiveness
under different defect assumptions. We note that this algorithm was
the best after experimenting with several other different approaches.

In phase 3, we propose a novel methodology for deriving fine-tuning
diagnostic patterns to further enhance the diagnostic resolution. Our
experimental results indicate that using our diagnosis framework with
extra effort of generating additional good patterns results in improved
diagnosis resolution.

Future research includes many possible directions, including 1) de-
velopment of better diagnosis error functions and new diagnosis algo-
rithms accordingly, 2) development of methods to reduce the expense
of computing and storing the probablistic fault dictionary, 3) the im-
provement of dynamic statistical timing simulator for more accurate
delay fault simulation.
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[5] J.-J. Liou, A. Krstić, K.-T. Cheng, D. Mukherjee, S. Kundu.
Performance Sensitivity Analysis Using Statistical Methods and
Its Applications to Delay Testing. ASP DAC, 2000.

[6] M. Abramovici, M. A. Breuer, A. D. Friedman. Digital Systems
Testing and Testable Design, W.H.Freeman, 1990.

[7] A. Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou. Diagnosis of
Delay Defects Based Upon Statistical Timing Models — The
First Step. Design Automation and Test in Europe, 2003.

[8] D. B. Lavo, B. Chess, T. Larrabee, F. J. Ferguson. Diagnosing
Realistic Bridging Faults with Single Stuck-At Information.
IEEE Trans. on CAD, Mar. 1998.

[9] J. Ghosh-Dastidar, N. A. Touba. Diagnosing Resistive Bridges
Using Adaptive Techniques. Custom Integr. Circ. Conf., 2000.

[10] H. Takahashi, K. O. Boateng, Y. Takamatsu. A New Method for
Diagnosing Multiple Stuck-at Faults using Multiple and Single
Fault Simulations. VLSI Test Symp., 1999.

[11] P. Girard, C. Landrault, S. Pravosssudovitch. A Novel Approach
to Delay-Fault Diagnosis. Design Automation Conf., 1992.

[12] P. Pant, A. Chatterjee. Path-Delay Fault Diagnosis in Non-Scan
Sequential Circuits with At-Speed Test Application. ITC, 2000.

[13] M. Sivaraman, A. J. Strojwas. Path Delay Fault Diagnosis and
Coverage - A Metric and an Estimation Technique. IEEE Trans.
on CAD, Mar. 2001.

[14] W.-Y. Chen, S. K. Gupta, M. A. Breuer. Test Generation for
Crosstalk-Induced Delay in Integrated Circuits. ITC, 1999.

[15] Y-M. Jiang, A. Krstic, K.-T. Cheng, Estimation for Maximum
Instantaneous Current Through Supply Lines for CMOS
Circuits. IEEE Trans. on VLSI, Feb, 2000.

[16] J.-J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng.
False-Path-Aware Statistical Timing Analysis and Efficient Path
Selection for Delay Testing and Timing Validation. Design
Automation Conf., 2002.

[17] Anacad. Eldo v4.4.x User’s Manual. 1996.
[18] D. E. Goldberg, R. Burch. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[19] A. Krstic, Y.-M. Jiang, K.-T. Cheng. Pattern Generation for
Delay Testing and Dynamic Timing Analysis. IEEE Trans. on
CAD, Mar. 2001.

673


	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index




